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Abstract

Let S(G) be the Seidel matrix of a graph G of order n and let Ds(G) =
diag(n —1 —2d1,n —1—2da,...,n —1— 2d,) be the diagonal matrix with
d; denoting the degree of a vertex v; in G. The Seidel Laplacian matrix of
G is defined as SL(G) = Dgs(G) — S(G) and the Seidel signless Laplacian
matrix as SLT(G) = Ds(G) + S(G). The Seidel signless Laplacian energy
Es;+(G) is defined as the sum of the absolute deviations of the eigenvalues
of SLT(G) from their mean. In this paper, we establish the main properties
of the eigenvalues of SLT(G) and of Egp+ (G).

Keywords: Seidel Laplacian eigenvalues, Seidel Laplacian energy, Seidel sign-
less Laplacian matrix, Seidel signless Laplacian eigenvalues, Seidel signless
Laplacian energy.
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1. Introduction

Let G be a simple, undirected graph with n vertices and m edges. We say that G
is an (n, m)-graph.

Let v1,v9,...,v, be the vertices of G. The degree of a vertex v; is the number
of edges incident to it and is denoted by d;. If d; = r for all ¢ = 1,2,...,n, then
G is said to be an r-regular graph.

By G will be denoted the complement of the graph G.

The adjacency matriz of a graph G is the square matrix A(G) = (a;5), in
which a;; = 1 if v; is adjacent to v; and a;; = 0 otherwise. If Ay, Aa,..., A, are
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the eigenvalues of A(G), then the ordinary energy of a graph G is defined as [14,19]
EA(G) = Z |\ - (1)
i=1

The spectral graph theory based on the eigenvalues of the adjacency matrix
is the most extensively elaborated part of algebraic graph theory [4,6]. Also the
graph energy, based on the eigenvalues of the adjacency matrix, attracted much
attention and has been studied to a great extent [19]. Recently, a number of
other graph energies have been introduced; for details see the recent survey [16].
Among these, the Laplacian and Seidel energies are of importance for the following
considerations.

Let D(G) = diag(dy,ds, . ..,d,) be the diagonal degree matrix. The Laplacian
matriz of G is defined as L(G) = D(G) — A(G). This matrix and its spectral prop-
erties have been extensively studied in the past [12,13,20-22]. Let pq, 2, .., tin
be the eigenvalues of L(G). Then the Laplacian energy of G is defined as [17]

n

EL(G) = Z

i=1

2m

pi — —|.
n

(2)

In 2007, Cvetkovi¢ et al. [5] noticed that if the definition of the Laplacian
matrix is changed into D(G) + A(G), then interesting and non-trivial spectral
properties are obtained. Eventually, an entire theory of the so-called signless
Laplacian spectra has been developed [7-9].

Thus, the signless Laplacian matriz of G is defined as L1 (G) = D(G) + A(G).
Let /ﬁ, u}', ..., be its eigenvalues. Then the signless Laplacian energy of G is
defined as [1]

n

Ep+(G) =)

=1

L 2m

me )

(3)

The Seidel matriz of a graph G is the n xn real symmetric matrix S(G) = (s;;),
where s;; = —1 if the vertices v; and v; are adjacent, s;; = 1 if the vertices v; and
v; are not adjacent, and s;; = 0if i = j. It is easy to see that S(G) = A(G)—A(G),
where G is the complement of G.

The eigenvalues of the Seidel matrix, labeled as o7 > 09 > --- > 0, are said
to be the Seidel eigenvalues of G and form the Seidel spectrum. In analogy to Eq.

(1), the Seidel energy of a graph G is defined as [18]
Es(G) =) _loil - (4)
i=1

More results on Seidel energy are reported in [11,23,24,27-29].
The Seidel Laplacian matrix of a graph was introduced in [30], where the main
properties of its eigenvalues and of Seidel Laplacian energy were established.



Seidel Signless Laplacian Energy of Graphs 183

Let Dg(G) = diag(n — 1 — 2dy,n — 1 — 2da,...,n — 1 — 2d,) be a diagonal
matrix in which d; stands for degree of a vertex v; in G. Then, in analogy with
the ordinary Laplacian matrix, the Seidel Laplacian matriz of G is defined as

SL(G) = Ds(G) — S(G).

Note that Ds(G) = D(G) — D(G) and SL(G) = L(G) — L(G).

et oy,05,...,0 ¢ the eigenvalues o . In analogy to Eq. , the
L 1L 2L L be the ei 1 f SL(G). T 1 E 2), th

yYno

Seidel Laplacian energy of G is defined as [30]

n

Esr(G) =)

=1

. nn—1)—4m

Ui_

n

Bearing in mind the concept of signless Laplacian matrix, we introduce here
the Seidel signless Laplacian matrix of a graph and study the basic properties of
its eigenvalues and energy.

