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Eigenvalues and Energy of the Cayley Graph of

some Groups with respect to a Normal Subset

Maryam Jalali−Rad ?

Abstract

Set X = {M11,M12,M22,M23,M24, Zn, T4n, SD8n, Sz(q), G2(q), V8n},
where M11, M12, M22, M23, M24 are Mathieu groups and Zn, T4n, SD8n,
Sz(q), G2(q) and V8n denote the cyclic, dicyclic, semi-dihedral, Suzuki, Ree
and a group of order 8n presented by

V8n = 〈a, b | a2n = b4 = e, aba = b−1, ab−1a = b〉,

respectively. In this paper, we compute all eigenvalues of Cay(G,T ), where
G ∈ X and T is minimal, second minimal, maximal or second maximal
normal subset of G \ {e} with respect to its size. In the case that S is a
minimal normal subset of G \ {e}, the summation of the absolute value of
eigenvalues, energy of the Cayley graph, is evaluated.
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1. Introduction
Suppose Γ = (V,E) is a simple graph, where V = V (Γ) is the set of vertices and
E = E(Γ) is the set of edges of Γ. If G is a finite group, S is a subset of G such
that S = S−1 and S ⊆ G \ {e} then the Cayley graph Γ = Cay(G,S) is defined
by V (Γ) = G and E(Γ) = {{g, sg} | g ∈ G, s ∈ S} [4]. It is clear that a Cayley
graph Γ = Cay(G,S) is connected if and only if G = 〈S〉.

A subset S of a finite group G is called normal, if g−1Sg = S, for all g ∈ G.
It is called symmetric, if S−1 = S. A normal, symmetric and generating subset of
G with this property that e 6∈ S is said to be an NS of G. A minimal or second
minimal NS is denoted by MNS or SMNS, respectively.

?Corresponding author (E-mail: jalali6834@gmail.com )
Academic Editor: Ivan Gutman
Received 21 August 2017, Accepted 6 November 2017
DOI: 10.22052/mir.2017.101675.1082

c© 2017 University of Kashan



194 M. Jalali-Rad

The semi-dihedral group SD8n, dicyclic group T4n and the group V8n have the
following presentations, respectively:

SD8n = 〈a, b | a4n = b2 = e, bab = a2n−1〉,
T4n = 〈a, b | a2n = 1, an = b2, b−1ab = a−1〉,
V8n = 〈a, b | a2n = b4 = e, aba = b−1, ab−1a = b〉.

It is easy to see the dicyclic group T4n has order 4n and the cyclic subgroup 〈a〉 of
T4n has index 2 [13]. The groups SD8n and V8n have order 8n and their character
tables computed in [11, 6], respectively.

Set X = {M11,M12,M22,M23,M24, Zn, T4n, SD8n, Sz(q), G2(q), V8n}, where
M11, M12, M22, M23, M24 are denoted Mathieu groups, Sz(q) is Suzuki group
of order (q − 1)(q2 + 1) and G2(q) is Ree group. The energy E(G) of a graph G
is defined as the sum of the absolute values of the eigenvalues of the adjacency
matrix [10]. The aim of this paper is to compute the eigenvalues of Cay(G,S),
where S is an MNS or SMNS and G is isomorphic to a group in X. In the case
that S is a minimal normal subset of G\{e}, the summation of the absolute value
of eigenvalues, energy of the Cayley graph, is evaluated.

A subset A ⊆ G is called rational if, for every character χ ∈ Irr(G), χ(A) =∑
x∈A χ(x) is an integer. Alpering in some recent papers [1, 2], proved some very

nice results on integrality of Cayley graphs. Among these results, two are very
important as follows:

• if the Cayley graph of G on a set S is an integral Cayley graph then S is a
rational set.

• for abelian groups a set S is rational if and only if the Cayley graph on S is
an integral Cayley graph.

In this paper we study the integral Cayley graphs on simple group. Our calcu-
lations are made by computer algebra system GAP [17]. Our notation is standard
and can be taken from [5, 12, 13].

2. Main Results
If Γ is a graph then Spec(Γ) denotes the multi−set of all Γ−eigenvalues. Two
graphs Γ1 and Γ2 are said to be co−spectral, if they have the same spectrum.
Diaconis and Shahshahani [7], was the first mathematician considered the problem
of computing eigenvalues of Cayley graphs into account. They used the character
table of the group under consideration to calculate the eigenvalues of Cay(G,S),
where G is a finite group and S is an NS of G. We refer to [14, 19] for more
information on this topic. The aim of this section is to compute all eigenvalues
of the Cayley graph of groups in the set X with respect to a minimal, second
minimal, maximal or second maximal normal subset of G.
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To compute the eigenvalues of a Cayley graph Cay(G,S) with respect to a
normal subset S of group G \ {e}, we apply a result of Zieschang [19, Theorem 1].
For the sake of completeness, we mention here this result.

