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Fundamental Functor Based on
Hypergroups and Groups

Mohammad Hamidi ?

Abstract

The purpose of this paper is to compute the fundamental relations of
hypergroups. In this regards first we study some basic properties of fun-
damental relation of hypergroups, then we show that any given group is
isomorphic to the fundamental group of a nontrivial hypergroup. Finally we
study the connections between categories of hypergroups and groups via the
fundamental relation.
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1. Introduction
The theory of hyperstructures has been introduced by Marty in 1934 during the 8th
Congress of the Scandinavian Mathematicians [10]. Marty introduced hypergroups
as a generalization of groups. He published some notes on hypergroups, using them
in different contexts as algebraic functions, rational fractions, non commutative
groups and then many researchers have been worked on this new field of modern
algebra and developed it.

The applications of mathematics in other disciplines, for example in informat-
ics, play a key role and they represent, in the last decades, one of the purpose of the
study of the experts of Hyperstructures Theory all over the world. Then various
connections between hypergroups and other subjects of theoretical and applied
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mathematics have been established. The most important applications in geome-
try, topology, cryptography and code theory, graphs and hypergraphs, probability
theory, binary relations, theory of fuzzy sets and rough sets, automata theory can
be found in [3].

A short review of the theory of hypergroups appears in [2]. The relation β
(resp. β∗) was introduced on hypergroups by Koskas [9] and was studied mainly
by Corsini [2] and Vougiouklis [12]. In [4], Freni proved that in hypergroups the
relation β is transitive. Recently, In [5], Freni introduced the relation γ as a
generalization of the relation β and proved that in hypergroups, the relation β is
transitive. Davvaz et al. [1] introduced the smallest equivalence relation ν∗ on
a hypergroup H such that the quotient H

ν∗ , the set of all equivalence classes, is
a nilpotent group and in this paper the characterization of nilpotent groups via
strongly regular relations was investigated and several results on the topic were
presented.

Recently, M. Hamidi et al. [8] defined a new equivalence relation τ∗ on divisible
hypergroups and showed that this relation is the smallest strongly regular relation
(the fundamental relation) on commutative divisible hypergroups. They proved
that τ∗ 6= β∗, τ∗ 6= γ∗, and defined a divisible hypergroup on every nonempty set.
They also proved that the quotient of a finite divisible hypergroup by τ∗ is the
trivial divisible group.

In this paper, we try to construct a connection between the category of hyper-
groups and groups, thus we need to apply the concept of fundamental relation on
hypergroups. We introduce the concept of fundamental group via the relation β∗
and show that any nontrivial group is a fundamental group. By considering the
concept of fundamental group, we introduce the functors between these categories
and try work up national translations of their composites and trivial functor.

2. Preliminaries
In this section we recall some definitions and results from [12], which we need
to development our paper. Suppose G be a nonempty set and P ∗(G) be the
family of all nonempty subsets of G, every function ∗i : G × G −→ P ∗(G) where
i ∈ {1, 2, . . . , n} and n ∈ N, is called hyperoperation. For all x, y ∈ G, ∗i(x, y) is
called the hyperproduct of x, y. An algebraic system (G, ∗1, ∗2, . . . , ∗n) is called
a hyperstructure and binary structure (G, ∗) endowed with only hyperoperation is
called a hypergroupoid. For any two nonempty subsets A and B of G and x ∈ G:

A ∗B =
⋃

a∈A,b∈B

a ∗ b, A ∗ x =
⋃
a∈A

a∗x and x ∗B =
⋃
b∈B

x ∗ b

Recall that a hypergroupoid (G,�) is called a semihypergroup if for any x, y, z ∈
G, (x�y)�z = x�(y�z) and semihypergroup (G,�) is a hypergroup if satisfies in
reproduction axiom, i.e. for any x ∈ G, x�G = G�x = G. Let G1 and G2 be two
hypergroups. The map f : G1 → G2 is called an inclusion homomorphism if for
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all x, y ∈ G, f(x� y) ⊆ f(x)� f(y), and is called a strong (good) homomorphism
if for all x, y ∈ G, f(x� y) = f(x)� f(y).

