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Abstract

For a simple graph G, the signless Laplacian Estrada index is defined as
SLEE(G) =

∑n
i=1 e

qi , where q1, q2, . . . , qn are the eigenvalues of the sign-
less Laplacian matrix of G. In this paper, we first characterize the unicyclic
graphs with the first two largest and smallest SLEE’s and then determine
the unique unicyclic graph with maximum SLEE among all unicyclic graphs
on n vertices with a given diameter. All extremal graphs, which have been
introduced in our results are also extremal with respect to the signless Lapla-
cian resolvent energy.
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1. Introduction
In this paper, all graphs are simple, finite, and undirected. The vertex and edge
sets of a graph G are V (G) and E(G), respectively. Usually, we suppose that G
has n vertices and m edges. The adjacency matrix A = A(G) = [aij ] is the n× n
symmetric matrix with zero diagonal entries and whose (i, j)-th entry is equal to
1 if i and j are adjacent in G and to 0 otherwise, for distinct i, j ∈ V (G). The
matrix Q = Q(G) = D+A is known as the signless Laplacian matrix of G, where
D is the diagonal matrix whose diagonal entry (D)ii is the degree of vertex i,
1 ≤ i ≤ n. We denote the spectrum of Q by (q1, q2, . . . , qn).
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For any graph G, the largest eigenvalue of Q(G) is called the signless Lapla-
cian spectral radius, Q-spectral radius, or Q-index of G. The problem of determin-
ing graphs, having the maximum spectral radius of the signless Laplacian matrix
(among all graphs with given numbers of vertices and edges) is an important prob-
lem in the spectral graph theory (see [10, 11, 15]). More references about spectral
properties of the signless Laplacian matrix can be found in [5, 7].

The answer to the question, “Which graphs are determined by their spectrum?”
is still unknown. Reviewing the literature of the spectral graph theory, we notice
that van Dam and Haemers proposed that using the signless Laplacian matrix
Q in the study of graph properties is better than the other graph matrices [8].
Therefore, research on (the spectrum of) this matrix has attracted more attention
of some authors.

Recently, Nasiri et al. [14], defined the resolvent signless Laplacian Estrada
index of any non-complete graph G as SLEEr(G) =

∑n
i=1

2n−2
2n−2−qi , and studied

the matrix Q(G) with respect to this new invariant. Analogously, Cafure et al.
[4], introduced the signless Laplacian resolvent energy of an arbitrary graph G
by RQ(G) =

∑n
i=1

1
2n−1−qi . Moreover, the spectrum of the matrix Q is the main

part of another energy-like quantity of graphs, called the signless Laplacian energy,
which is defined by Abreu et al. [1] in the following form:

SLE(G) =

n∑
i=1

∣∣∣qi − 2m

n

∣∣∣.
Binthiya et al. [3] established an upper bound for SLE(G) and SLEE(G) in terms
of n, m and vertex connectivity of G, where SLEE(G) is the signless Laplacian
Estrada index of the graph G. For the first time, Ayyaswamy et al. [2] defined
SLEE(G) as the sum of exponentials of the eigenvalues of Q(G), i. e.,

SLEE(G) =

n∑
i=1

eqi .

They also determined lower and upper bounds for SLEE in terms of the number
of vertices and edges. In [9, 12], we investigated the unique graphs with maximum
SLEE among the set of all graphs with given number of cut edges, cut vertices,
pendent vertices, (vertex) connectivity, edge connectivity, or diameter. In another
work [13], we obtained that there exist exactly two graphs with maximum SLEE
in the class of all n-vertex tricyclic graphs, for n ≥ 5.

In this paper, in order to continue our research on the signless Laplacian matrix,
we study the unicyclic graphs having the first two largest and smallest SLEE’s,
and find the unique unicyclic graph with maximum SLEE among the class of all
unicyclic graphs on n vertices with a given diameter.
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2. Preliminaries
This section recalls some basic definitions, notations and results from [6, 9]; then
it proves three useful propositions which will be used in our main results.

A unicyclic graph is a connected graph with the same number of vertices and
edges. Hence, a unicyclic graph is a connected graph with a unique cycle. For a
graph G, we denote by Tk(G), its k-th signless Laplacian spectral moment, i.e.,
Tk(G) =

∑n
i=1 q

k
i . So we have,

SLEE(G) =
∑
k≥0

Tk(G)

k!
.