Proposition 2.1. Let Cay(G,T ) denote the Cayley graph of a finite group G
with respect to a normal subset T of G \ {e}. Let further {χ1, . . . , χs} be the set
of all irreducible complex characters of G and define λj = 1

χj(e)

∑
t∈T χj(t), where

1 ≤ j ≤ s. Then {λ1, . . . , λs} is the set of all values of the spectrum of Cay(G,T ).
Moreover, if mj is the multiplicity of λj, then

mj =

s∑
k=1

λk=λj

(χk(e))2.

Suppose Irr(G) denotes the set of all irreducible characters of G and Cl(G)
is the set of conjugacy classes of G. We also assume that A(G) is the set of all
normal subsets S of G \ {e}. Define S′ = G \ (S ∪ {e}). One can see that, S
is a minimal element of A(G) if and only if S′ is a second maximal element of
A(G). Notice that the first maximal is G \ {e} and the Cayley graph Cay(G,G \
{e}) is (|G| − 1)−regular. This implies that Cay(G,G \ {e}) is complete and
Spec(Cay(G,G \ {e})) = {−1(|G| − 1 times), |G| − 1}.

Proposition 2.2. Suppose G is a finite group with exactly n conjugacy classes
and S, S′ are normal subsets of G \ {e} such that S′ = G \ S ∪ {e}. Moreover, we
assume that Γ = Cay(G,S), Γ′ = Cay(G,S′). Set Spec(Γ) = {λ1, . . . , λn} and
Spec(Γ′) = {β1, . . . , βn}. Then βi = −λi − 1, 1 ≤ i ≤ n.

Proof. It is clear that S′ is a symmetric and generating subset of G. So, by
Proposition 2.1,

βi =
1

χi(e)

∑
s′∈S′

χi(s
′)

=
1

χi(e)

( ∑
s′∈G

χi(s
′)−

∑
s∈S∪{e}

χi(s)
)

=
1

χi(e)

∑
s′∈G

χi(s
′)− 1

χi(e)

∑
s∈S

χi(s)−
1

χi(e)
χi(e)

= −λi − 1,

proving the result.

Proposition 2.3. Suppose G = {g1, g2, . . . , gn} and F is a subset of {1, 2, . . . , n}
such that for all j ∈ F , the order of gj is a power of a prime pj. Define S =⋃
j∈F g

G
j and Γ = Cay(G,S). We also assume that for each χ ∈ Irr(G), χ(gj) is

an integer. Then Spec(Γ) = {λ1, . . . , λn}, where λi =
∑
j∈F |gGj |

(
1 +

kjpj
χi(e)

)
, for

some integer kj.
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Proof. Suppose χ
l
, 1 ≤ l ≤ |Irr(G)|, is an arbitrary irreducible character of G.

Then by [13, Corollary 22.27], χl(gj) ≡ χl(e) (mod pj). Thus, χl(gj)−χl(e) = pjkj ,
for some integer kj . This implies that χl(gj)

χl(e)
= 1 +

pjkj
χl(e)

and so,

λl =
∑
s∈S

χl(s)

χl(e)
=
∑
j∈F

∑
s∈gGj

χl(s)

χl(e)
=
∑
j∈F

∑
s∈gGj

(
1 +

pjkj
χl(e)

)
=
∑
j∈F
|gGj |

(
1 +

pjkj
χl(e)

)
.

Corollary 2.4. Suppose G is a finite group, S is a normal subset of G such that
all elements of S are involutions and Γ = Cay(G,S). If F is a representative set
for G−conjugacy classes of S then the following statements hold:

1. if G is abelian then all Γ−eigenvlues are odd or all of them are even,

2. if G is a simple group then λχ =
∑
g∈F |gG|(1 +

4kg
χ(e) ).

Proof. To prove (1), it is enough to apply Proposition 2.3 and the fact that the
irreducible characters of G are linear. We now assume that G is simple, g is an
involution in G and χ ∈ Irr(G). Then χ(g) ≡ χ(e) (mod 4) or G has a normal
subgroup of index 2. Since G is simple, there exists kg such that χ(g)

χ(1) = 1 +
4kg
χ(1) .

By Proposition 2.1, λχ =
∑
g∈S

χ(g)
χ(e) =

∑
x∈F

∑
g∈xG(1 +

4kg
χ(e) ) =

∑
g∈F |gG|(1 +

4kg
χ(e) ).

Suppose G is a group, A is the set of all character values of G, Q(A) denotes
the extension of Q by A and Λ is the Galois group of this extension. It is well-
known that there exists ε such that Q(A) ⊆ Q(ε), where ε is a primitive n − th
root of unity. Thus, if α ∈ Λ then there exists a unique positive integer r such
that (r, n) = 1 and α(ε) = εr. So, it is well define to use the notation α = σr.
The group Λ acts on the set of irreducible characters and conjugacy classes of G
by χα(g) = α(χ(g)) and (xG)σr = (xr)G, respectively.