3. Fundamental Groups
Let (G,�) be a hypergroup and ρ be an equivalence relation on G. Letting G

ρ =

{ρ(g) | g ∈ G}, be the set of all equivalence classes of G with respect to ρ. Define
a hyperoperation ⊗ as follows:

ρ(a)⊗ ρ(b) = {ρ(c) | c ∈ ρ(a)� ρ(b)}

In [2] it was proved that (Gρ ,⊗) is a hypergroup if and only if ρ is regular.
Moreover, (Gρ ,⊗) is a group if and only if ρ is strongly regular ([2]). The smallest
equivalence relation, β∗, onG such that ( Gβ∗ ,⊗) is a group is called the fundamental
relation. Let U denote the set of all finite products of elements ofG. Define relation
β on G by

aβb⇐⇒ ∃u ∈ U : {a, b} ∈ u

In [2] it was proved that β∗ is the transitive closure of β, and ( Gβ∗ ,⊗) is called
the fundamental group of (G,�). Moreover, it was rewritten the definition of β∗
on G as follows:

aβ∗b⇐⇒ ∃z1 = a, z2, ..., zn = b ∈ G, u1, u2.., un ∈ U s.t.{zi, zi+1} ∈ ui,∀ 1 ≤ i ≤ n.

The fundamental relation plays an important role in theory of algebraic hyper-
structure (for more details see [2, 6, 7, 11]). Let us first survey some simple results
on hypergroups such that we will apply in the next sections.

Lemma 3.1. Let (G,�), (H,�′) be hypergroups and f : (G,�) → (H,�′) be a
homomorphism. Then the following statements are hold:

(i) For any x, y ∈ G, xβ∗y implies that f(x)β∗f(y);

(ii) If f is an injection, then for any x, y ∈ G, f(x)β∗f(y) implies that xβ∗y;

(iii) If f is a bijection, then for any x, y ∈ G, xβ∗y if and only if f(x)β∗f(y);

(iv) If f is a bijection. Then for any x ∈ G, f(β∗(x)) = β∗(f(x)).

Proof. (i) Let U be the set of all finite products of elements of G, U ′ be the set
of all finite products of elements of H and x, y ∈ G. Since xβ∗y, then there exists
u ∈ U , such that {x, y} ⊆ u. Now, for the homomorphism f : (G,�) → (H,�′)
we have {f(x), f(y)} = f{x, y} ⊆ f(u) ∈ U ′. Therefore, f(x)β∗f(y).

(ii) For x, y ∈ G, since f(x)β∗f(y), there exists v ∈ U ′, such that {f(x), f(y)} ⊆
v. Now, for an injection f : (G,�)→ (H,�′), we have

{x, y} = {f−1(f(x)), f−1(f(y))} = f−1{f(x), f(y)} ⊆ f−1(v) ∈ U .
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Therefore, xβ∗y.
(iii) By (i) and (ii), the proof is straightforward.
(iv) Let x ∈ G. Then we have

f(β∗(x)) =
⋃

y∈β∗(x)

f(y) =
⋃
yβ∗x

f(y).

By (iii), for any x, y ∈ G, xβ∗y if and only if f(x)β∗f(y). Therefore,

f(β∗(x)) =
⋃

y∈β∗(x)

f(y) =
⋃
yβ∗x

f(y)

=
⋃

f(y)β∗f(x)

f(y) =
⋃

f(y)∈β∗(f(x))

f(y)

= β∗(f(x))

This completes the proof.

Corollary 3.2. Let (G1,�1) and (G2,�2) be isomorphic hypergroups. Then
( (G1,�1)

β∗ ,⊗) ∼= ( (G2,�2)
β∗ ,⊗).

Proof. Let f : (G1,�1) −→ (G2,�2) be an isomorphism. Define the mapping
θ : ( (G1,�1)

β∗ ,⊗) −→ ( (G2,�2)
β∗ ,⊗) by θ(β∗(x)) = β∗(f(x)). By Lemma 3.1, θ is well-

defined and one to one. Since f is a homomorphism then θ is an isomorphism.

