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Laplacian Sum-Eccentricity Energy of a Graph

Biligirirangaiah Sharada, Mohammad Issa Sowaity? and Ivan Gutman

Abstract
We introduce the Laplacian sum-eccentricity matrix LSe of a graph G,

and its Laplacian sum-eccentricity energy LSeE =
∑n

i=1 |ηi|, where ηi =
ζi − 2m

n
and where ζ1, ζ2, . . . , ζn are the eigenvalues of LSe. Upper bounds

for LSeE are obtained. A graph is said to be twinenergetic if
∑n

i=1 |ηi| =∑n
i=1 |ζi|. Conditions for the existence of such graphs are established.
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1. Introduction
Let G be a simple connected graph with vertex set V(G) and edge set E(G), of
order |V(G)| = n and size |E(G)| = m. Let A = (aij) be the adjacency matrix
of G. The eigenvalues λ1, λ2, . . . , λn of A are the eigenvalues of the graph G [6].
Since A is a symmetric matrix with zero trace, these eigenvalues are real with sum
equal to zero. The energy of the graph G is defined as the sum of the absolute
values of its eigenvalues [10,16]:

E(G) =

n∑
i=1

|λi| .

After the introduction of the graph–energy concept in the 1970s [10], several other
“graph energies” have been put forward and their mathematical properties exten-
sively studied; for details see the recent monograph [12] and the survey [11].

In the last few years, a whole class of graph energies was conceived, based on
the eigenvalues of matrices associated with a particular topological index. Thus,
let TI be a topological index is of the form

TI = TI(G) =
∑

vivj∈E(G)

F (vi, vj)
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where F is a pertinently chosen function with the property F (x, y) = F (y, x).
Then a matrix TI can be associated to TI, defined as

(TI)ij =

 F (vi, vj) if vivj ∈ E(G)

0 otherwise .

If τ1, τ2, . . . , τn are the eigenvalues of the matrix TI, then an “energy” can be
defined as

ETI = ETI(G) =

n∑
i=1

|τi| . (1)

The most extensively studied such graph energy is the Randić energy [2,3,7,12],
based on the eigenvalues of the Randić matrix R, where

(R)ij =


1√
di dj

if vivj ∈ E(G)

0 otherwise

and where di is the degree of the i-th vertex of G. In an analogous manner the
harmonic energy [14], ABC energy [9], geometric–arithmetic energy [23], Zagreb
energy [15], and sum-eccentricity energy [22,26] were put forward.

To any energy ETI of the form (1), a “Laplacian energy” LETI can be associ-
ated, defined as

LETI = LETI(G) =

n∑
i=1

∣∣∣∣θi − 2m

n

∣∣∣∣ (2)

where θ1, θ2, . . . , θn are the eigenvalues of the matrix LTI = D − TI, and where
D = D(G) is the diagonal matrix of vertex degrees.

The first such Laplacian energy, based on the adjacency matrix A, was intro-
duced in 2006 [13] and its theory is nowadays elaborated in full detail, see [12].
It is worth noting that this Laplacian energy found interesting engineering ap-
plications in image processing [18, 25, 27]. Bearing this in mind, it is purposeful
to study other Laplacian graph energies. Some recent studies along these lines
are [1, 5, 8, 20,21].

In this paper we study the Laplacian version of the sum-eccentricity energy.
In order to define it, we need some preparations.

The distance d(u, v) between two vertices u and v in a (connected) graph
G is the length of a shortest path connecting u and v [4]. The eccentricity of
a vertex v ∈ V(G) is e(v) = max{d(u, v) : u ∈ V(G)}. The radius of G is
r(G) = min{e(v) : v ∈ V(G)}, whereas the diameter of G is d(G) = max{e(v) :
v ∈ V(G)}. Hence r(G) ≤ e(v) ≤ d(G), for every v ∈ V(G).

In this paper, we denote by Kn, Ka,b, K1,a, Cn, and Pn the complete graph,
complete bipartite graph, star, cycle, and path, respectively.
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The sum-eccentricity matrix of a graph G is denoted by Se(G) and defined as
Se(G) = (sij) [22, 26], where

sij =

{
e(vi) + e(vj) if vivj ∈ E

0 otherwise.