Proposition 2.5. Suppose G is a finite group and S, T are two Λ−conjugate con-
jugacy classes of G. Then Γ1 = Cay(G,S) and Γ2 = Cay(G,T ) are co−spectral.

Proof. Let G be a finite group, χ be an irreducible character of G and S, T are
two Λ−conjugate conjugacy classes of G. If {χ1, . . . , χr} is the orbit of χ under
action of the Galois group, then {χ1(S), ..., χr(S)} = {χ1(T ), ..., χr(T )}. Sup-
pose Spec(Γ1) = {λ1, . . . , λr} and Spec(Γ2) = {µ1, . . . , µr}. If χi(S) = χi(T ),
χi ∈ Irr(G), then λi = 1

χi(e)
|T |χi(T ) = 1

χi(e)
|S|χi(S) = µi. In other case, if

{χn1
, . . . , χns} is the orbit of χi under the action of Galois group then the values of

χn1
(S), . . . , χnr (S) can be permuted to find χn1

(T ), . . . , χnr (T ). This shows that
there exists positive integer k such that χi(e) = χk(e). Thus, λi = 1

χi(e)
|T |χi(T )

= 1
χk(e)

|S|χk(S) = µk. Therefore, Γ1 = Cay(G,S) and Γ2 = Cay(G,T ) are
co−spectral.
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The converse of Proposition 2.5 is not generally correct. To do this, we consider
the following example:

Example 2.6. Consider the alternating group A6 which has exactly two conjugacy
classes S and T of elements of order 3. It is easy to see that these classes are not
Galois conjugate, but the Cayley graphs Γ1 = Cay(G,S) and Γ2 = Cay(G,T ) are
co−spectral. In fact,

Spec(Γ1) =

(
−8 −5 0 4 16 40
25 128 81 100 25 1

)
= Spec(Γ2).

Example 2.7. Consider the cyclic group G = 〈a〉 of order n and S = {a, a−1}.
Then S is an MNS with the following spectrum:

Spec(Cay(G,S)) = {wj + w−j | 0 ≤ j ≤ n− 1},

where w = e
2πi
n . The energy of this Cayley graph approximately is 4n

π , see [9].
By a similar argument, one can prove T = S ∪ {a2, a−2} is an SMNS for G, all
eigenvalues of Cay(G,T ) are 4Cos( 3πj

n )Cos(πjn )), 0 ≤ j ≤ n− 1.

By method of subgroups of index 2 [13, p. 420], the group T4n has exactly
n+3 conjugacy classes {e}, {an}, {ar, a−r} (1 ≤ r ≤ n−1), {a2jb | 0 ≤ j ≤ n−1}
and {a2j+1b | 0 ≤ j ≤ n − 1}. It is easy to see that T4n has exactly four linear
characters and n− 1 non-linear irreducible characters recorded in Table 1.

Example 2.8. An MNS of T4n can be computed as S = (ab)T4n ∪ bT4n and
S = aT4n ∪ bT4n , when n is odd and even, respectively. The simple eigenvalues of
Cayley graph Cay(T4n, S) are {n+2,−n−2, n−2,−n+2} and {2n,−2n}, for even
and odd n, respectively. Moreover, if n is even then this graph has eigenvalues
2Cos(πjn ) with multiplicity four, where 1 ≤ j ≤ n−1. If n is odd, 0 is an eigenvalue
of Cay(T4n, S) with multiplicity 4n− 2. To see this, it is easy to see that S is an
MNSG of T4n. By Proposition 2.1, if n is even then λχi = 1

χi(e)
(2χi(a) +nχi(b)).

If n is odd, then λχi = n
χi(e)

(χi(b)+χi(ab)). So, by Table 1, one can easily compute
the eigenvalues of Cay(T4n, S). If n is odd then E(Cay(T4n, S)) = 4n and if n is
even then the energy of this Cayley graph is computed as follows:

E(Cay(T4n, S)) = 4n+ 8

n−1∑
j=1

|Cos(πj
n

)|

≈ 4n+
8n

π

∫ π

0

|Cos(x)|dx− 8 = 4n+
16n

π
− 8.

Therefore we have

E(Cay(T4n, S))) ≈
{

4n if n is odd
4n+ 16n

π − 8 if n is even.
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By a similar argument, one can see that T = S ∪ {an} is an SMNS for T4n. If n
is odd then the simple eigenvalues of Cay(T4n, T ) are 1 ± 2n. Other eigenvalues
can be computed as −1 with multiplicity 2n and 1 with multiplicity 2n − 2. If n
is even then the simple eigenvalues of Cay(T4n, T ) are 3 ± n and −1 ± n. Other
eigenvalues can be computed as 2Cos(πjn )+(−1)j , 1 ≤ j ≤ n−1, with multiplicity
4.

