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Structure of the Fixed Point of Condensing

Set-Valued Maps

Zeinab Soltani

Abstract

In this paper, we present structure of the fixed point set results for con-
densing set-valued maps. Also, we prove a generalization of the Krasnosel’skii-
Perov connectedness principle to the case of condensing set-valued maps.
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1. Introduction and Preliminaries

The famous Schauder fixed point theorem [16] has been generalized in various
directions by using different methods, see [1–6,8,12,13,15,17] and reference therein.

The topological structure of the set of fixed points has important applications
in structure of the solution sets of differential equations and inclusions. The topo-
logical degree is a fundamental tool for proving the existence of fixed point and
topological characterization of the set of fixed point and solutions for differential
equations, differential inclusions and dynamical systems.

In 1959 Krasnosel’skii and Perov [9] proved a connectedness principle for single
valued compact continuous maps and later a generalization of this theorem was
proved by B. D. Gel’man in 1997 [7] for connectedness of the set of fixed points
of compact continuous set-valued maps. In this paper, we prove a generalization
of the Krasnosel’skii-Perov connectedness principle to the case of condensing set-
valued maps.

Corresponding author (Email: z.soltani@kashanu.ac.ir)
Academic Editor: Ali Reza Ashrafi
Received 11 August 2017, Accepted 15 December 2017
DOI: 10.22052/mir.2017.95130.1072

c©2020 University of Kashan

This work is licensed under the Creative Commons Attribution 4.0 International License.



34 Z. Soltani

In this paper, we present the structure of the fixed point set results for condens-
ing set-valued maps. Our discussion is based on the theory of topological degree
for ultimately compact set valued maps developed by Petryshyn and Fitzpatric in
1974 [14].

Now, we introduce some definitions and facts which will be used in the sequel.
All topological spaces are assumed to be metric. The set-valued map T : X ( Y
is said to be:

(i) upper semicontinuous, if for each closed set B ⊆ Y , T−(B) = {x ∈ X :
T (x) ∩B 6= ∅} is closed in X.

(ii) lower semicontinuous if for each open set V ⊆ Y , T−(V ) = {x ∈ X :
T (x) ∩ V 6= ∅} is open in X.

(iii) continuous if it is both upper and lower semicontinuous.

Suppose that T : X ( Y is a set-valued map, the graph of T is defined by
ΓX(T ) ⊂ X × Y :

ΓX(T ) = {(x, y) : x ∈ X, y ∈ T (x)}.

Definition 1.1. Let T : X ( Y be a set-valued map. A continuous map f :
X → Y is called an ε−approximation of T if the graph ΓX(f) of f belongs to the
ε−neighbourhood of the graph ΓX(T ) of T , that is ΓX(f) ⊂ Uε(ΓX(T )).

We shall also need some facts about the Kuratowski and Hausdorff measure of
noncompactness. LetX be a Banach space andB(X) denote the family of bounded
subset of X. Let A ∈ B(X) then the Kuratowski measure of non-compactness of
A is defined as γ(A) = inf{δ > 0| A = ∪ni=1Ai,diam(Ai) ≤ δ}, where diam(A) =
sup{d(x, y)|x, y ∈ A}.

Suppose that T : X ( X is a set-valued map. T is said to be condensing if
γ(T (A)) < γ(A) for all bounded subsets A of X that γ(A) > 0 and T (A) ⊆ B(X).

Definition 1.2. [10] LetX be a Banach space. A compact valued map T : X ( X
is said to be demicompact if whenever (xn) is bounded sequence and (d(xn, T (xn)))
is a convergent sequence, then there exists a convergent subsequence (xni) of (xn).

Notice that every condensing map is demicompact.