Now, briefly introduce the category of hypergroup. The category Hg consists
of the following data:

Objects: (G,�), (H,�′), . . . that are hypergroups.
Arrows: f, g, . . . that are good homomorphisms.

For each arrow f : (G,�) −→ (H,�′) there are given objects dom(f) = G and
cod(f) = H which called domain and codomain, respectively. Given arrows f :
(G,�) −→ (H,�′) and g : (H,�′) −→ (T,�′′), such that cod(f) = dom(g), there
is an arrow g ◦ f : G −→ T called the composite of f and g and for any arrows
h : (G,�) −→ (H,�′), g : (H,�′) −→ (T,�′′), f : (T,�′′) −→ (M,�′′′) have
(f ◦ g) ◦ h = f ◦ (g ◦ h). For object G there is given an arrow 1 : G −→ G which
called the identity arrow of G and for any arrow f : G −→ G, have f ◦1 = 1◦f = f .

Definition 3.3. A group (G, .) is said to be a fundamental group if there exists a
nontrivial hypergroup, say (H,�), such that ( (H,�)β∗ ,⊗) ∼= (G, .). In other words,
it is equal to the fundamental of nontrivial hypergroup up to isomorphic.

Remark 3.4. We know that on any group (G, .), if define a binary hyperoperation
” � ” as x � y = {x.y} such that is singleton, then (G,�) is a trivial hypergroup.
Therefore, its fundamental group is isomorphic to (G, .). In the following, we
define a nontrivial hypergroup such that its fundamental group, be isomorphic to
given group (G, .).
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Lemma 3.5. Let (G, .) be a group. Then for any group (H, .), there exists a binary
hyperoperation ”� ” on group G×H such that (G×H,�) is a hypergroup.

Proof. Let (H, .) be a nonzero group. Define a hyperoperation ”� ” on G×H, as
follows:

(g, h)� (g′, h′) = {(g.g′, h), (g.g′, h′)}

Clearly � is associative. We verify reproduction axiom. Let (g, h) ∈ (G × H).
Since (g, h) ∈ (g, h)� (1, 1) = {(g.1, s), (g.1, 1)} = {(g, h), (g, 1)}, then

(g, h)� (G×H) =
⋃

(g′,h′)∈G×H

(g, h)� (g′, h′)

=
⋃

(g′,h′)∈G×H

{(g.g′, h), (g.g′, h′)}

= G×H

and similarly, it obtained that (G×H)� (g, h) = G×H. Therefore, (G×H,�)
is a hypergroup.

Example 3.6. Let G = {e, a, b, c} be Kline,s four-group and H = G× Z2. Then
define a hyperoperation � on H as follows:

� e0 e1 a0 a1 b0 b1 c0 c1
e0 {e0} {e0, e1} {a0} {a0, a1} {b0} {b0, b1} {c0} {c0, c1}
e1 {e0, e1} {e1} {a0, a1} {a1} {b0, b1} {b1} {c0, c1} {c1}
a0 {a0} {a0, a1} {e0} {e0, e1} {c0} {c0, c1} {b0} {b0, b1}
a1 {a0, a1} {a1} {e0, e1} {e1} {c0, c1} {c1} {b0, b1} {b1}
b0 {b0} {b0, b1} {c0} {c0, c1} {e0} {e0, e1} {a0} {a0, a1}
b1 {b0, b1} {b1} {c0, c1} {c0} {e0, e1} {e1} {a0, a1} {a1}
c0 {c0} {c0, c1} {b0} {b0, b1} {a0} {a0, a1} {e0} {e0, e1}
c1 {c0, c1} {e1} {b0, b1} {b1} {a0, a1} {a1} {e0, e1} {e1}

where, for any w ∈ G and x ∈ Z2, wx = (w, x). A routine calculation shows that
(H,�) is a hypergroup.

Remark 3.7.

(i) The hypergroup (G ×H,�) is called the associated hypergroup to G via H
(or shortly associated hypergroup) and is denoted by GH .