Example 2.9. The character table of V8n computed in [13, 421], when n is
odd. Darafsheh and Poursalavati [6] generalized this group in the case that n
is even and computed its character table. This group has exactly 2n + 3 conju-
gacy classes, if n is odd, and 2n + 6 conjugacy classes, for even n. If n is odd
then the conjugacy classes are: {1}, {b2}, {a2r+1, a−2r−1b2}(0 ≤ r ≤ n − 1),
{a2s, a−2s}, {a2sb2, a−2sb2} (1 ≤ s ≤ n−1

2 ), {ajbk | j is even & k = 1, 3},
{ajbk | j is odd & k = 1, 3}. The conjugacy classes, for even n, are: {1},
{b2}, {an}, {anb2}, {a2r+1, a−2r−1b2}(0 ≤ r ≤ n− 1), {a2s, a−2s}, {a2sb2, a−2sb2}
(1 ≤ s ≤ n

2 − 1), {a2kb(−1)k | 0 ≤ k ≤ n − 1}, {a2kb(−1)k+1 | 0 ≤ k ≤ n − 1},
{a2k+1b(−1)

k | 0 ≤ k ≤ n−1}, {a2k+1b(−1)
k+1 | 0 ≤ k ≤ n−1}. AnMNS of V8n can

be computed at S = aV8n∪(a−1)V8n∪bV8n and S = aV8n∪bV8n∪(a−1)V8n∪(b−1)V8n ,
when n is odd and even, respectively. The simple eigenvalues of Cayley graphs
Cay(V8n, S) are {±(2n+ 4),±(2n− 4)}. Moreover these graphs have eigenvalues
0, with multiplicities 4n and 4Cos(πjn ), 1 ≤ j ≤ n− 1, with multiplicities four. By
our calculations, the energy of V8n can be evaluated as follows:

E(Cay(V8n, S)) ≈
{

16 n = 1
8n+ 32n

π − 16 otherwise.

A second minimal is T = S ∪ {b2}. The simple eigenvalues of Cay(V8n, T ) are
5± 2n and −3± 2n. If n is even then other eigenvalues are −1 with multiplicity
4, 1 with multiplicity 4(n − 1) and 4Cos(πjn ) + 1, 1 ≤ j ≤ n − 1, each of which
with multiplicity four. If n is odd then other eigenvalues are −1 with multiplicity
4n and 4Cos(πjn ) + 1, 1 ≤ j ≤ n− 1, each of which with multiplicity four.

The group SD8n is presented by SD8n = 〈a, b | a4n = b2 = 1 & bab = a2n−1〉.
In the following result the energy of the Cayley graph of this group with respect
to its unique MNS is approximately computed.

Proposition 2.10. Suppose S is anMNS of SD8n. The energy of E(Cay(SD8n), S)
can be evaluated as follows:

E(Cay(SD8n), S) ≈
{

32n
π + 4n n = 1, 3

8n+ 32n
π − 16 otherwise.

Proof. All 8n elements of SD8n may be given by {1, a, . . . , a4n−1, b, ba, . . . , ba4n−1}.
Following Hormozi and Rodtes [11], we define Ceven = C1 ∪ Ceven2 ∪ Ceven3 and
Codd = C1∪Codd2 ∪Codd3 , where C1 = {0, 2, 4, . . . , 2n}, Ceven2 = {1, 3, 5, . . . , n−1},
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Ceven3 = {2n + 1, 2n + 3, 2n + 5, . . . , 3n − 1}, Codd2 = {1, 3, 5, . . . , n}, Codd3 =

{2n + 1, 2n + 3, 2n + 5, . . . , 3n}, C†even = C1 \ {0, 2n} and C†odd = Ceven2 ∪ Ceven3 .
Moreover, we assume that Ceven? = Ceven\{0, 2n} and Codd? = Codd\{0, n, 2n, 3n}.
Then by [11, Proposition 2.2], the conjugacy classes of SD8n, n ≥ 2, can be com-
puted as follows:

• If n is even, there are 2n+ 3 conjugacy classes as follows:

– 2 classes of size one being [1] = {1} and [a2n] = {a2n},
– 2n − 1 conjugacy classes of size two being [ar] = {ar, a(2n−1)r}, where
r ∈ Ceven? ,

– 2 classes of size 2n being [b] = {ba2t | 0 ≤ t ≤ 2n − 1} and [ba] =
{ba2t+1 | 0 ≤ t ≤ 2n− 1}.