Definition 1.3. Let (X, d) be a metric space, CB(X) denote the family of all
nonempty closed and bounded subsets of X. Then, the Pompeiu-Hausdorff metric
on CB(X) is given by

H(A,B) = max{e(A,B), e(B,A)},

where e(A,B) = supa∈A d(a,B) and d(a,B) = infb∈B d(a, b).
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Let X be a metrizable locally convex topological vector space. If D ⊂ X, we
denote byK(D) and CK(D) the family of closed convex, and the family of compact
convex subsets of D, respectively. We also use D and ∂D to denote the closure
and boundary of D, respectively. Let T : D ( X be a closed convex valued upper
semicontinuous map. Suppose that K0 = co(T (D)), let η be an ordinal such that
Kβ is defined for β < η. If η is of the first kind we set Kη = co(T (D∩Kη−1)) and if
η is of the second kind we setKη = ∩β<ηKβ . ThenKα is well defined and such that
Kα ⊂ Kβ if α > β. Consequently, there exists an ordinal γ such that Kβ = Kγ

if β ≥ γ. We define K = K(T,D) = Kγ and observe that co(T (K ∩ D) = K.
The mapping T is called ultimately compact if either K ∩D = ∅ or T (K ∩D) is
relatively compact.

Definition 1.4. [14] Let D ⊂ X be open and T : D ( X be a closed convex
valued upper semicontinuous map. Suppose that T is ultimately compact such
that x /∈ T (x) when x ∈ ∂D. If K(T,D) ∩D = ∅, we define deg(I − T,D, 0) = 0,
and when K(T,D) ∩D 6= ∅, let ρ be a retraction of X onto K(T,D) and define

deg(I − T,D, 0) = degc(I − T ◦ ρ, ρ−1(D), 0), (1)

where the right-hand side of (1) means the topological degree defined in [11] for
multivalued compact vector fields.

Theorem 1.5. [14] Let X,D and T be as in Definition 1.4, then the degree given
by (1) satisfies the following conditions:

(1) if deg(I − T,D, 0) 6= 0, then T has a fixed point in D;

(2) if H : D × [0, 1] ( X is closed convex valued upper semicontinuous, H(D ∩
K ′× [0, 1]) is relatively compact where K ′ = K(H,D× [0, 1]), and x /∈ Ht(x)
for x ∈ ∂D and t ∈ [0, 1], then deg(I −H0, D, 0) = deg(I −H1, D, 0);

(3) if D = D1∪D2, where D1 and D2 are open and D1∩D2 = ∅ and x /∈ T (x) for
x ∈ ∂D1∪∂D2, then deg(I−T,D, 0) = deg(I−T,D1, 0)+deg(I−T,D2, 0).

2. Structure of Fixed Point Set of Condensing Map
In this section, we present structure of fixed point set results for a condensing
map.

Theorem 2.1. Let D be a bounded open subset of a Banach space X and let T :
D ( X be a upper semicontinuous condensing set-valued mapping with compact
convex valued such that deg(I − T,D, 0) 6= 0. Suppose that there exists a sequence
(Tn) of upper semicontinuous condensing mapping of D into X such that

(a) δn = sup{H(Tn(x), T (x)), x ∈ D} → 0 as n→∞;

(b) the equation x ∈ Tn(x) + y has at most one solution in D if ‖y‖ ≤ δn.
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Then, the set F (T ) of fixed point of T in D is a continuum.

Proof. Since deg(I − T,D, 0) 6= 0, then (1) of Theorem 1.5 implies T has a fixed
point and so F (T ) 6= ∅. Furthermore, since F (T ) ⊂ T (F (T )) and T is a condensing
map we have that F (T ) is compact. Thus, it remains to show that F (T ) is
connected. Assume that F = F (T ) is not connected. Hence, there exist two
nonempty disjoint compact subsets F1 and F2 of D such that F = F1 ∪ F2 and
d(F1, F2) = s. Let D1 and D2 be two disjoint open subsets of D such that F1 ⊂ D1,
F2 ⊂ D2, F ⊂ D1 ∪D2, D1 ∩D2 = ∅, D2 ∩D1 = ∅ and F ⊂ D1 ∪D2. We have
Fi = {x ∈ D : 0 ∈ (I − T )(x)} ∩ Di. Since Fi for i = 1, 2, is compact, then
there exists Ui such that Ui ⊂ Di. Therefore, for every x ∈ ∂D1 ∪ ∂D2, we have
x /∈ T (x). By Theorem 1.5,

deg(I − T,D, 0) = deg(I − T,D1, 0) + deg(I − T,D2, 0).