(ii) The mapping ϕ : G −→ GH by ϕ(g) = (g, 1) is an embedding.

(iii) GH is a hypergroup with identity.

(iv) H = Z and we denote GH by G.

(vi) For H = Z2, GH is the smallest associated hypergroup.

Theorem 3.8. Let (G1, .) and (G2, .) be isomorphic groups. Then, for any group
(H, .), G1H and G2H are isomorphic hypergroups.
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Proof. Let f : (G1, .) −→ (G2, .) be an isomorphism. Define a map θ : (G1 ×
H,�) −→ (G2 × H,�) by θ(g, h) = (f(g), h) where r ∈ G1. Clearly θ is a
bijection. Now, we show that θ is a homomorphism. Let (g1, h), (g2, h′) ∈ G1×H.
Then,

θ((g1, h)� (g2, h
′)) = θ({(g1.g2, h), (g1.g2, h′)})

= {θ(g1.g2, h), θ(g1.g2, h′)} = {(f(g1.g2), h), (f(g1.g2), h′)}
= {(f(g1).f(g2), h), (f(g1).f(g2), h′)}
= (f(g1), h)� (f(g2), h

′))

= θ((g1, h))� θ((g2, h′))

Therefore, θ is an isomorphism and (G1 ×H,�) ∼= (G2 ×H,�).

Theorem 3.9. Every group is a fundamental group.

Proof. Let (G, .) be a group. By Lemma 3.5, for any group (H, .), (G×H,�) is a
hypergroup. For any g ∈ G and (h, h′) ∈ H×H, we have {(g, h), (g, h′)} = (g, h)�
(1, h′), then (g, h)β∗(g, h′). Thus β∗(g, h) = {(g, x) | x ∈ H}. Define the mapping
ϕ : ( (G×H,�)β∗ ,⊗) −→ (G, .) by ϕ(β∗(g, h)) = g. Obviously, ϕ is well-defined and
one to one, since for any (g, h), (g′, h′) ∈ G × H, β∗((g, h)) = β∗((g′, h′)) if and
only if g = g′ if and only if ϕ(β∗(g, h)) = ϕ(β∗(g′, h′)). Let (g, h), (g′, h′) ∈ G×H.
Then,

ϕ(β∗(g, h)⊗ β∗(g′, h′)) = ϕ(β∗(g.g′, h)) = ϕ(β∗(g.g′, h′))

= g.g′ = ϕ(β∗(g, h)).ϕ(β∗(g′, h′))

Thus, ϕ is a homomorphism. Now, for any g ∈ G,ϕ(β∗(g, 1)) = g, then ϕ is onto.
Therefore, ϕ is an isomorphism and then ( (G×H,�)β∗ ,⊗) ∼= (G, .).

Example 3.10. Consider the hypergroup which is defined in Example 3.6. It
is easy to see that β∗(a, 0) = β∗(a, 1) = {(a, 0), (a, 1)}, β∗(b, 0) = β∗(b, 1) =
{(b, 0), (b, 1)}, β∗(c, 0) = β∗(c, 1) = {(c, 0), (c, 1)} and β∗(e, 0) = β∗(e, 1) =

{(e, 0), (e, 1)}. So ( (G×Z2,�)
β∗ ,⊗) = {β∗(a, 0), β∗(b, 0), β∗(c, 0), β∗(e, 0)} ∼= (G, .).

Theorem 3.11. Let (G,�) be a hypergroup. Then there exist a group H and
hyperoperation ”�′ ” on G×H such that (G,�) embedded in (G×H,�′).