Definition 2.1. [6] A semi-edge walk of length k in a graph, say G, is an al-
ternating sequence W = v1e1v2e2 · · · vkekvk+1 of vertices v1, v2, . . . , vk, vk+1 and
edges e1, e2, . . . , ek such that two vertices vi and vi+1 are (not necessarily distinct)
end-vertices of the edge ei, for any i = 1, 2, . . . , k. If v1 = vk+1, then we say that
W is a closed semi-edge walk.

Theorem 2.2. [6] For a graph G, the signless Laplacian spectral moment Tk(G)
is equal to the number of closed semi-edge walks of length k in G.

Let G and H be two graphs, and x, y ∈ V (G), and v, u ∈ V (H). We denote
by SWk(G;x, y), the set of all semi-edge walks, each of which is of length k in
G, starting at vertex x, and ending at vertex y. For convenience, we may de-
note SWk(G;x, x) by SWk(G;x), and set SWk(G) =

⋃
x∈V (G) SWk(G;x). Thus,

Theorem 2.2 tells us that Tk(G) = |SWk(G)|.
If for any k ≥ 0, |SWk(G;x, y)| ≤ |SWk(H; v, u)|, then we use the notation

(G;x, y) �s (H; v, u). Moreover, if (G;x, y) �s (H; v, u), and there exists some k0
such that |SWk0

(G;x, y)| < |SWk0
(H; v, u)|, then we write (G;x, y) ≺s (H; v, u).

Lemma 2.3. [9] Let G be a graph and v, u, w1, w2, . . . , wr ∈ V (G). Suppose that
Ev = {e1 = vw1, . . . , er = vwr} and Eu = {e′1 = uw1, . . . , e

′
r = uwr} are subsets

of edges of the complement of G (i.e. ei, e
′
i 6∈ E(G) for i = 1, 2, . . . , r). Set

Gu = G+ Eu and Gv = G+ Ev. If (G; v) ≺s (G;u), and (G;wi, v) �s (G;wi, u)
for each i = 1, 2, . . . , r, then SLEE(Gv) < SLEE(Gu).

To use the above lemma more conveniently, we say that Gu is obtained from
Gv, by transferring some neighbors of v to the set of neighbors of u. In this
situation, we call the vertices w1, . . . , wr as transferred neighbors, and the graph
G as transfer route. Note that an important condition to use the above lemma is
to be able to compare the number of semi-edge walks ending at vertices u and v.
In the following, we present a helpful lemma to compare the number of semi-edge
walks ending at some different vertices.

Lemma 2.4. Let G be a graph and P = v0v1 · · · vl be a path in G such that
d(v0) = 1. Suppose that v = vr and u = vs such that r + s ≤ l and d(vi) = 2
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for each 0 < i < r+s
2 . If r + s < l or d(v) < d(u), then (G; v) ≺s (G;u) and

(G;w, v) �s (G;w, u) for any w ∈ V (G) \ {v0, v1, . . . , va}, where a = b r+s
2 c.

vl vs

va
vr v0

If r + s is even

vl vs

va+1

va vr v0

If r + s is odd

Figure 1: An illustration of the graph G in Lemma 2.4.

Proof. For each semi-edge walk W in P which does not contain the vertices vj and
the edges ej = vj−1vj for any j > r+ s, suppose that W is a semi-edge walk in P
obtained uniquely from W by replacing vertices vt with vt′ and the corresponding
edges, where t′ = r + s− t.

Let W ∈ SWk(G; v), and r + s be even. In this case, va is the vertex which
has the same distance from v and u in P . If W contains va more than once, then
it can be decomposed uniquely to W1W2W3, such that W2 ∈ SWk(G; va) is as
long as possible, and W1 and W3 are two semi-edge walks in P . Suppose that
f
(1)
k (W1W2W3) = W1W2W3, and if W does not contain va more than once, then
f
(1)
k (W ) = W . Obviously, the map f

(1)
k : SWk(G; v)→ SWk(G;u) is an injection.