If µ1, µ2, . . . , µn, are the eigenvalues of Se(G), then the sum-eccentricity energy is

ESe(G) =

n∑
i=1

|µi| .

Definition 1.1. Let G be a graph of order n and size m. The Laplacian sum-
eccentricity matrix of G, denoted by LSe(G) = (`ij), is defined as

LSe(G) = D(G)− Se(G) .

The Laplacian sum-eccentricity spectrum of G, consisting of ζ1, ζ2, . . . , ζn, is
the spectrum of the Laplacian sum-eccentricity matrix. This leads us to define the
Laplacian sum-eccentricity energy of a graph G as

LSe(G) =

n∑
i=1

∣∣∣∣ζi − 2m

n

∣∣∣∣ . (3)

If, in addition, we define the auxiliary quantity ηi as

ηi = ζi −
2m

n

then

LSeE(G) =

n∑
i=1

|ηi| .

Lemma 1.2. Let G be an (n,m)-graph. Then

n∑
i=1

ζi = 2m.

Proof.
n∑

i=1

ζi = trace(LSe(G)) =

n∑
i=1

`ii =

n∑
i=1

di = 2m.

Theorem 1.3. The Laplacian sum-eccentricity energy of the complete graph Kn

is
LSeE(Kn) = 4(n− 1) .
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Proof. Recalling that the eccentricity of any vertex of Kn is unity, directly from
the definition of the Laplacian sum-eccentricity matrix, we calculate that

Spec(LSe(Kn)) =

[
−d d+ 2
1 n− 1

]
where d = n − 1 is the degree of any vertex of Kn. Using the fact that 2m

n =
n− 1 = d, we get by Eq. (3)

LSeE(Kn) = | − d− d|+ |d+ 2− d|+ · · ·+ |d+ 2− d|

= 2d+ 2(n− 1) = 4(n− 1) .

2. Bounds for Laplacian Sum-Eccentricity Energy
Theorem 2.1. Let G be an (n,m)-graph. Then

LSeE(G) ≤

√√√√√n

 n∑
i=1

n∑
j=1

`2ij −
4m2

n

 . (4)

Proof. We have
n∑

i=1

η2i =

n∑
i=1

(
ζi −

2m

n

)2

=

n∑
i=1

(
ζ2i −

4m

n
ζi +

4m2

n2

)

=

n∑
i=1

ζ2i −
4m

n

n∑
i=1

ζi +
4m2

n
.

By Lemma 1.2,
n∑

i=1

η2i =

n∑
i=1

ζ2i −
8m2

n
+

4m2

n
=

n∑
i=1

ζ2i −
4m2

n
.

Using the Cauchy–Schwarz inequality

n∑
i=1

|ηi| ≤

√√√√n

n∑
i=1

η2i

we get
n∑

i=1

|ηi| ≤

√√√√n

(
n∑

i=1

ζ2i −
4m2

n

)
.
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On the other hand,
n∑

i=1

ζ2i = trace(LS2
e(G)) =

n∑
i=1

n∑
j=1

`2ij

and inequality (4) follows.

It should be noted that inequality (4) is just a variant of the classical McClel-
land’s upper bound for ordinary graph energy [16,17].

Corollary 2.2. Let G be an r-regular graph. Then
n∑

i=1

η2i =

n∑
i=1

n∑
j=1

`2ij − nr2 .

Example 2.3. If G ∼= Kn, then
n∑

i=1

η2i = 4n(n− 1) .

If G ∼= Ka,b. Then
n∑

i=1

η2i = ab

(
a+ b+ 32− 4ab

a+ b

)
.

In particular, for G ∼= K1,a, with n = a+ 1:
n∑

i=1

η2i = a2
(

1− 4

a+ 1

)
+ 19a .

In what follows we derive another upper bound for the Laplacian sum-eccentri-
city energy using Weyl’s inequality for matrices.