Proof. Let (G,�) be a hypergroup and H = ( Gβ∗ ,⊗). Define on G × G
β∗ , the

hyperoperation ”�′ ” as follows:

(g, β∗(h))�′ (g′, β∗(h′)) = (g � g′, β∗(h� h′))

Let (g1, β∗(h1)) = (g′1, β
∗(h′1)) and (g2, β

∗(h2)) = (g′2, β
∗(h′2)), then g1 = g′1, g2 =

g′2, β
∗(h1) = β∗(h′1) and β∗(h2) = β∗(h′2). Since β∗(h1) = β∗(h′1) and β∗(h2) =

β∗(h′2), there exist u, v ∈ U such that {h1, h′1} ⊆ u and {h2, h′2} ⊆ v. Clearly

{h1 � h2, h′1 � h′2} ⊆ {h1 � h2, h1 � h′2, h′1 � h2, h′1 � h′2, } ⊆ u� v
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Then, β∗(h1 � h2) = β∗(h′1 � h′2). Now, we have (g1 � g2, β∗(h1 � h2)) = (g′1 �
g′2, β

∗(h′1 � h′2)). Hence, the hyperoperation ”�′ ” is well-defined. Now, we show
that (G×H,�′) is a hypegroup.

(Associativity): Let (g, β∗(h)), (g′, β∗(h′)) and (g′′, β∗(h′′)) ∈ G × H. Then,
((g, β∗(h)) �′ (g′, β∗(h′))) �′ (g′′, β∗(h′′)) = (g � g′, β∗(h � h′)) �′ (g′′, β∗(h′′)) =
((g�g′)�g′′, (β∗(h�h′)�β∗(h′′)). Since (G,�) is a hypergroup, then (g�g′)�g′′ =
g� (g′ � g′′), (h� h′)� h′′ = h� (h′ � h′′) and then ((g, β∗(h))�′ (g′, β∗(h′)))�′
(g′′, β∗(h′′)) = (g, β∗(h))�′ ((g′, β∗(h′))�′ (g′′, β∗(h′′))).

(Reproduction): Let (g, β∗(h)) ∈ G × H. Since, g � G = G � g = G and
G
β∗ =

⋃
t∈G

β∗(t), we have

(g, β∗(h))�′ (G×H) =
⋃

(g′,β∗(h′))∈G×H

(g, β∗(h))� (g′, β∗(h′))

=
⋃

(g′,β∗(h′))∈G×H

(g � g′, β∗(h� h′)) = G×H.

Similarly, we conclud that (G×H)�′ (g, β∗(h)) = G×H.
Hence, (G × H,�′) is a hypergroup. Define the mapping ϕ : (G,�) → (G ×

H,�′), by ϕ(g) = (g, β∗(g)). Let g, g′ ∈ G, then g = g′ if and only if (g, β∗(g)) =
(g′, β∗(g′)) if and only if ϕ(g) = ϕ(g′) and so ϕ is well-defined. Now for any
g, g′ ∈ G,

ϕ(g � g′) = (g � g′, β∗(g � g′)) = (g, β∗(g))�′ (g′, β∗(g′)) = ϕ(g)�′ ϕ(g′)

Therefore, (G,�) embedded in (G×H,�′).

Theorem 3.12. Let G and H be two sets such that be cocardinal. If (G,�) is a
hypergroup, then there exists a hyperoperation ” �′ ” on H, such that (G,�) and
(H,�′) are isomorphic hypergroups.

Proof. Since |G| = |H| (are cocardinal), there exists a bijection ϕ : G −→ H. For
any h1, h2 ∈ H, define the hyperoperation ”�′ ” on H as follows:

h1 �′ h2 = ϕ(g
1
� g

2
)

We first show that ”�′ ” is well-defined. Let (h1, h2) = (h′1, h
′
2), where hi = ϕ(gi),

h′i = ϕ(g′i) and gi, g′i ∈ G for 1 ≤ i ≤ 2. Then hi = h′i implies that ϕ(gi) = ϕ(g′i).
Since ϕ is a bijection then clearly gi = g′i and so g1�′g2 = ϕ(g

1
�g

2
) = ϕ(g′

1
�g′

2
) =

h′
1
�′ h′

2
. Moreover,

ϕ(g
1
� g

2
) = ϕ(g

1
)�′ ϕ(g

2
) (1)

Now, by some modifications we can show that (H,�′) is a hypergroup. Let g1 , g2 ∈
G. Then, by (1), ϕ is a homomorphism. Therefore, ϕ is a homomorphism and
hence ϕ is an isomorphism.
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Corollary 3.13. Let (G, .) be a group of infinite order (|G| = ∞). Then there
exists a hyperoperation ”� ” on G such that (G, .) is a fundamental group of itself
(i.e. (G,�)

β∗
∼= (G, .)).