Let r+ s be odd. If W contains ea+1 = vava+1 more than once, then it can be
decomposed uniquely to W1ea+1W2ea+1W3, such that W2 is as long as possible,
and W1 and W3 are two semi-edge walks in P . In this case set:

f
(2)
k (W1W2W3) = W1ea+1W2ea+1W3.

Also, if W does not contain ea+1 = vava+1 more than once, then set f (2)
k (W ) = W .

The map f
(2)
k : SWk(G; v)→ SWk(G;u) is also an injection.

Thus |SWk(G; v)| ≤ |SWk(G;u)| for any k ≥ 0. Note that if d(v) < d(u) then

T1(G; v) = d(v) < d(u) = T1(G;u).

Also, if r+s < l, then none of the maps f (i)
k , for i = 1, 2, is covering the semi-edge

walk:
W = vses+1vs+1 · · · vl−1elvlelvl−1 · · · vs+1es+1vs.

Therefore, |SWk0
(G; v)| < |SWk0

(G;u)|, for some k0 ≥ 1. Hence (G; v) ≺s (G;u).
By a similar method, we can prove that (G;w, v) �s (G;w, u) for any vertex

w ∈ V (G) \ {v0, v1, . . . , va}, which completes the proof.

A special case of the previous lemma for r = 0 and s = 1, is proved in [9,
Lemma 2.5].
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Corollary 2.5. Let G be a graph containing a cycle, say Cl = v0v1 · · · vl−1v0,
such that l > 3. Suppose that H is the graph obtained from G by transferring
neighbors N ′(v) of v to the set of neighbors of u, where v = v0, u = v1, and
N ′(v) = N(v) \ {u}. If u and v do not have a common neighbor in G, then
SLEE(G) < SLEE(H).

Proof. Let G′ be the transfer route graph and P = v0v1 · · · vl−1. Applying Lemma
2.4 for r = 0 and s = 1, implies that (G′; v) ≺s (G

′;u) and (G′;w, v) �s (G
′;w, u)

for any w ∈ N ′(v) ⊆ V (G) \ {v}. Now, the result follows from Lemma 2.3.

Note that the result of Corollary 2.5 holds for any v = vi and u = vi+1,
because we can rewrite the cycle Cl in the form Cl = vivi+1 · · · vlv0v1 · · · vi−1vi for
any i = 0, . . . , l.

Lemma 2.6. Let G be an arbitrary graph and v, u ∈ V (G). If dG(v) < dG(u) and
Nnp(v) ⊆ Nnp(u) ∪ {u}, where Nnp(x) is the set of all non-pendent neighbors of
the vertex x, then (G; v) ≺s (G;u).

Proof. For each w ∈ Nnp(v) \ {u}, we correspond a vertex, say w = w ∈ Nnp(u).
This correspondence can be extended over N(v) \ {u}, because dG(v) < dG(u).
Moreover, we can assume that v corresponds to u (i.e. v = u and u = v). Suppose
that k > 0 and W ∈ SWk(G; v). We can decompose W into W1W2W3, where W1

andW3 are as long as possible and made up of just the vertices in {v}∪Nnp(v)\{u}
and the edges in {vw : w ∈ N(v) \ {u}}. Note that W2 and W3 are empty when
W consists of just the above vertices and edges. Let Wj be obtained from Wj for
j = 1, 3, by replacing each vertex x with x and each edge e = x y with e = x y. The
map fk : SWk(G; v) → SWk(G;u) defined by the rule fk(W1W2W3) = W1W2W3

is an injection. Therefore, we have (G; v) ≺s (G;u), because dG(v) < dG(u).

3. Maximum SLEE of Unicyclic Graphs
In the present section, we find the unique graphs with first and second maximum
SLEE among all unicyclic graphs on n vertices.

Let q ≥ 3, and ni ≥ 0, where i = 1, 2, . . . , q. Denoting by CqS(n1, n2, . . . , nq),
the graph obtained from a cycle Cq = v1v2 · · · vqv1, by attaching ni pendent ver-
tices to vi for each i = 1, 2, . . . , q. Also, we denote the graph C3S(n − 3, 0, 0) by
G(1), and C3S(n− 4, 1, 0) by G(2) (see Figure 2).