• If n is odd, then there are 2n+ 6 conjugacy classes as follows:

– 4 classes of size one being [1] = {1}, [an] = {an}, [a2n] = {a2n} and
[a3n] = {a3n},

– 2n− 2 classes of size two being [ar] = {ar, a(2n−1)r}, where r ∈ Codd? ,
– 4 classes of size n being [b] = {ba4t | 0 ≤ t ≤ n−1}, [ba] = {ba4t+1 | 0 ≤
t ≤ n − 1}, [ba2] = {ba4t+2 | 0 ≤ t ≤ n − 1} and [ba3] = {ba4t+3 | 0 ≤
t ≤ n− 1}.

An MNS of SD8n can be computed as S = (a)SD8n ∪ (a−1)SD8n ∪ bSD8n . This
graph has simple eigenvalues ±(4 + 2n) and ±(4 − 2n). If n is even then other
eigenvalues are 4Cos(hπ2n ), where h ∈ C†even, each of which with multiplicity four
and 0 with multiplicity 4n. If n is odd, other eigenvalues are 4Cos(hπ2n ), where
h ∈ C†even, each of which with multiplicity four, ±n and 0 with multiplicities two
and 4n− 8 respectively. By [19, Theorem 1], if n is even then λχi = 2

χi(e)
(χi(a) +

χi(a
−1) + nχi(b)). If n is odd, then λχi = 1

χi(e)
(2χi(a) + 2χi(a

−1) + nχi(b)). By
these calculations and a similar argument as Example 2.8, the energy of SD8n can
be computed as follows:

E(Cay(SD8n), S) ≈
{

32n
π + 4n n = 1, 3

8n+ 32n
π − 16 otherwise.

which proves the result.

Example 2.11. In this example, the eigenvalues of Cay(G,S) are computed,
where G is a Mathieu group and S is an MNS or SMNS for G. Since G is a
simple group, 〈A〉 = G, if A is a conjugacy class of G. So, if a real conjugacy
class S of G has the minimum size between all conjugacy classes of G then S is an
MNS for G. It is easy to see that for each Mathieu group, the conjugacy class 2A
is real and it has the minimum size between all real conjugacy classes of G. The
conjugacy class 2B inM12 andM24 is also real and has the second size between all



200 M. Jalali-Rad

real conjugacy classes of these groups and their union. The conjugacy class 3A in
M11,M22 andM23 is again real and has the second size between all real conjugacy
classes of these groups and their union. These conjugacy classes are SMNS of G
and all eigenvalues with respect to these classes are recorded in Tables 2−6.

For the sake of completeness, we present here some details on the Suzuki group.
Following Suzuki [16], a group G is called a ZT−group if G acts on a set Ω in
such a way that, (1) G is a doubly transitive group on 1 + N symbols, (2) the
identity is the only element which leaves three distinct symbols invariant, (3) G
contains no normal subgroup of order 1 + N , and (4) N is even. Suzuki [16]
proved that for each prime power q = 22s+1, there is a unique ZT−group Sz(q)
of order q2(q − 1)(q2 + 1) which is called later the Suzuki group. This group is
simple, when q > 2. Suppose that a is a symbol on which G acts and H = Ga.
By [16], it follows from the conditions (1) and (2) that H is a Frobenius group
on Ω \ {a}. Apply a well-known result of Frobenius to deduce that H contains a
regular normal subgroup Q of order N such that every non-identity element of Q
leaves only the symbol a invariant. Suppose b ∈ Ω \ {a} and K = Hb. Suppose
x ∈ NG(K) is an involution. Then it is well-known that the Suzuki group are
containing two elements y and z such that y is an involution and xyx = z−1xz,
and three cyclic subgroups A0, A1 and A2 of orders q− 1, q+ r+ 1 and q− r+ 1,
respectively. By [16], the conjugacy classes of Sz(q) can be computed as follows:
{e}, ySz(q), zSz(q), (z−1)Sz(q), bSz(q)0 , bSz(q)1 and bSz(q)2 of lengths 1, (q−1)(q2 + 1),
1
2q(q − 1)(q2 + 1), 1

2q(q − 1)(q2 + 1), q2(q − 1)(q + r + 1), q2(q + r + 1)(q − r + 1)
and q2(q−1)(q− r+ 1), respectively. Here, b0, b1 and b2 are non-identity elements
of Ai, i = 0, 1, 2, respectively. Note that there are q−r

4 , q2 − 1 and q+r
4 conjugacy

classes of types bSz(q)0 , bSz(q)1 and bSz(q)2 , respectively.
One can also find the character table of this group in [16]. Hence, by applying

above information on Suzuki groups and Proposition 2.1 we have the following
proposition:

