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Abraham A. Ungar’s Autobiography

Abraham A. Ungar*

Abstract

This autobiography presents the scientific living of Abraham Ungar and
his role in Gyrogroups and Gyrovector spaces.

Keywords: Gyrogroup, Gyrovector space.

2010 Mathematics Subject Classification: Primary 20E07; Secondary 20N05,
20B35.

Figure 1: Abraham Ungar at 2016.

Abraham Ungar is professor in the Department of Mathematics at North
Dakota State University. After gaining his B.Sc. (1965) and M.Sc. (1967) from

*Corresponding author (E-mail: abraham.ungar@ndsu.edu)
Academic Editor: Ali Reza Ashrafi
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2 A. A. Ungar

the Hebrew University in Pure Mathematics and Ph.D. (1973) from Tel-Aviv Uni-
versity in Applied Mathematics, he held a postdoctoral position at the University
of Toronto (1974). Ungar moved from Toronto to Pretoria where he held the
position of a senior research officer at the National Research Institute for Math-
ematical Sciences of the Council for Scientific and Industrial Research (CSIR) in
1975-1977. From Pretoria Ungar moved to Grahamstown, South Africa, where he
held the position of a lecturer and a senior lecturer at Rhodes University (1978-
1983). From Grahamstown Ungar moved to Vancouver, where he held the position
of a visiting associate professor at Simon Fraser University (1983-1984). Finally,
in 1984 Ungar has accepted the position of an associate professor at North Dakota
State University in Fargo, North Dakota, where he presently holds the position of
a professor.

Ungar’s favored research areas are related to hyperbolic geometry and its ap-
plications in relativity physics. He currently serves on the editorial boards of
Mathematics Interdisciplinary Research, of Journal of Geometry and Symmetry in
Physics, and of Communications in Applied Geometry.

When Ungar was a young, undergraduate student he was fascinated by the
bijective correspondence between the field of complex numbers and the Lorentz
transformation group of special relativity theory in one time and one space di-
mensions. He was aware of the result that the field of complex numbers does not
admit extension to a field of higher than two dimensions while, in contrast, the
Lorentz group admits extensions to one time and several space dimensions. Un-
gar, therefore, felt that the transition of the Lorentz group from one time and one
space dimensions, where it is closely related to the field of complex numbers, to
one time and two space dimensions is a mystery to be conquered. Hence, later
young student Ungar was not surprised to discover in the literature that a new
phenomenon comes into play in the above mentioned transition of the Lorentz
group. The new phenomenon, which deeply attracted Ungar’s attention, turned
out to be the peculiar space rotation known in special relativity theory as Thomas
precession.

Naturally, many explorers were fascinated by the relativistic Thomas preces-
sion. However, the elegant structure that Thomas precession encodes could not
be decoded for a long time, being locked by complexity. Indeed, the hopeless
status of Thomas precession that existed before Ungar’s 1988 discovery is well
described by Herbert Goldstein in his book Classical Mechanics (Addison-Wesley,
1980, pp. 285-286):

The decomposition process can be carried through on the product
of two pure Lorentz transformations to obtain explicitly the [Thomas]
rotation of the coordinate axes resulting from the two successive boosts.
In general, the algebra involved [in calculating the Thomas rotation] is
quite forbidding, more than enough, usually, to discourage any actual
demonstration of the rotation matrix. There is, however, one specific
situation where allowable approximations reduce the calculational com-
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plexity, while the result obtained has important applications in many
areas of modern physics. What is involved is a phenomenon known as
the Thomas precession.

Herbert Goldstein, Classical Mechanics

In 1988 Ungar expressed the Lorentz group parametrically in terms of rela-
tivistically admissible velocities and orientations in an article titled Thomas Ro-
tation and the Parametrization of the Lorentz Transformation Group. The group
structure of the resulting parametric realization of the Lorentz group, along with
Einstein velocity addition law, enabled Ungar to discover the rich structure that
Thomas precession possesses in terms of Einstein addition.