Lemma 3.1. Let G be a unicyclic graph with the unique cycle Cq = v1v2 · · · vqv1.
There exist n1, . . . , nq ≥ 0, such that SLEE(G) ≤ SLEE

(
CqS(n1, n2, . . . , nq)

)
,

with equality if and only if G ∼= CqS(n1, n2, . . . , nq).

Proof. If G 6∼= CqS(n1, . . . , nq), then there exists a tree T on at least 3 vertices
with only one vertex in Cq, say u = vi, such that T is not a star with the center
vertex u. Suppose that v is a non-pendant neighbor of the vertex u in T . Let
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x1
v1

v3

v2

x2

xn−3

v1v2

v3

x1

x2

xn−4

y

v1 n1

v2

n2

vq

n
q

CqS(n1, n2, . . . , nq) G(1) G(2)

Figure 2: A demonstration of graphs CqS(n1, n2, . . . , nq), G(1), and G(2).

N ′(v) = N(v) \ {u}, G1 be the graph obtained from G by transferring neighbors
N ′(v) of v to the set of neighbors of u, andG′1 be the transfer route. By Lemma 2.4,
(G′1; v) ≺s (G′1;u) and (G′1;w, v) �s (G′1;w, u) for any w ∈ V (G) \ {v}. Now, by
Lemma 2.3, SLEE(G) < SLEE(G1). If G1 6∼= CqS(n1, . . . , nq), then by repeating
the above process, we may get a graph Gk with SLEE(G) < SLEE(Gk) where
Gk
∼= CqS(n1, . . . , nq) for some n1, . . . , nq ≥ 0 .

Lemma 3.2. If q ≥ 3 and n1, . . . , nq ≥ 0, then there exist n′1, n
′
2, n
′
3 ≥ 0 such

that,
SLEE

(
CqS(n1, n2, . . . , nq)

)
≤ SLEE

(
C3S(n

′
1, n
′
2, n
′
3)
)

with equality if and only if q = 3.

Proof. Obviously, if q = 3, then the equality holds true. Therefore, let q > 3, and
Cq = v1v2 · · · vqv1 be the unique cycle of CqS(n1, . . . , nq). Since v1 and v2 do not
have any common neighbors, by Corollary 2.5,

SLEE
(
CqS(n1, n2, . . . , nq)

)
< SLEE

(
Cq−1S(n1 + n2 + 1, n3, . . . , nq)

)
.

By repeating this process, after q − 3 times, we have,

SLEE
(
CqS(n1, n2, . . . , nq)

)
< SLEE

(
C3S(q − 3 +

∑q−2
i=1 ni, nq−1, nq)

)
.

In the following theorem, we prove that G(1) has the first maximum SLEE,
and G(2) has the second maximum SLEE among all unicyclic graphs on n vertices.

Theorem 3.3. Let G be a unicyclic graph on n vertices. If G 6∼= G(1), then,

SLEE(G) ≤ SLEE(G(2)) < SLEE(G(1))

with equality in the left part if and only if G ∼= G(2).
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Proof. Let G ∼= G(2) (as shown in Figure 2). The graph G(1) is obtained from G(2)

by transferring the pendent neighbor y of v2 to the set of neighbors of v1. Let H
be the transfer route graph. It is easy to show that (H; v2) ≺s (H; v1). Therefore,
Lemma 2.3 implies that SLEE(G(2)) < SLEE(G(1)).

Let Cq = v1v2 · · · vqv1 be the unique cycle of G, and G 6∼= G(2). We prove the
theorem in three cases as follows:
Case 1. q = 3 and two of vertices in C3, say v2 and v3, have degree 2.

In this case by removing vertices v2 and v3 of G, we get a tree T which is not a
star with center vertex v1. By reapplying Lemmas 2.3 and 2.4, similarly in proof
of Lemma 3.1, we may get a graph G1 from G, made up of a cycle C3, and n− 5
pendent vertices attached to v1 and a pendent path P3 = v1u1x (see Figure 3),
such that SLEE(G) < SLEE(G1).

u1v1

v2

v3
x

x1

xn−5

Figure 3: The graph G1 in Case 1 of the proof.

Obviously, G(2) can be obtained from G1 by transferring the neighbor x of u1

to the set of neighbors of v2. Let H be the transfer route graph. By Lemma 2.4,
(H;u1) ≺s (H; v2). Therefore, Lemma 2.3 implies that SLEE(G1) < SLEE(G(2)).