Proposition 2.12. Consider the Suzuki group Sz(q) with q = 22s+1, r = 2s+1

and s ≥ 1. The conjugacy class S = ySz(q) and the normal subset T = zSz(q) ∪
(z−1)Sz(q) are the MNS and SMNS of Sz(q), respectively. Moreover, |S| =
(q− 1)(q2 + 1), |T | = q(q− 1)(q2 + 1) and the simple eigenvalues of Cay(Sz(q), S)
and Cay(Sz(q), T ) are |S| and |T |, respectively. The Cayley graph Cay(Sz(q), S)

has eigenvalues 0, −(q2+1), (q−1), (1+q2)(r−1)
q−r+1 and −(1+q

2)(r+1)
q+r+1 with multiplicities

q4, (q−1)2(r2)
2 , q−22 (q2 + 1)2, q+r4 ((q− r+ 1)(q− 1))2 and q−r

4 ((q+ r+ 1)(q− 1))2,
respectively. The energy of Cay(Sz(q), S) is as follows:

E(Cay(Sz(q), S)) = −
√

2q

2
+

√
2q3

2
−
√

2q7 +

√
2q5

2
+

3
√

2q9

2
− 3

√
2q11

2

+

√
2q13

2
− q5 +

√
q2

2
− q3 + q4 +

√
q6

2
.
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The Cayley graph Cay(Sz(q), S) has eigenvalues 0, q(q−1), − q(q
2+1)

q−r+1 and − q(q
2+1)

q+r+1

with multiplicities 1
4 (4q4 +r2(q−1)2), 1

2 (q−2)(q2 +1)2, 1
4 (q−r+1)2(q−1)2(q+r)

and 1
4 (q + r + 1)2(q − 1)2(q − r), respectively.

We end our paper by computing eigenvalues of a group of type Ree of charac-
teristic q. We refer to [15, 16, 18] for our notations and known results concerning
this important class of simple groups. A finite group G has Ree type if G satisfies
the following conditions:

• The Sylow 2−subgroups of G are elementary abelian of order 8.

• The group G has no normal subgroup of index 2.

• There is an involution J in G such that the centralizer CG(J) ∼= 〈J〉 ×
LF (2, q), where L = LF (2, q) denotes the linear fractional group on GF (q).

• If 〈R〉 denotes a cyclic subgroup of order q+e
2 in L, then for any subgroup

1 6= 〈R0〉, we have NG(〈R0〉) ≤ CG(J).

• Let J ′ be an involution of L and S an element of L of order q−e
4 which

centralizes J ′. Then an element of G of order 3 which normalizes 〈J, J ′〉
does not centralize S. We call q the characteristic of G.

Note that the (I) implies that q ≡ 4 + e (mod 8) where e = ±1. In the end of
this paper, we consider the simple Ree group G2(q) of characteristic q and order
q3(q − 1)(q3 + 1), where q = 32k+1 and k ≥ 1. This group has exactly q + 8
conjugacy classes [18]. Suppose m = 3k. Then we have:

Proposition 2.13. The conjugacy class S = JG2(q) is the unique MNS of G2(q)

with size q(q2−q+1)
q2+1 . The energy of Cay(G2(q), S) can be computed by the following

formula:

E(Cay(G2(q), S)) =
1

4(1 + 34k+2)
(19 · 322k + 4e38k + 34k+3 + 32k+1 + (2e− 11)321k

+ 2e32k+1 + 325k + 280 · 318k + 313k − 4 · 310k)

+
4

(32k+1 + 3k+1 + 1)(1 + 34k+2)
(322k + 2 · 319k + 20 · 316k + 38k

− 11 · 310k + 14 · 313k).

Proof. Since G2(q) has exactly one conjugacy class of involutions, S = S−1, and
since G2(q) is simple, G2(q) = 〈S〉. On the other hand, the lengths of non trivial
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conjugacy classes of G2(q) are as follows:

q3(q2 − q + 1),
q3(q − 1)(q3 + 1)

q2 + 1
,
q3(q − 1)(q3 + 1)

q2 − 3
q+2
2

,

q3(q − 1)(q3 + 1)

q2 + 3
q+2
2

,
(q − 1)(q3 + 1)

q2
,
q(q − 1)(q3 + 1)

2
,

(q − 1)(q3 + 1)

2q
,
q(q − 1)(q3 + 1)

3
,
q(q2 − q + 1)

q2 + 1
.