Revealing its underlying structure, Ungar was able to extend Thomas preces-
sion by abstraction, calling the abstract Thomas precessions gyrations. It turned
out that gyrations are automorphisms that regulate Einstein addition in the sense
that the seemingly structureless, noncommutative, nonassociative Einstein addi-
tion is, in fact, a gyrocommutative, gyroassociative binary operation in a gyro-
commutative gyrogroup and in a gyrovector space. The ugly duckling of relativity
physics, Thomas precession, thus became the beautiful swan called, in gyrolan-
guage, gyration.

The resulting emergence of the gyrogroup and the gyrovector space structures,
along with their application in the hyperbolic geometry of Lobachevsky and Bolyai
and in the special relativity theory of Einstein, is unfolded by Ungar in the follow-
ing expository article titled:

The Intrinsic Beauty, Harmony and
Interdisciplinarity

in Einstein Velocity Addition Law:

Gyrogroups and Gyrovector Spaces.

Yet, the rich structure of Einstein addition and the interdisciplinarity of gy-
rogroups and gyrovector spaces that Ungar has exposed is still far from being
exhausted, as the articles of the present special issue of the Journal demonstrate.

Abraham A. Ungar

Department of Mathematics,
North Dakota State University,
Fargo, ND 58108-6050, USA
E-mail: Abraham.Ungar@ndsu.edu
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The Intrinsic Beauty, Harmony
and Interdisciplinarity in
Einstein Velocity Addition Law:

Gyrogroups and Gyrovector Spaces

Abraham A. Ungar*

Abstract

The only justification for the Einstein velocity addition law appeared
to be its empirical adequacy, so that the intrinsic beauty and harmony in
FEinstein addition remained for a long time a mystery to be conquered. Ac-
cordingly, the aim of this expository article is to present (i) the Einstein
relativistic vector addition, (ii) the resulting Einstein scalar multiplication,
(iii) the Einstein relativistic mass, and (iv) the Einstein relativistic kinetic
energy, along with remarkable analogies with classical results in groups and
vector spaces that these Einstein concepts capture in gyrogroups and gy-
rovector spaces. Making the unfamiliar familiar, these analogies uncover the
intrinsic beauty and harmony in the underlying Einstein velocity addition
law of relativistically admissible velocities, as well as its interdisciplinarity.

Keywords: Einstein addition, gyrogroup, gyrovector space, hyperbolic geom-
etry, special relativity.

2010 Mathematics Subject Classification: 20N05, 51P05, 83A05.

1. Introduction

A major obstacle to the widespread adoption of hyperbolic geometry is its com-
plexity, which contrasts the simplicity of Euclidean geometry. Hence, the mere
mention of hyperbolic geometry is enough to strike fear in the heart of the under-
graduate mathematics and physics student. Some regard themselves as excluded
from the profound insights of hyperbolic geometry so that this enormous portion of

*Corresponding author (E-mail: abraham.ungar@ndsu.edu)
Academic Editor: Ali Reza Ashrafi
Received 22 January 2016, Accepted 1 March 2016
DOI: 10.22052/mir.2016.13636
(© 2016 University of Kashan
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human achievement is a closed door to them. However, Einstein velocity addition
law of relativistically admissible velocities opens that door, making the hyperbolic
geometry of Lobachevsky and Bolyai accessible to a wider audience in terms of
novel analogies that the modern and unknown share with the classical and familiar.

Einstein velocity addition law gives rise to a binary operation in the ball of
relativistically admissible velocities, called Einstein addition. The intrinsic beauty
and harmony in Einstein addition has several features, one of which is the gy-
rogroup isomorphism relation it shares with Mobius addition that results from the
Mbobius transformation of the complex disk. Einstein introduced the relativistic
velocity addition law in his 1905 paper [17] that founded the special relativity the-
ory. The only justification for the Einstein velocity addition law appeared to be its
empirical adequacy, so that the intrinsic beauty and harmony in Einstein addition
remained for a long time a mystery to be conquered. The discovery of the intrinsic
beauty and harmony in Einstein addition is an ongoing process initiated in 1988 by
the discovery of the parametric realization of the Lorentz transformation group in
pseudo-Euclidean spaces of signature (1,n), n € N in [54], resulting in many arti-
cles as well as seven related books [60,64,67,69,71,72,79], [39,40,83]. Recently, the
parametric realization of Lorentz groups has been extended to pseudo-Euclidean
spaces of any signature (m,n), m,n € N in [80].