We set β = inf{d(x, T (x)) : x ∈ D́ = D \ (D1 ∪ D2)}. Since T is compact
valued and demicompact, then β > 0. Indeed, if β = 0, for each n ∈ N, then there
exists xn ∈ D́ such that d(xn, T (xn)) ≤ 1

n . Since T is demicompact, then there
exists subsequence (xnk

) of (xn) such that it converges to x ∈ D́. Also T (x) is
closed then x ∈ T (x) and that is contradiction. Thus, for each x ∈ D́,

d(x, T (x)) ≥ β. (2)

Let x∗ ∈ F be arbitrary. We have x∗ ∈ T (x∗) and for each n ∈ N, there exists
x∗n ∈ Tn(x∗) such that ‖x∗n − x∗‖ ≤ H(T (x∗), Tn(x∗)). We define T̃n as

T̃n = Tn(x) + x∗ + x∗n. (3)

From (4) and the condition (a), there exists an integer N0 ≥ 1 such that for each
n ≥ N0, T̃n(x) 6= x for all x ∈ D́. Indeed, the condition (a) implies that there is an
integerN0 ≥ 1 such that β−2δn ≥ β

2 for n ≥ N0. Also, since T̃n(x) is compact, then
there exists ỹn ∈ T̃n(x) such that d(x, T̃n(x)) = ‖x−ỹn‖ and there exist yn ∈ Tn(x)
and zn ∈ T (x) such that ỹn = yn + x∗ − x∗n and ‖yn − zn‖ ≤ H(Tn(x), T (x)).
Therefore, for n ≥ N0

d(x, T̃n(x)) = ‖x− ỹn‖ = ‖x− yn + x∗ − x∗n‖ ≥ ‖x− yn‖ − ‖x∗ − x∗n‖
≥ ‖x− zn‖ − ‖zn − yn‖ − ‖x∗ − x∗n‖‖
≥ d(x, T (x))−H(Tn(x), T (x))−H(T (x∗), Tn(x∗))

≥ β − 2δn ≥
β

2
.

Thus, deg(T − T̃n, Di, 0) is well defined for n ≥ N0, i = 1, 2.
Now, for each n ≥ N0, we consider the homotopy

Hnλ(x) = Hn(x, λ) = λT̃n(x) + (1− λ)T (x), x ∈ D, λ ∈ [0, 1].
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T̃n and T are condensing maps and Hn(0, λ) is a convex combination of two
maps, so it is also a condensing map. Indeed, let A ⊂ D and γ(A) > 0 and
γ(Hn(A× [0, 1])) ≥ γ(A). We have Hn(A× [0, 1]) ⊂ c̄o(T̃n(A) ∪ T (A)), so

γ(A) ≤ γ(Hn(A× [0, 1])) ≤ γ(c̄o(T̃n(A) ∪ T (A)))

= γ(T̃n(A) ∪ T (A)) = max{γ(T̃n(A)), γ(T (A))}.

Therefore, γ(T̃n(A)) ≥ γ(A) or γ(T (A)) ≥ γ(A). But T̃n and T are condensing
maps which implies that γ(A) = 0, then Hn(0, λ) on D× [0, 1] is also a condensing
map.

Now, we show that d(x,Hn(x, λ)) > 0 for each x ∈ D́ and n ≥ N0. First, we
take ε > 0 such that Nε(F ) ⊂ D1 ∪D2 and for each n ≥ N0, we consider

Un = {x ∈ D : x ∈ λT̃n(x) + (1− λ)T (x) for some λ ∈ [0, 1]}.