Proof. For a given group G, consider the smallest associated hypergroup (G ×
Z2,�). By Theorem 3.9, ( (G×H,�)β∗ ,⊗) ∼= (G, .). Since G is infinite set then
|G| = |G × Z2| and by Theorem 3.12, there exists a hyperoperation ” �′ ” on G,
such that (G,�′) and (G× Z2,�) are isomorphic hypergroups. Now, we have

(G, .) ∼= (
(G× Z2,�)

β∗
,⊗) ∼= (

(G,�′)
β∗

,⊗)

Therefore, (G, .) is a fundamental group of itself.

Theorem 3.14. Every finite group is not fundamental group of itself.

Proof. Let (G, .) be a finite group and |G| = n. If ”�” is hyperoperation onG, such
that (G,�) is a hypergroup. Then there exist x, y ∈ G such that |x�y| ≥ 2. Hence,
for finite set of indices I and the elements gi ∈ G there exist a, b ∈ (x� y)�

∏
i∈I

gi

such that β∗(a) = β∗(b). Since G
β∗ = {β∗(t) | t ∈ G}, then, | Gβ∗ | < n. Therefore,

(G, .) 6∼= ( (G,�)β∗ ,⊗).

4. Category of Hypergroups and Groups

In this section we apply the results that obtained in the previous sections and
define functors on categories of Hg and Gr (category of groups ) and try to work
up natural transformations between. For two categories Hg and Gr, define a cate-
gorical morphism (fundamental functor) as follows:

U : Hg −→ Gr by U(G) = (
G

β∗
,⊗) (2)

where (G,�) is a hypergroup and for any homomorphism f : (G1,�1) −→ (G2,�2),
we define

U(f) : (
G1

β∗
,⊗) −→ (

G2

β∗
,⊗) by U(f) = β∗(f) (3)

By Corollary 3.2, U is well-defined and we have the next result.

Theorem 4.1. U is a functor of Hg to Gr.
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Proof. For any object (G,�) of Hg, by (2), U(G) = ( Gβ∗ ,⊗) is a group and then
U(G) is an object in Gr. Now, we show that for any morphism f : (G1,�) −→
(G2,�), Uf is a morphism in Gr. Let β∗(x), β∗(y) ∈ G

β∗ . Then, by (3),

Uf(β∗(x)⊗ β∗(y)) = Uf(β∗(x� y)) = β∗(f(x� y))
= β∗(f(x)� f(y)) = Uf(β∗(x))⊗ Uf(β∗(y))

Hence, if g : (G1,�) −→ (G2,�) and f : (G2,�) −→ (G3,�) are morphisms inHg,
then U(g) : (G1

β∗ ,⊗) −→ (G2

β∗ ,⊗) by U(g) = β∗(g) and U(f) : (G2

β∗ ,⊗) −→ (G3

β∗ ,⊗)
by U(f) = β∗(f) are morphisms in Gr. Now,

U(f) ◦ U(g) = U(f)(U(g)) = U(f)(β∗(g)) = β∗(f ◦ g) = U(f ◦ g)

Moreover, for 1 : G→ G, U(1) = β∗(1) and then for any x ∈ G,

U(1)(x) = β∗(1(x)) = β∗(x) = 1UG(x)

Therefore, U is a functor of Hg to Gr.

Remark 4.2. Let G be a group and

B(G) = {H ∈ Hg | G is isomorphic with to a fundamentl group of H}.

By Theorem 3.9, B(G) 6= ∅.

Now, for Hg and Gr and any groups (G, .) and H = Z2, define a categorical
morphism as follows:

F : Gr −→ Hg by F (G) = GH (4)

and for any group homomorphism f : (G1, .) −→ (G2, .) define

F (f) : G1 ×H −→ G2 ×H by F (f) = (f, 1) (5)

By Theorem 3.8, F is well defined and now, we have the next result.