Most texts on special relativity, with a few outstanding exceptions including [3],
[24], and [41,42], present the Einstein velocity addition only for parallel velocities.
In this simplified special case Einstein velocity addition is both commutative and
associative. In general, however, Einstein addition of velocities that need not be
parallel is neither commutative nor associative.

Einstein velocity addition law gives rise to a binary operation &, called Einstein
addition, in the ball of all relativistically admissible velocities. Einstein addition,
in turn, gives rise to the Einstein scalar multiplication ®. Einstein addition and
scalar multiplication give rise to hyperbolic vector spaces called gyrovector spaces.
Applications of gyrogroups and gyrovector spaces are presented in many publica-
tions as, for instance, in [60,64,67,69,71,72,79] and in [4-7,38,44], [15,16], [19],
[20-23], [48-52], [27], [37], [46], [81], [29] and [1,25]. Evidently, gyrovector spaces
form the algebraic setting for analytic hyperbolic geometry, just as vector spaces
form the algebraic setting for analytic Euclidean geometry.

One of the remarkable analogies that Einstein scalar multiplication captures
in Einstein’s special theory of relativity is the novel analogy that classical and
relativistic kinetic energy share, presented in Section 11. This analogy, in turn,
augments the standard analogies that the classical, Newtonian mass shares with
the Einstein relativistic, velocity dependent mass [73]. Being noncommutative
and nonassociative, initially Einstein addition was viewed as a structureless binary
operation. The subsequent discovery of the rich gyrostructure and the interdis-
ciplinarity that Einstein addition possesses results in the emergence of intrinsic
beauty and harmony that underlies Einstein addition, as evidenced from this ar-
ticle.
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2. Einstein Addition

Let ¢ > 0 be an arbitrarily fixed positive constant and let R” = (R™, 4+, ) be the
Euclidean n-space, n € N, equipped with the common vector addition, +, and
inner product, -. The home of all n-dimensional Einsteinian velocities is the c-ball

R ={veR":|v[<c} (1)

of its ambient space R™. The c-ball R is the open ball of radius c, centered at the
origin of R™, consisting of all vectors v in R™ with magnitude ||v|| smaller than c.

Einstein velocity addition is a binary operation, @, in the c-ball R} given by
the equation [60], [42, Eq. 2.9.2], [34, p. 55], [24],

1 1 1 7
udbv = @ {U. + zv + 6_2 1t o (ll'V)U.} s (2)
C

for all u,v € R}. Here 7, is the Lorentz gamma factor given by the equation

1

Vv = —TF—=>
[_IMP
c2

where u-v and ||v|| are the inner product and the norm in the ball, which the ball
R” inherits from its ambient space R", ||v||? = v-v. A nonempty set with a binary
operation is called a groupoid so that, accordingly, the pair (R?, @) is an Einstein
groupoid.

In the Newtonian limit of large ¢, ¢ — oo, the ball R expands to the whole of
its ambient space R™, as we see from (1), and Einstein addition & in R” reduces
to the ordinary vector addition + in R™, as we see from (2) and (3).

When the nonzero vectors u and v in the ball R} of R™ are parallel in R"”,
ul|v, that is, u = Av for some A € R, A # 0, Einstein addition (2) specializes to
the Einstein addition of parallel velocities,

(3)

udpv = 71., l,l.HV7 (4)

which was partially confirmed experimentally by the Fizeau’s 1851 experiment [33].

The restricted Finstein addition in (4) is both commutative and associative.
Accordingly, the restricted Einstein addition is a commutative group operation,
as Einstein noted in [17]; see [18, p. 142]. In contrast, Einstein made no remark
about group properties of his addition (2) of velocities that need not be parallel.
Indeed, the general Einstein addition is not a group operation but, rather, a gy-
rocommutative gyrogroup operation, a structure discovered more than 80 years
later, in 1988 [54,55,58], formally defined in Section 4.