We prove that the set Un is belong to an ε−neighbourhood of F. We assume
that it is not true. Then, for each m ∈ N, there exists xm ∈ Un such that
xm ∈ 1

m T̃n(xm) + (1 − 1
m )T (xm) and xm /∈ Nε(F ). Thus, for any z ∈ F we

have d(xm, z) > ε. There exist wm ∈ T̃n(xm) and vn ∈ T (xm) such that xm =
1
mwm+(1− 1

m )vm. Therefore, ‖xm−vm‖ = 1
m‖wm−vm‖ converges to 0. Since T is

demicompact, then there exists subsequence (xmk
) of (xm) such that it converges

to x ∈ F, that is a contradiction. Thus for each n ≥ N0, Un ⊂ Nδ(F ) and for each
x ∈ D́ ⊂ (Nδ(F ))c we have x /∈ λT̃n(x) + (1− λ)T (x).

Thus for each n ≥ N0, i = 1, 2, we have

deg(I − T,Di, 0) = deg(I − T̃n, Di, 0).

Let x∗ ∈ F1 ⊂ D1 and n ≥ N0, from definition of T̃n in (3), we have x∗ ∈ T̃n(x∗)
and x∗ is only fixed point of T̃n. Indeed, since x∗n ∈ Tn(x∗), then x∗ ∈ T̃n(x∗), so x∗
satisfies the equation x ∈ T̃n(x) + x∗ + x∗n and H(T (x∗), Tn(x∗n)) ≤ δn, therefore,
condition (b) implies that x∗ is only fixed point of T̃n. Hence, T̃n has not fixed
point onD2, so deg(I−T̃n, D2, 0) = 0, i.e., deg(I−T,D2, 0) = 0. Similarly, suppose
that x∗ ∈ F2 ⊂ D2. By the same argument, we have deg(I −T,D2, 0) = 0. This is
contradiction, so F (T ) is connected and thus is a continuum.

Now we prove a generalization of the Krasnosel’skii-Perov connectedness prin-
ciple to the case of condensing set-valued maps.

Theorem 2.2. Let D be a bounded open subset of a Banach space X and T :
D ( X be an upper semicontinuous condensing set-valued map with compact
convex valued such that deg(I − T,D, 0) 6= 0. Assume that for any ε > 0 and any
point x1 ∈ F (T ) there exists a single-valued condensing map fε,x1 : D → X such
that:

(i) the set Xε,x1
= {x ∈ D : x ∈ λT (x) + (1 − λ)fε,x1

(x) for some λ ∈ [0, 1]}
belongs to the ε−neighbourhood of F (T );
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(ii) the map fε,x1
has a connected set Fε,x1

of fixed points;

(iii) there exists a point y ∈ Fε,x1
such that ‖y − x1‖ ≤ ε,

where Fε,x1
is a set of fixed point of the function fε,x1

. Then the set F (T ) is a
continuum.

Proof. Since deg(I − T,D, 0) 6= 0, then (1) of Theorem 1.5 implies T has a fixed
point, so F (T ) 6= ∅. Furthermore, since F (T ) ⊂ T (F (T )) and T is a condensing
map, then F (T ) is compact. Thus, it remains to show that F (T ) is connected.
Assume that F = F(T) is not connected. Hence, there exist two nonempty disjoint
closed subsets F1 and F2 of D such that F = F1 ∪ F2 and F1 ∩ F2 = ∅. Let ε > 0
be such that Nε(F1) ∩Nε(F2) = ∅ and Nε(F1) ∪Nε(F2) ⊂ D. By (3) of Theorem
1.5,

deg(I − T,D, 0) = deg(I − T,Nε(F1), 0) + deg(I − T,Nε(F2), 0).

Consequently, one of the numbers d1 = deg(I − T,Nε(F1), 0) and d2 = deg(I −
T,Nε(F2), 0) is non-zero. Suppose that d1 6= 0. We consider an arbitrary point
x1 ∈ F2 and a map fε,x1 satisfying the condition of the theorem. The set-valued
compact vector fields I − T and I − fε,x1

are linearly homotopic on the Nε(F1),
indeed, the set Xε,x1

lies in Nε(F ) = Nε(F1) ∪Nε(F2), then

deg(I − T,Nε(F1), 0) = deg(I − fε,x1
, Nε(F2), 0) 6= 0,

then fε,x1
has a fixed point in Nε(F1). We deduced that Fε,x1

∩Nε(F1) 6= ∅. By a
condition of the theorem, we have Fε,x1

∩Nε(F1) 6= ∅. Since

Fε,x1
⊂ Xε,x1

⊂ (Nε(F1) ∪Nε(F2)),

the set Fε,x1
is disconnected and that is contradiction.