Theorem 2.4. (Weyl’s inequality) [19] Let X and Y be Hermitian n×n matrices.
If for 1 ≤ i ≤ n, λi(X), λi(Y), λi(X+Y) are the eigenvalues of X, Y, and X+Y,
respectively, then

λi(X) + λn(Y) ≤ λi(X + Y) ≤ λi(X) + λ1(Y) .

The matrices LSe(G), Se(G), and D(G) are all Hermitian n × n matrices.
In addition, we use the facts that the eigenvalues of the diagonal matrix are the
entries in the diagonal, and that the energy of a matrix X is equal to the energy
of −X. We thus arrive at:

Theorem 2.5. Let G be an (n,m)-graph with maximal vertex degree ∆. Then

LSeE(G) ≤ ESe(G) + k∆ +
2m

n
(n− k) (5)

where k = |{ζi : ζi ≥ 2m/n}|.
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Proof. Let ζ1 ≥ ζ2 ≥ · · · ≥ ζn be the Laplacian sum-eccentricity eigenvalues,
µ1 ≥ µ2 ≥ · · · ≥ µn be the sum-eccentricity eigenvalues and ρ1 ≥ ρ2 ≥ · · · ≥ ρn
be the eigenvalues of the degree matrix. We assume that 1 ≤ k ≤ r ≤ n. Using
Theorem 2.4 we get

µi + ρn ≤ ζi ≤ µi + ρ1 .

Since ρn ≥ 0,
µi ≤ ζi ≤ µi + ρ1 .

Since 2m/n ≥ 0,

µi −
2m

n
≤ ζi −

2m

n
≤ µi + ρ1 .

Now we have to distinguish between two cases.

Case 1: If ζi − 2m
n ≥ 0, then ∣∣∣∣ζi − 2m

n

∣∣∣∣ ≤ µi + ρ1 .

If there are k ζi’s, satisfy this condition, then

k∑
i=1

∣∣∣∣ζi − 2m

n

∣∣∣∣ ≤ k∑
i=1

(µi + ρ1) ≤
k∑

i=1

|µi|+ kρ1 . (6)

Case 2: If ζi − 2m
n ≤ 0, then∣∣∣∣ζi − 2m

n

∣∣∣∣ ≤ ∣∣∣∣µi −
2m

n

∣∣∣∣ .
If we have, µi ≤ 0 for i = k + 1, . . . , r and µi ≥ 0 for i = r + 1, . . . , n. Then

n∑
i=k+1

∣∣∣∣ζi − 2m

n

∣∣∣∣ ≤ r∑
i=k+1

∣∣∣∣µi −
2m

n

∣∣∣∣+

n∑
i=r+1

∣∣∣∣µi −
2m

n

∣∣∣∣
=

r∑
i=k+1

2m

n
+

r∑
i=k+1

|µi|+
n∑

i=r+1

2m

n
−

n∑
i=r+1

|µi| . (7)

Combining the relations (6) and (7), we get

n∑
i=1

∣∣∣∣ζi − 2m

n

∣∣∣∣ ≤ k∑
i=1

|µi|+ kρ1 +

r∑
i=k+1

|µi| −
n∑

i=r+1

|µi|+
2m

n
(n− k)

≤ ESe(G) + kρ1 +
2m

n
(n− k)

from which (5) follows straightforwardly.
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Corollary 2.6. If the graph G is r-regular, then

LSeE(G) ≤ ESe(G) + nr . (8)

Proof. From Theorem 2.5, we have

LSeE(G) ≤ ESe(G) + kr +
2m

n
(n− k) .

Since, in addition, for an r-regular graph, 2m/n = r,

LSeE(G) ≤ ESe(G) + r(k + n− k)

and inequality (8) follows.

Lemma 2.7. [24] For the complete bipartite graph Ka,b, the sum-eccentricity en-
ergy is ESe(Ka,b) = 8

√
ab.

Corollary 2.8. For the complete bipartite graph Ka,b,

LSeE(Ka,b) ≤ 8
√
ab+ k max{a, b}+

2ab

a+ b
(a+ b− k) . (9)

Proof. For Ka,b, 2m/n = 2ab/(a+ b). Using Lemma 2.7, we get (9) from (5).