In physical applications, R™ = R? is the Euclidean 3-space, which is the space
of all classical, Newtonian velocities, and R? = R? C R? is the c-ball of R?® of
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all relativistically admissible, Einsteinian velocities. The constant ¢ represents in
physical applications the vacuum speed of light. Since we are interested in both
physics and geometry, we allow n to be any positive integer.

Einstein addition (2) of relativistically admissible velocities, with n = 3, was
introduced by Einstein in his 1905 paper [17] [18, p. 141] that founded the special
theory of relativity, where the magnitudes of the two sides of Einstein addition
(2) are presented. One has to remember here that the Euclidean 3-vector algebra
was not so widely known in 1905 and, consequently, was not used by Einstein.
Einstein calculated in [17] the behavior of the velocity components parallel and
orthogonal to the relative velocity between inertial systems, which is as close as one
can get without vectors to the vectorial version (2) of Einstein addition. Einstein
was aware of the nonassociativity of his velocity addition law of relativistically
admissible velocities that need not be collinear. He therefore emphasized in his
1905 paper that his velocity addition law of relativistically admissible collinear
velocities forms a group operation [17, p. 907].

We naturally use the abbreviation uev = u®(—v) for Einstein subtraction, so
that, for instance, vov = 0 and

ov=0ov=-v. (5)
Einstein addition and subtraction satisfy the equations
o(udv) = cuev (6)
and
oud(udv) =v (7)

for all u,v in the ball R?, in full analogy with vector addition and subtraction
in R™. Identity (6) is called the gyroautomorphic inverse property of Einstein
addition, and Identity (7) is called the left cancellation law of Einstein addition.
We may note that Einstein addition does not obey the naive right counterpart of
the left cancellation law (7) since, in general,

(upv)ov £ u. (8)

However, this seemingly lack of a right cancellation law of Einstein addition is
naturally remedied in (29) - (30), p. 14.
Einstein addition and the gamma factor are related by the gamma identity,

u-v
,YuEBv = ,Yu’yv (1 + C—Q) (9)
for all u,v € R7.
A frequently used identity that follows immediately from (3) is
2

c2

V242

2 2

3z (10)
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Einstein addition is noncommutative. Indeed, while Einstein addition is com-
mutative under the norm,
[udv]| = [lveul, (11)

in general,
udv # vou, (12)

u,v € R?. Moreover, Einstein addition is also nonassociative since, in general,
(uev)aw # us(vaw), (13)

u,v,w € RZ.
As an application of the gamma identity (9), we prove the Einstein gyrotriangle
inequality (14).

Theorem 2.1. (The Gyrotriangle Inequality).
[aev] < [[uf&]v] (14)
for all u,v in an Einstein gyrogroup (RZ,®).

Proof. By the gamma identity (9) with u and v replaced by ||ul| and |v||, and by
the Cauchy-Schwarz inequality [32], we have

_ 1 4 vl
Tal@lvi = Tav 2

u-v
= (14 75) (15)
= ’YU@V
R

for all u,v in an Einstein gyrogroup (R”,®). But 7, = Vx| is a monotonically
increasing function of ||x||, 0 < ||x|| < ¢. Hence (15) implies (14). O

3. Einstein Addition Vs. Vector Addition

Vector addition, +, in R™ is both commutative and associative, satisfying

ut+v=v+u Commutative Law
ut+(v+w)=(u+v)+w Associative Law
(16)

for all u,v,w € R". In contrast, Einstein addition, @, in R is neither commu-
tative nor associative. Rather, Einstein addition is both gyrocommutative and
gyroassociative, as stated in (19) below.
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In order to measure the extent to which Einstein addition deviates from as-
sociativity we introduce gyrations, which are self maps of R™ that are trivial in
the special cases when the application of @ is associative. For any u,v € R} the
gyration gyr[u, v] is a map of the Einstein groupoid (R?, @) onto itself. Gyrations
gyr[u,v] € Aut(R?, @), u,v € R?, are defined in terms of Einstein addition by
the equation

gyr[u, vjw = S(udv)e{us(vow)} (17)
for all u,v,w € R?, and they turn out to be automorphisms of the Einstein
groupoid (RC ,®), gyr[u, v] : R? — RZ.