Theorem 4.3. F is a functor of Gr to Hg.

Proof. For any object (G, .) of Gr, by Theorem 3.9 and (4), F (G) = GH is a hy-
pergroup and then F (G) is an object in Hg. Now, we show that for any morphism
f : (G1,�) −→ (G2,�), Ff is a morphism in Hg. Let (g1, h1), (g2, h2) ∈ G1 ×H.
Now, by Theorem 3.9 and (5),

Ff((g1, h1)� (g2, h2)) = (f, 1)((g1, h1)� (g2, h2))

= (f(g1), h1)� (f(g2), h2) = Ff((g1, h1))� Ff((g2, h2)).
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Hence, if g : (G1, .) −→ (G2, .) and f : (G2, .) −→ (G3, .) are morphisms in Gr,
then F (g) : (G1,�) −→ (G2,�) by F (g) = (g, 1) and F (f) : (G2,�) −→ (G3,�)
by F (f) = (f, 1) are morphisms in Hg. Now,

(F (f) ◦ F (g))(g, h) = F (f)(F (g))(g, h) = F (f)(g(r), s)

= (f(g(r)), s) = (f ◦ g, 1)(g, h)
= F (f ◦ g)(g, h)

Moreover, for 1 : G→ G, F (1) = (1, 1) and then for any (g, h) ∈ G×H,

F (1)(g, h) = (1, 1)(g, h) = (g, h) = 1UG(g, h)

Therefore, F is a functor of Gr to Hg.

Theorem 4.4. The functor F : Gr −→ Hg is a faithful functor.

Proof. Let (G1, .) and (G2, .) be objects in Gr, f1, f2 : G1 → G2 be parallel arrows
of Gr and F (f1) = F (f2). Then, for any (g, h) ∈ G1×H,F (f1)(g, h) = F (f2)(g, h)
implies that f1(g) = f2(g) and so f1 = f2. Therefore, F is a faithful functor.

Theorem 4.5. On objects of Gr, U ◦ F = 1.

Proof. For any object (G, .) in Gr by Theorem 3.9, (2) and (4)

(U ◦ F )(G, .) = U(G×H,�) = (
((G×H),�)

β∗
,⊗) ∼= (G, .) (6)

Remark 4.6. Consider the hypergroup (Z4,�′) by the following hyperoperation:

�′ 0 1 2 3
0 {0, 2} {1, 3} {0, 2} {1, 3}
1 {1, 3} {0, 2} {1, 3} {0, 2}
2 {0, 2} {1, 3} {0, 2} {1, 3}
3 {1, 3} {0, 2} {1, 3} {0, 2}

Clearly,

(F ◦ U)(Z4,�′) = F (
(Z4,�′)
β∗

) ∼= F ((Z2, .)) = (Z2 × Z2,�) 6∼= (Z4,�′)

Therefore, F ◦ U 6= 1.

Theorem 4.7. For the functors 1 and U ◦ F : Gr −→ Gr there exists a transfor-
mation τ : 1 −→ U ◦ F such that is natural.
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Proof. For two functors 1 (identity) and U ◦F of Gr to Gr, define a map τ : 1 −→
U ◦ F as follows:

τ : 1(G) −→ (U ◦ F )(G) by τ(g) = β∗(g, 1) (7)

Now, for any group homomorphism f : G −→ G′, consider the following diagram:

1(G)
τG // (U ◦ F )(G)

1(G′)
��

1(f)

τG′ // (U ◦ F )(G′)
��
U◦F (f)

For any g ∈ G by (5) and (7), we have

((U ◦ F )(f) ◦ τ)g = (U ◦ F )f(τ(g))
= (U ◦ F )(f)(β∗(g, 1))
= (β∗(f(g)), 1) = τG′(f(g))

= τG′(1(f)g) = (τG′ ◦ 1(f))g

Therefore, τ : 1 −→ (U ◦ F ) is a natural transformation.

Theorem 4.8. For two functors 1 and F ◦U : Hg −→ Hg there exists a transfor-
mation υ : 1 −→ F ◦ U such that is natural.