By above information on conjugacy lengths of G2(q) and some tedious calculations,
one can see that S = JG2(q) is the unique MNS of G2(q). The simple eigenvalues
of Cay(G2(q), S) is |S|. This graph has eigenvalues

0,− q
q2+1 ,

3q
q2+1 ,

q
q2+1 ,

q(q2−q+1)
m(q2+1)(q+3m+1) ,

q(q2−q+1)
m(q2+1)(q−3m+1)

with multiplicities, 314k+6−312k+5 − 5·310k+4 − 7·36k+2 + 2·38k+3 − 34k+1−32k+1,
1
8 ·3

14k+8 − 11
8 ·3

12k+6 + e
4 ·3

12k+6 + 5
2 ·3

10k+5 − 11
4 ·3

8k+4 + 7
4 ·3

6k+3 − 1
2 ·3

4k+2

− 1
8 · 3

2k+1 + 1
8 + e

2 · 3
6k+3 + e

4 ,
1
8 · 3

14k+6 − 7
8 · 3

12k+5 + 5
2 · 3

10k+4 − 17
4 · 3

8k+3 +
19
4 · 3

6k+2 − 7
2 · 3

4k+1 + 13
8 · 3

2k − 1
8 ,

1
4314k+7 − 1

2 · 3
12k+6 + e

4 · 3
12k+6 + 1

2 · 3
8k+4

− 36k+3 + e
2 · 3

6k+3 + 1
4 · 3

2k+1 − 1
2 + e

4 , 2 · 310k+4 + 4 · 39k+4 + 2 · 38k+4 −
4 · 37k+3 − 16 · 36k+2 − 4 · 35k+2 + 2 · 34k+2 + 4 · 33k+1 + 2 · 32k, 2 · 310k+4 −
4 · 39k+4 + 2 · 38k+4 + 4 · 37k+3 − 16 · 36k+2 + 4 · 35k+2 + 2 · 34k+2 − 4 · 33k+1 −
2 · 32k, respectively. Therefore, the energy of Cay(G2(q), S) is as follows:

E(Cay(G2(q), S)) =
1

4(1 + 34k+2)
(19 · 322k + 4e38k + 34k+3 + 32k+1 + (2e− 11)321k

+ 2e32k+1 + 325k + 280 · 318k + 313k − 4 · 310k)

+
4

(32k+1 + 3k+1 + 1)(1 + 34k+2)
(322k + 2 · 319k + 20 · 316k + 38k

− 11 · 310k + 14 · 313k).

This completes the proof.

By the notation of [18] we have the following proposition.

Proposition 2.14. The conjugacy class T = XG2(q) is the unique SMNS of
G2(q) with size (q−1)(q3+1)

q2 . The simple eigenvalues of Cay(G2(q), T ) is |T | and
the graph has the eigenvalues

0, −(q−1)
2(q3+1)

q2(q2−q+1) , (q−1)(q
3+1)

q2(q2−q+1) ,
−(q+m)(q3+1)
mq2(q+3m+1) ,

(q+m)(q3+1)
mq2(q−3m+1) ,

−(q3+1)
q2(q+1) ,

q−1
q2 ,

(2q−1)(q3+1)
q2(q2−q+1) ,

−(q+1+3m)(q3+1)
(q+1)(q+1+3m)q2 ,

−(q+1−3m)(q3+1)
(q+1)(q+1−3m)q2 ,
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with multiplicities, q6, 38k+4−2 ·36k+3 +34k+3−2 ·32k+1 +1, 312k+6−2 ·310k+5 +
38k+5−2·36k+3, 1

2 ·3
10k+4+ 1

2 ·3
8k+4+39k+4−4·36k+4−37k+3+ 1

2 ·3
4k+2−35k+2+ 1

2 ·
32k+33k+1+33k+1, 1

2 ·3
10k+4+39k+4+ 1

2 ·3
8k+4+37k+3−4·36k+2+35k+2+ 1

2 ·3
4k+2−

33k+1+ 1
2 ·3

2k, 2·310k+4−4·36k+2+2·32k, 1
2 ·3

14k+7− 1
2 ·(1+ e

2 )·312k+6+38k+4+(e−
2)·36k+3+ 1

2 ·3
2k+1−1+ e

2 ,
1
2 (314k+6−7·312k+5+20·310k+4−34·38k+3+38·36k+2−

28·34k+1+13·32k−1), 1
2 ·3

14k+6− 7
2 ·3

12k+5+10·310k+4−17·38k+3+19·36k+2−14·
34k+1 13

2 ·3
2k− 1

2 ,
1
2 ·3

14k+6+ 1
2 ·3

13k+7+ 11
2 ·3

12k+5+ 7
2 ·3

11k+5+ 5
2 ·3

10k+4− 5
2 ·3

9k+4−
11 ·38k+3−7 ·337k+3 − 13

2 ·3
6k+2 + 1

2 ·3
5k+2 + 11

2 ·3
4k+1 + 7

2 ·3
3k+1 + 7

2 ·3
2k + 1

2 ·3
k,

1
2 · 3

14k+6 − 1
2 · 3

13k+6 − 11
2 · 3

12k+5 + 1
2 · 3

11k+6 − 7
2 · 3

10k+4 + 1
2 · 3

9k+5 + 38k+3 −
37k+4 + 11

2 · 3
6k+2 − 1

2 · 3
5k+3 − 1

2 · 3
4k+1 + 1

2 · 3
3k+2 − 5

2 · 3
2k + 1

2 · 3
k, respectively.