Case 2. q = 3 and two of vertices in C3, say v1 and v2 have degrees more than 2.
In this case, by Lemma 3.1, there exist integers n1, n2, n3 ≥ 0 such that

SLEE(G) ≤ SLEE
(
C3S(n1, n2, n3)

)
, with equality if and only if G is isomorphic

to C3S(n1, n2, n3). Without loss of generality, we may assume that n1 ≥ n2 ≥ n3.
If n3 6= 0, then obviously, C3S(n1 + n3, n2, 0) is obtained from C3S(n1, n2, n3) by
transferring n3 pendent neighbors of v3 to the set of neighbors of v1. If H is the
transfer route graph, then Lemma 2.6 implies that (H; v3) ≺s (H; v1). Therefore,
by Lemma 2.3,

SLEE
(
C3S(n1, n2, n3)

)
< SLEE

(
C3S(n1 + n3, n2, 0)

)
.

Now, if n2 > 1, then by reapplying Lemmas 2.3 and 2.6 (i. e. by transferring
n2 − 1 pendent neighbors of v2 to the set of neighbors of v1) we have,

SLEE
(
C3S(n1 + n3, n2, 0)

)
< SLEE(G(2)).

Case 3. q > 3.
By Lemma 3.1, there exist integers n1, n2, . . . , nq ≥ 0, such that,

SLEE(G) ≤ SLEE
(
CqS(n1, . . . , nq)

)
,
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with equality if and only if G ∼= CqS(n1, . . . , nq). If q > 4, then by q − 4 times
reusing Corollary 2.5, as used in the proof of Lemma 3.2, we may get four integers
n′1 ≥ · · · ≥ n′4 ≥ 0, such that SLEE

(
CqS(n1, . . . , nq)

)
< SLEE

(
C4S(n

′
1, . . . , n

′
4)
)
.

Suppose that C4 = v1v2v3v4v1 and n′1 6= 0. Since v2 and v3 do not have any com-
mon neighbors, by Corollary 2.5, we conclude that,

SLEE(G) ≤ SLEE
(
C3S(n

′
1, n
′
2 + n′3 + 1, n′4)

)
.

Now, the result follows by Case 2.

4. Minimum SLEE of Unicyclic Graphs

The goal of this section is to specify unique graphs with first and second minimum
SLEE among all n-vertex unicyclic graphs.

Let q ≥ 3, and ni ≥ 0, where i = 1, 2, . . . , q. Denoting by CqP (n1, n2, . . . , nq),
the graph obtained from a cycle Cq = v1v2 · · · vqv1, by attaching a pendent path
on ni + 1 vertices to vi for each i = 1, 2, . . . , q. For convenience, we denote the
graph Cn−1P (1, 0, . . . , 0) by G(2) (see Figure 4).

CqP (n1, n2, . . . , nq)

v1
u1 u2

un1

v2

x1

x2

xn2

vq y1
y2

ynq

Cn−1 v1
u

G(2)

Figure 4: An illustration of the graphs CqP (n1, n2, . . . , nq) and G(2).

Lemma 4.1. Let G be a unicyclic graph with the unique cycle Cq = v1v2 · · · vqv1.
There exist n1, . . . , nq ≥ 0, such that SLEE(CqP (n1, n2, . . . , nq)) ≤ SLEE(G),
with equality if and only if G ∼= CqP (n1, n2, . . . , nq).

Proof. Let G 6∼= CqP (n1, . . . , nq). Thus, G has a subgraph T containing exactly
one vertex, say vi, in Cq, and T is a tree but not a path. Let Pr+1 = u0u1 · · ·ur

be the longest path in T with one end at vi (i.e. ur = vi). Obviously, u0 is
a pendent vertex. Since T is not a path, there is a minimum index j, where
1 ≤ j ≤ r, such that dT (uj) > 2. Let G1 be the graph obtained from G by
transferring all of vertices in NT (uj) \ V (Pr+1) from the set of neighbors of uj

to the set of neighbors of u0. Let G′1 be the transfer route graph. Now, by
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Lemma 2.4, we have (G′1;u0) ≺s (G′1;uj) whose applying to Lemma 2.3 gives us
SLEE(G1) < SLEE(G).