Thus, the Seidel signless Laplacian matriz of G is defined as

SLT(G) = Ds(G) + S(G).

In the case of Laplacian matrices, the adjective “signless” is fully appropriate,
since no element of L™ (G) is negative-valued. In the case of Seidel Laplacians, we
use the same adjective by analogy, aware of the fact that all Seidel signless Lapla-
cian matrices, with the exception of SL*(K,), possess negative—valued elements,
where K,, denotes the complete graph on n vertices.

Note that

) — D(G) + A(G) — A(G)
)+ A(G) — D(G) — A(G)
LY (G) - L*(G).

SL*(G)

D(G
D(G

Let 01L+702L+, .. ,a£+, be the eigenvalues of SLT(G). In analogy to Eq. (3),
the Seidel signless Laplacian energy of G is defined as

- + nn-=1)—4m
Bope(@) = Y Jot” - M=o,
i=1 "
If we introduce the auxiliary quantities
—-1)—4
oot _nnzD=dm

n

then the expression for Seidel signless Laplacian energy becomes analogous to the
formula for ordinary graph energy, Eq. (1), namely:

Esp+(G)=)_l&l-
i=1
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2. Seidel Signless Laplacian Eigenvalues

The adjacency eigenvalues, Laplacian eigenvalues and Seidel eigenvalues satisfy
the relations

i)\i:() and i)@z?m;
i=1 i=1

ZuiZQm and Zuszm‘le(G);
i=1 =1

Zai:O and ia?zn(n—l)
i i=1

where Z1(G) = 3 d? is the well-known graph invariant called first Zagreb index
i=1
[3,15].
The respective formulas for the Seidel Laplacian eigenvalues read [30]:

n

ZUiL =n(n—1)—4m and Z(Uf)Q = (n—1)(n* —8m)+4Z,(G). (5)

i=1

In the next lemma, we show that the Seidel signless Laplacian eigenvalues have
properties fully analogous to those of the ordinary Seidel Laplacians, Egs. (5).

Lemma 2.1. Let G be an (n,m)-graph. Then the eigenvalues of the Seidel signless
Laplacian matriz satisfy the relations:
ZaiL+ =nn—1)—4m and Z(a{“+)2 =(n—1)(n? —8m) +47,(G).
i=1 i=1
Proof.

iaf+ = trace[SLT(G)] = i(n —1-2d;))=nn—-1)—4m.

i=1 =1

> (0F)? = tracel(SLH(G))?]

= Y [(n—1-2d;)*+ (n—1)]

i=1
= n?*(n—1)—-8m(n—1)+4Z,(G)
= (n—1)(n* —8m) +471(G).
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Lemma 2.2. Let oL oF" ... 0cE" be the eigenvalues of SL*(G). Let & =
UiL+ - M, i=1,2,...,n. Then

Zgizo and igf:M
3 =1

where M = n(n — 1) +4Z:(G) — %.

Proof.
= = + (n—1)—4m
)

n—1)—4m\>
n

L

o - .
- (MDA S (n(n—l)—4m>

n
i=1
n
2. ) , -
=1 i=1 7

n(in—1) —4m

- (n—1)(n2—8m)+4zl(G)—2< -

) (n(n — 1) — 4m)

16m?
-

(n(n—1) —4m)?
n2

+n{ }:n(n—1)+4Zl(G)—

O

As a consequence of Lemmas 2.1 and 2.2, the lower and upper bounds for the
Seidel signless Laplacian energy stated below in Theorems 3.1, 3.2, 3.7-3.11 are
fully analogous to the results earlier obtained for the ordinary Seidel Laplacian
energy [30].

The next proposition follows from SL*(G) = L*(G) — LT(G) = —SL*(G).

Proposition 2.3. If 0‘7:[’+, 1=1,2,...,n, are the Seidel signless Laplacian eigen-
values of G, then —oLt

G 7,1 =1,2,...,n, are the Seidel signless Laplacian eigen-
values of G.

Theorem 2.4. Ifo1,09,...,0, are the Seidel eigenvalues of an r-reqular graph G,
then the Seidel signless Laplacian eigenvalues of G are n—1—2r+40;,1=1,2,...,n.

Proof. Let the characteristic polynomial of the Seidel matrix S(G) be denoted by
¢s(G, \) and the characteristic polynomial of the Seidel signless Laplacian matrix

SL*(G) by ¢s1+(G, A).
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If G is an r-regular graph, then SLT(G) = (n — 1 — 2r)I + S(G), where T is
the identity matrix of order n. Therefore,
dsp+(G,A) = det(A — SLT(Q))
det [(A—=n+142r)] — S(G)]
= (bs(G,)\—n—‘rl—FQ?“).