Theorem 2.3. Let D be a bounded open subset of a Banach space X, and T :
D ( X be an upper semicontinuous condensing set-valued mapping with compact
convex valued such that deg(I − T,D, 0) 6= 0. Assume that for any δ > 0 and any
point x1 ∈ F (T ) there exists a single-valued condensing map fδ,x1

: D → X such
that:

(i) fδ,x1 is a δ−approximation of T ;

(ii) the map fδ,x1 has a connected set Fδ,x1 of fixed points;

(iii) there exists a point y ∈ Fδ,x1
such that ‖y − x1‖ ≤ δ.

Then, the set F (T ) is a continuum.

Proof. By a similar proof as that of Theorem 2.2, F (T ) is non-empty and compact.
We show that for any ε > 0 there is a δ > 0 such that the map fδ,x1

satisfies the
condition of Theorem 2.2.
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Let ε > 0 and we set β = inf{d(x, T (x)) : x ∈ D \ Nε(F (T ))}. Since T is
compact valued and demicompact, then β > 0. Indeed, if β = 0, for each n ∈ N,
then there exists xn ∈ D \ Nε(F (T )) such that d(xn, T (xn)) ≤ 1

n . Since T is
demicompact, then there exists subsequence (xnk

) of (xn) such that it converges
to x ∈ D́. Also T (x) is closed then x ∈ T (x) and that is a contradiction. Thus, for
each x ∈ D \Nε(F (T )),

d(x, T (x)) ≥ β. (4)

We take δ > 0 such that δ < min(ε, β2 ). We prove that the map fδ,x1
satisfies

all condition of Theorem 2.2. Clearly, fδ,x1
satisfies the conditions (i) and (ii) of

Theorem 2.2. We set

Xδ,x1
= {x ∈ D : x ∈ λT (x) + (1− λ)fδ,x1

(x) for some λ ∈ [0, 1]}.

We prove that the set Xδ,x1
is belong to a δ−neighbourhood of F. We assume

that it is not true. Then, for each n ∈ N, there exists xn ∈ Xδ,x1
such that

xn ∈ 1
n T̃ (xn) + (1− 1

n )fδ,x1(xn) and xn /∈ Nδ(F (T )). Thus, for any z ∈ F (T ) we
have d(xn, z) > δ. There exists wn ∈ T̃ (xn) such that xn = 1

nwn+(1− 1
n )fδ,x1(xn).

Therefore, ‖xn − fδ,x1(xn))‖ = 1
n‖wn − fδ,x1(xn)‖ converges to 0. Since fδ,x1 is

demicompact, then there exists subsequence (xnk
) of (xn) such that it is converges

to x = fδ,x1
. But fδ,x1

is a δ−approximation of T so (x, x) ∈ Uδ(ΓX(T )), thus
x ∈ Nδ(F (T )) and that is a contradiction. Therefore, fδ,x1

satisfies the condition
of Theorem 2.2 and F (T ) is connected.

Corollary 2.4. Let D be a bounded open subset of a Banach space X and T :
D ( X be an upper semicontinuous condensing set-valued mapping with compact
convex valued such that deg(I − T,D, 0) 6= 0. Suppose that T is a non-expansive
map. Then F (T ) is a continuum.

Proof. By Lemma 2.9 of [7], for any δ > 0 and any point x1 ∈ F (T ), there
exists a single-valued map fδ,x1 that is δ−approximation of T and satisfies the
conditions (ii) and (iii) of Theorem 2.3. Since T is a condensing map, then fδ,x1

is a condensing map. Therefore, by Theorem 2.3, the set F (T ) is continuum.
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