It is obvious that in the graph G1, the tree which is attached to the vertex vi has
a path longer than Pr+1, with an end vertex vi. Thus, by repeating this operation,
we get a graph Gk such that the tree attached to vi is a path on ni vertices, and
SLEE(Gk) < SLEE(G). Now, the result follows by doing this process on every
tree which has just one common vertex with Cq, and is not a path.

Lemma 4.2. Let H = CqP (n1, n2, . . . , nq), where q < n. Then,

SLEE(Cq) < SLEE(G(2)) ≤ SLEE(H)

with equality on the right part if and only if H ∼= G(2) (i.e. q = n− 1).

Proof. It is easy to show that SLEE(Cq) < SLEE(G(2)). Also, if q < n− 1, then
there exists at least one index i with ni > 0. Without loss of generality, we can
assume that i = 1, and P = v1u1u2 · · ·un1

is the pendent path at v1. Obviously
G1 = Cq+n1−1P (1, n2, . . . , nq, 0, 0, . . . , 0) is obtained from H by transferring the
neighbor vq of v1 to the set of neighbors of un1−1. By Lemmas 2.3 and 2.4, we have
SLEE(G1) < SLEE(H). Now, by repeating a similar process on every pendent
path of length > 0, we conclude that SLEE(G(2)) < SLEE(H).

The following theorem is an immediate consequence of the previous lemmas
and shows that the unique unicyclic n-vertex graph with first (respectively, second)
minimum SLEE is Cq (respectively, G(2)).

Theorem 4.3. Let G be a unicyclic graph on n vertices with the unique cycle Cq.
If q < n, then,

SLEE(Cq) < SLEE(G(2)) ≤ SLEE(G)

with equality on the right part if and only if G ∼= G(2) (i.e. q = n− 1).

5. Unicyclic Graph with Maximum SLEE with
Given Diameter

This last section determines the unique graph which has maximum SLEE among
the set of all unicyclic graphs with given diameter d. A diametral path is a shortest
path between two vertices whose distance is equal to the diameter of the graph. It is
well-known that C3 is the unique unicyclic graph with diameter d = 1. Therefore,
we consider d ≥ 2 throughout this section.

Lemma 5.1. Let G be a unicyclic graph with given diameter d, and P = v0v1 · · · vd
be a diametral path in G. If G has maximum SLEE, then xvi 6∈ E(G) for any
x ∈ V (G) = V (G)\V (P ) and vi ∈ V (P )\{va, va+1}, where the vertex va is almost
in the middle of the path P (i.e. either a = bd2c or a = bd2c − 1).
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Hereafter, for convenience, for any subset X ⊆ V (G), set X = X \ V (P ), and
d̂ = bd2c.

Proof. Suppose that i is the minimum index with xvi ∈ E(G) for some x ∈ V (G).
Since G is unicyclic, there exists an index j ∈ {i+1, i+2} such that vi and vj do
not have any common neighbors belonging to V (G). If i < d̂−1, then by Lemmas
2.4 and 2.3 and transferring some neighbors of vi to the set of neighbors of vj ,
we may get a unicyclic graph with diameter d, which has larger SLEE than G, a
contradiction. Thus N(vi) = ∅ for each i < d̂ − 1. Similarly, we have N(vi) = ∅
for each i > d̂+ 1.

If d is odd, then N(v
d̂−1

) = ∅, because otherwise, in the same way as above,
by transferring some neighbors of v

d̂−1 to the set of neighbors of either v
d̂
or v

d̂+1
,

we obtain a unicyclic graph with diameter d, which has larger SLEE than G, also
a contradiction.

If d is even, then N(v
d̂−1

) = ∅ or N(v
d̂+1

) = ∅. Otherwise, we can obtain a
unicyclic graph with diameter d, which has larger SLEE than G, by transferring
neighbors N(v

d̂−1
) of v

d̂−1 to the set of neighbors of either v
d̂
or v

d̂+1
; which is

again a contradiction.

Remark. With the above notations, bear in mind if d is even and N(v
d̂+1

) = ∅,
then by changing the labels of vertices of P , such that vi gets the label ud−i for each
i = 0, . . . , d, we have xui 6∈ E(G) for any x ∈ V (G) and ui ∈ V (P ) \ {u

d̂
, u

d̂+1
}.