0
Lemma 2.5. Let the notation be same as in Lemma 2.2. Then
1
DGk = 5M.
1<)
Proof. Since Y & =0, we get Y. &2 = —2>" & &;. Therefore
i=1 i=1 i<j
21 G| => g=M.
i<y i=1
O
3. Seidel Signless Laplacian Energy
Theorem 3.1. Let G be an (n,m)-graph. Then
16m?2
Egr+(GQ) < \/n {n(nl)+4Z1(G) ;n } . (6)

Proof. The Cauchy—Schwartz inequality states that,

(<59 54

Set a; =1 and b; = |&],4=1,2,...,n. Then

n 2 n
(z |ei|) w3 P
=1 =1

[Bs1+(@)]° < n[nln—1)+42(0

IN

16m?2
n

and inequality (6) follows. O
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Theorem 3.2. Let G be an (n,m)-graph. Then

Espi (G) > \/2 [n(n 1) +424(@) — 16’”2] .

n

Proof. Egr+(G) =Y, |&|. Therefore

[Esp+ (@) Z|&|2+2 3 |@||@|>Z|&|2+2 S

1<i<j<n 1<i<j<n

M+ M =2 [n(n— 1) + 42, (G) — 16’”1 .

n
0

Theorem 3.3. [25] Suppose that a; and b; , 1 < i < n, are positive real numbers.

Then
e (2 (o)

=1 =1

where M, = 112%L(a¢ , My = 1rgax (b)), my = 121%1"(%), and mo = 1I§nilé1n(bi).

Theorem 3.4. [26] Let a; and b;, 1 <1i < n, be non-negative real numbers. Then

. 2

i=1  i=1
where M; and m;, i = 1,2, are defined similarly as in Theorem 3.3.

Theorem 3.5. [10] Suppose that a; and b; , 1 < i < n, are positive real numbers.

Then . . B
nZalbz — Zalzm
i=1 =1 i=1

where a, b, A, and B are real constants, such that for each i, 1 <i<n, a<a; <

A, and b < b; < B. In addition, a(n) =n {%J (1 — % L%J)

<a(n)(A—a)(B-b)

Theorem 3.6. [2| Let a; and b;, 1 < i < n, be non-negative real numbers. Then

ib?wRia <( (Zal )

where r and R are real constants, such that for each i, 1 <i<n, ra; <b; < Ra;
holds.
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Theorem 3.7. Let G be an (n,m)-graph and let {pae = max &) and &min =

min |&|. Then
1<i<n

2

Egi+(G) > \/ nM — ”I(gmaz — &min)? - (7)

Proof. Applying Theorem 3.4 for a; = 1 and b; = |§;| we get

n 2 2
Z 12 Z ‘§z|2 - (Z |§’L|> S nz(gmaa: - gmin)2
i=1

i=1 i=1

N

n

nM — (EJSLJr (G))2 < 7(5’7’7@(1‘1, - fmin)Q

=

from which inequality (7) is straightforward. O

Theorem 3.8. Let G, &nas, and Emin be same as in Theorem 3.7. Then

2 \ nM gma:v gmzn

E G) >
SL+( ) szLI + Emzn

Proof. Applying Theorem 3.3 for a; = 1 and b; = |§;| we get

2
. 2 - 2 | gmax | {mm

% ( (Emac + &min)? ) [Esi+ ()]

gmax gmzn

nM

IN

and inequality (8) follows. O

Theorem 3.9. Let G, &gz, and Eqnin be same as in Theorem 3.7. Then

EISLJr (G) > \/TLM - (X(n) (fmaw - fmin)Q (9)
where a(n) is the parameter defined in Theorem 3.5.

Proof. Applying Theorem 3.5 for a; = |§;| = b;, a = &min = b, and A = Eae = B,
we get

IA

O[(TL) (gmaz - 5m1n)2

”Z &) — <Z |§z>
i=1 i=1
WM — (Egp+(G)® < a(n) (§maz — Emin)?

from which inequality (9) directly follows. O
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Since a(n) < "72, by Theorem 3.9 we get:

Corollary 3.10.

2

ESL+(G) > \/nM - i

2
4 (é.ma:z: _gmin) .

Theorem 3.11. Let G, &paz, and Emin be same as in Theorem 3.7. Then

M max Smin
Esp+(G) > 1 ema &

B (gmax + fmin) (10)

Proof. Applying Theorem 3.6 for b; = ||, a; = 1, ¥ = Emin, and R = max We get

n n n
Z |§i|2 + gnLaw gmzn Z 1 S (gmaw + gmin) Z |§1‘
=1 i=1 =1
M+n €mam fmin S (gmcwc + gmin) EESLJr (G) .
Inequality (10) follows. O
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