3. Twinenergetic Graphs

In this section, we point out a remarkable feature of Laplacian sum-eccentricity
energy.

Definition 3.1. Let G be a graph of order n, and let ζi , i = 1, 2, . . . , n, be its
Laplacian sum-eccentricity eigenvalues. We say that G is twinenergetic if

LSeE(G) =

n∑
i=1

|ζi| .

The above definition means that
n∑

i=1

∣∣∣∣ζi − 2m

n

∣∣∣∣ =

n∑
i=1

|ζi| . (10)

The number of positive eigenvalues and negative eigenvalues (including their
multiplicities) are denoted by ζ+(G) and ζ−(G), respectively. For the sake of sim-
plicity, we assume that there are no zero Laplacian sum-eccentricity eigenvalues,
i.e., that ζ+(G) + ζ−(G) = n.
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Theorem 3.2. A graph G is a Laplacian sum-eccentricity twinenergetic if it sat-
isfies the following two conditions:

ζi(G) ≥ 2m

n
, i = 1, 2, . . . , ζ+i (G) . (11)

ζ+(G) = ζ−(G) . (12)

Proof. Let ζ+(G) = r, where 1 ≤ r ≤ n. Then
n∑

i=1

∣∣∣∣ζi − 2m

n

∣∣∣∣ =

r∑
i=1

∣∣∣∣ζi − 2m

n

∣∣∣∣+

n∑
i=r+1

∣∣∣∣ζi − 2m

n

∣∣∣∣
=

r∑
i=1

∣∣∣∣ζi − 2m

n

∣∣∣∣+

n∑
i=r+1

|ζi|+
2m

n
(n− r) . (13)

Let k be the number of eigenvalues satisfying the condition ζi(G) ≥ 2m
n . Then,

1 ≤ k ≤ r, and
r∑

i=1

∣∣∣∣ζi − 2m

n

∣∣∣∣ =

k∑
i=1

(
ζi −

2m

n

)
+

r∑
i=k+1

(
2m

n
− ζi

)

=

k∑
i=1

|ζi| −
2m

n
k −

r∑
i=k+1

|ζi|+
2m

n
(r − k) . (14)

Substituting (14) back into (13) yields

n∑
i=1

∣∣∣∣ζi − 2m

n

∣∣∣∣ =

k∑
i=1

|ζi|+
n∑

i=r+1

|ζi| −
r∑

i=k+1

|ζi|+
2m

n
(n− 2k)

=

n∑
i=1

|ζi| − 2

r∑
i=k+1

|ζi|+
2m

n
(n− 2k) .

If the condition (11) is obeyed, i.e., if k = r, then
r∑

i=k+1

|ζi| = 0 .

If, in addition, also the condition (12) is obeyed, i.e., 2r = n, then

2m

n
(n− 2k) = 0 .

Thus, if both conditions (11) and (12) are satisfied, then the relation (10) holds,
i.e., the graph G is twinenergetic.



Laplacian Sum-Eccentricity Energy of a Graph 217

It now remains to see if twinenergetic graphs exist at all. That such graphs do
exist is verified by the following examples.

Example 3.3. The paths P2, P4, P8, and P16 are twinenergetic graphs.

For P2, direct calculations gives ζ1 = 3, ζ2 = −1, and 2m/n = 1. Therefore,

2∑
i=1

|ζi| = 4 and
2∑

i=1

∣∣∣∣ζi − 2m

n

∣∣∣∣ = 4 .

For P4 we get ζ1 = 9.0902, ζ2 = 4.7202, ζ3 = −2.0902, ζ4 = −5.7202, and
2m/n = 6/4. Therefore,

4∑
i=1

|ζi| =
4∑

i=1

∣∣∣∣ζi − 2m

n

∣∣∣∣ = 21.6208 .

The cases P8 and P16 are verified analogously.
Finding more examples of twinenergetic graphs, as well as their complete struc-

tural characterization remains a task for the future.
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