Thus, we can always suppose that a = d̂ in the previous lemma.
Let 1 ≤ d ≤ n− 2 . We denote by Gd the graph obtained from a path on d+1

vertices, say P = v0v1 · · · vd, by attaching n− d− 2 pendent vertices to v
d̂
, and a

vertex u ∈ V (G) to the vertices v
d̂
and v

d̂+1
(see Figure 5).

v0 v1 v
d̂

v
d̂+1

vd−1 vd

u
n− d− 2

Gd

Figure 5: The unicyclic graph which has maximum SLEE with given diameter d.

In the following theorem, we prove that Gd is the unique unicyclic graph which
has maximum SLEE among the set of all unicyclic graphs with given diameter d.

Theorem 5.2. If G is a unicyclic graph with diameter d which has maximum
SLEE, then G ∼= Gd.
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Proof. By Lemma 5.1 and the previous remark, we know that the graph G has a
diametral path, say P = v0v1 · · · vd, such that xvi 6∈ E(G) for each x ∈ V (G) and
vi ∈ V (Pd+1) \ {vd̂, vd̂+1

}. By Corollary 2.5, the unique cycle of G is of length 3,
say C3 = u1u2u3u1.

By a similar method used in the proof of Lemma 3.1, we conclude that any
vertex x ∈ V (G) \ V (C3) is a pendent vertex, and C3 has at least one common
vertex with P .

We claim that V (C3) ∩ V (P ) = {v
d̂
, v

d̂+1
}. In order to prove it, let C3 have

exactly one common vertex with Pd+1, say u1 = vj where j ∈ {d̂, d̂+ 1}. If d = 2,
then we may change our choice of P , such that C3 and the new diametral path
have exactly two vertices in common. If d > 2, then suppose that G1 is the graph
obtained fromG by transferring neighborsN(u2)\{u1} of u2 to the set of neighbors
of vj′ , also H is the transfer route graph, where {j, j′} = {d̂, d̂+1}. By Lemma 2.4,
(H;u2) ≺s (H; vj′). Therefore, Lemma 2.3 implies that SLEE(G) < SLEE(G1),
which is a contradiction. This proves our claim.

Set u = u3. If d(u) > 2, then by transferring pendent neighbors of u to the
set of neighbors of v

d̂
, we get a unicyclic graph with diameter d which has larger

SLEE than G, a contradiction. Therefore, d(u) = 2.
Now, if d(v

d̂+1
) = 3, then there is nothing to prove. Therefore, let d(v

d̂+1
) > 3.

If d is even and d(v
d̂
) = 3, then by changing the labels of vertices of P , as in the

previous remark, we have nothing to prove, again. So, let either d be odd or
d(v

d̂
) > 3. Obviously, Gd can be obtained from G by transferring some neighbors

of v
d̂+1

to the set of neighbors of v
d̂
. Suppose that H is the transfer route graph.

With these assumptions and using the method of the proof of Lemma 2.6, and also
a correspondence between each vertex vi and v

2d̂+1−i, where 2d̂ + 1 − d ≤ i ≤ d,
we can show that (H; v

d̂+1
) ≺s (H; v

d̂
). Thus, by Lemma 2.3 we have,

SLEE(G) < SLEE(Gd),

which is a contradiction. Therefore, G ∼= Gd.

6. Concluding Remarks

In this paper, we have determined the unicyclic graphs with the first two largest
and smallest SLEE’s. We have also specified the unique graph with maximum
SLEE among all unicyclic graphs on n vertices with a given diameter. Indeed,
the main idea of this paper (also [9, 12, 13]), is to use the notion of the signless
Laplacian spectral moments of graphs to compare their SLEE’s.

Since the signless Laplacian resolvent energy of any graph, say G, is equal
to
∑

k≥0
Tk(G)

(2n−1)k+1 , it would be of interest to study this energy-like invariant by
considering the signless Laplacian spectral moments. However, it is easy to check
that the expected results for the signless Laplacian resolvent energy of graphs
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will be very similar to our main results. More precisely, one can check that all
extremal graphs, which have been introduced in our results (including extremal
graphs in [9, 12, 13]), are also extremal with respect to the signless Laplacian
resolvent energy.
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