Table 1: The Character Table of T4n.
gi e an ar (1 ≤ r ≤ n− 1) b ab

|CG(gi)| 4n 4n 2n 4 4
Non-Linear Characters

ψj (1 ≤ j ≤ n− 1) 2 2(−1)j wrj + w−rj 0 0
Linear Characters n is odd

χ1 1 1 1 1 1
χ2 1 −1 (−1)r i −i
χ3 1 1 1 −1 −1
χ4 1 −1 (−1)r −i i

Linear Characters n is even

λ1 1 1 1 1 1
λ2 1 1 1 −1 −1
λ3 1 1 (−1)r 1 −1
λ4 1 1 (−1)r −1 1

Table 2: The Eigenvalues of Cay(M11, 2A) and Cay(M11, 3A)

2A− Eigenvalues Multiplicities 3A− Eigenvalues Multiplicities
−33 23 · 52 −55 29

−11 34 · 52 −10 24 · 112

−3 52 · 112 0 34 · 52
0 29 8 52 · 112

15 24 · 112 44 22 · 3 · 52
33 22 · 52 80 112

45 112 440 1
165 1 − −
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Table 3: The Eigenvalues of Cay(M12, 2A) and Cay(M12, 2B).

2A− Eigenvalues Multiplicities 2B − Eigenvalues Multiplicities
−36 7 · 113 −33 32 · 52 · 73
−9 28 · 112 −9 2 · 52 · 112

−4 34 · 112 0 34 · 52
0 26 · 32 · 52 15 32 · 112 · 13
11 28 · 34 55 22 · 36
36 22 · 32 · 112 63 52 · 112

44 34 · 61 135 2 · 112

99 29 495 1
396 1 − −

Table 4: The Eigenvalues of Cay(M22, 2A) and Cay(M22, 3A).

2A− Eigenvalues Multiplicities 3A− Eigenvalues Multiplicities
−77 2 · 34 · 52 −160 32 · 72 · 112

−33 27 · 52 · 72 −64 52 · 72 · 112

3 52 · 72 · 112 0 36 · 19
11 22 · 32 · 52 · 72 44 27 · 52 · 72
35 34 · 112 80 22 · 72 · 112

75 22 · 72 · 112 224 52 · 112

147 52 · 112 1760 32 · 72
275 32 · 72 12320 1
1155 1 − −
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Table 5: The Eigenvalues of Cay(M23, 2A) and Cay(M23, 3A).

2A− Eigenvalues Multiplicities 3A− Eigenvalues Multiplicities
−253 2 · 34 · 52 −736 2 · 32 · 72 · 112

−69 24 · 53 · 112 · 13 −253 215 · 72
0 215 · 72 −28 26 · 112 · 232

15 26 · 112 · 232 0 34 · 52 · 1499
99 34 · 52 · 232 224 112 · 232

115 33 · 72 · 112 368 23 · 52 · 72 · 112

195 112 · 232 1232 22 · 52 · 232

363 22 · 52 · 232 1472 32 · 72 · 112

1035 22 · 112 10304 22 · 112

3795 1 56672 1

Table 6: The Eigenvalues of Cay(M24, 2A) and Cay(M24, 2B).

2A− Eigenvalues Multiplicities 2B − Eigenvalues Multiplicities
−759 2 · 34 · 52 −1386 2 · 232 · 61
−231 2 · 34 · 52 · 232 −1242 2 · 32 · 72 · 112

−207 24 · 53 · 112 · 13 −378 52 · 112 · 232

−135 72 · 112 · 232 −322 23 · 34 · 52 · 112

−115 26 · 34 · 72 · 112 −266 34 · 112 · 232

−55 24 · 34 · 72 · 232 −154 25 · 52 · 232

−23 36 · 52 · 72 · 112 −138 36 · 52 · 72 · 112

45 26 · 112 · 232 0 212 · 52 · 112

105 23 · 32 · 11 · 23 · 29 · 2783 54 32 · 72 · 112 · 232

165 28 · 34 · 232 138 26 · 34 · 72 · 112

207 212 · 52 · 112 154 28 · 34 · 232

345 2 · 32 · 72 · 112 198 22 · 52 · 232

297 34 · 52 · 232 378 26 · 112 · 232

585 112 · 232 414 23 · 52 · 72 · 112

297 34 · 52 · 232 1078 24 · 52 · 232

441 52 · 112 · 232 1518 24 · 34 · 72
585 112 · 232 3542 34 · 52
1265 24 · 34 · 72 − −
3465 232 − −
11385 1 − −
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