Proof. For two functors 1 (identity) and F ◦ U of category Hg to category Hg,
define a map υ : 1 −→ F ◦ U as follows:

υ : 1(G) −→ (F ◦ U)(G) by υ(g) = (β∗(g), 1) (8)

Now, for morphism homomorphism f : G −→ G′, consider the following diagram:

1(G)
νG // (F ◦ U)(G)

1(G′)
��

1(f)

νG′ // (F ◦ U)(G′)
��
F◦U(f)

For any g ∈ G, by (3) and (8), we have

((F ◦ U)(f) ◦ υ)g = (F ◦ U)f(υ(g)) = (F ◦ U)f((β∗(g), 1))

= (β∗(f(g)), 1)

= υG′(f(g)) = υG′(1(f)g) = (υG′ ◦ 1(f))g

Therefore, υ : 1 −→ (F ◦ U) is a natural transformation.
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5. Conclusions
In the present paper, we introduced the notion of fundamental group via the fun-
damental relation β∗ and investigated some of their useful properties. Moreover,
we shown that:

(i) Any group is a fundamental group.

(ii) Any infinite group is a fundamental group of itself, while no finite group is
a fundamental group of itself.

(iii) By using the concept of fundamental relation, we obtained (faithful) the
functors between categories of groups and hypergroups and shown that there
exist natural transformations between their combinations and identity func-
tor.

Acknowledgements. The author would like to express its gratitude to anony-
mous referees for their comments and suggestions which improved the paper.

Conflicts of Interest. The author declares that there is no conflicts of interest
regarding the publication of this article.

References
[1] H. Aghabozorgi, B. Davvaz and M. Jafarpour, Nilpotent groups derived from

hypergroups, J. Algebra 382 (2013) 177–184.

[2] P. Corsini, Prolegomena of Hypergroup theory, Supplement to Riv. Mat. Pura
Appl. Aviani Editore, Tricesimo, 1993.

[3] P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory, Advances
in Mathematics (Dordrecht), 5. Kluwer Academic Publishers, Dordrecht, 2003

[4] D. Freni, Une note sur le coeur d’un hypergroupe et sur la clôture transitive
β∗ de β, (French) [A note on the core of a hypergroup and the transitive
closure β∗ of β] Riv. Mat. Pura Appl. 8 (1991) 153–156

[5] D. Freni, A new characterization of the derived hypergroup via strongly reg-
ular equivalences, Comm. Algebra 30(8) (2002) 3977–3989.

[6] D. Freni, On a strongly regular relation in hypergroupoids, Pure Math. Appl.
Ser. A 3(3-4) (1992) 191–198.

[7] D. Freni, Hypergroupoids and fundamental relations, In: Proceedings of the
5th International Congress on Algebraic Hyperstructures and Applications
(Iasi 1993), M. Stefanescu(ed.), Hadronic Press, Palm Harbor, FL, USA,
(1994) pp. 81–92.



Fundamental Functor Based on Hypergroups and Groups 129

[8] M. Hamidi, A. Borumand Saeid and V. Leoreanu-Fotea, Divisible groups
derived from divisible hypergroups, Politehn. Univ. Bucharest Sci. Bull. Ser.
A Appl. Math. Phys. 79(2) (2017) 59–70

[9] M. Koskas, Groupoides, demi-hypergroupes et hypergroupes (French), J.
Math. Pures Appl. (9) 49 (1970) 155–192.

[10] F. Marty, Sur une generalization de la notion de groupe, In: Proceedings of
8th Congres Math. Scandinaves, Stockholm (1934) pp. 45–49.

[11] S. Sh. Mousavi and M. Jafarpour, On free and weak free (semi)hypergroups,
Algebra Colloq. 18(1) (2011) 873–880.

[12] T. Vougiouklis, Hyperstructures and Their Representations, Hadronic Press
Monographs in Mathematics, Hadronic Press, Inc., Palm Harbor, FL, 1994.

Mohammad Hamidi
Department of Mathematics,
Payame Noor University,
Tehran, I. R. Iran
E-mail: m.hamidi@pnu.ac.ir