We recall that an automorphism of a groupoid (.9, @) is a one-to-one map f of S
onto itself that respects the binary operation, that is, f(a®b) = f(a)®f(b) for all
a,b € S. The set of all automorphisms of a groupoid (S, ®) forms a group, under
automorphism composition, denoted Aut(S,®). To emphasize that the gyrations
of an Einstein gyrogroup (R”,®) are automorphisms of the gyrogroup, gyrations
are also called gyroautomorphisms.

A gyration gyr[u,v], u,v € R%, is trivial if gyr[u,vl]w = w for all w € RZ.
Thus, for instance, the gyrations gyr[0, v], gyr[v, v] and gyr[v, ©v] are trivial, that
is,

gyr[0,v] = gyr[v,0] = I
gyr[v, @V] = gyr[@V, V] =1 (18)
gyr[v,v] =1

for all v € R?, I being the identity map, as we see from (17) and (7).

Einstein gyrations, which possess their own rich structure, measure the extent
to which Einstein addition deviates from commutativity and from associativity.
We see this from the gyrocommutative and the gyroassociative laws of Einstein
addition in the following list of elegant identities that involve Einstein addition,
@, and gyrations [60,64,67]. For all u,v,w € R?,

udv = gyrfu, vl(vhu) Gyrocommutative Law
ud(vow) = (udv)dgyru, viw Left Gyroassociative Law
(upv)ew = ud(vegyr[v, ulw) Right Gyroassociative Law

gyrjud®v, v] = gyr[u, v] Gyration Left Reduction Property
gyr[u, véu] = gyr|[u, Gyration Right Reduction Property
gyr[©u, &v] = gyru
[v

v]
u, V] Gyration Even Property
(gyr[u, v])™! = gyrlv, u]

, Gyration Inversion Law

(19)

Einstein addition is thus regulated by the gyrations to which it gives rise owing
to its nonassociativity. As such, Einstein addition and its gyrations are inextri-
cably linked. The resulting gyrocommutative gyrogroup structure of Einstein ad-
dition was discovered in 1988 [54]. Interestingly, gyrations are the mathematical
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abstraction of the relativistic phenomenon known as Thomas precession [67, Sec-
tion 10.3] [74] [79, Chapter 13]. Thomas precession, in turn, is related to the
mized state geometric phase, as Lévay discovered in his work [30] which, according
to [30], was motivated by the author work in [61,62].

The left and right reduction properties in (19) present important gyration iden-
tities since they trigger a remarkable reduction in complexity, as Chatelin noted
in [11]. These two gyration identities are, however, just the tip of a giant iceberg.
The identities in (19) and many other useful gyration identities are studied, for
instance, in [60,64,67,69,71,72,79].

4. From Einstein Addition to Gyrogroups

Taking the key features of Einstein groupoids (RZ,®), n € N, as axioms, and
guided by analogies with groups, we are led to the following formal gyrogroup
definition in which gyrogroups turn out to form a most natural generalization of
groups.

Definition 4.1. (Gyrogroups [67, p. 17]). A groupoid (G,®) is a gyrogroup
if its binary operation satisfies the following axioms. In G there is at least one
element, 0, called a left identity, satisfying

(G1) 0Ga=a

for all a € G. There is an element 0 € G satisfying axiom (G1) such that for each
a € G there is an element ©a € G, called a left inverse of a, satisfying

(G2) ©ada =0.

Moreover, for any a,b,c € G there exists a unique element gyr[a,blc € G such that
the binary operation obeys the left gyroassociative law

(G3) a®(bdc) = (adb)dgyr|a, blc.

The map gyr[a,b] : G — G given by ¢ — gyr[a,blc is an automorphism of the
groupoid (G, ®), that is,

(G4) gyrla,b] € Aut(G, @),

and the automorphism gyrla,b] of G is called the gyroautomorphism, or the gy-
ration, of G generated by a,b € G. The operator gyr : G x G — Aut(G,®) is
called the gyrator of G. Finally, the gyroautomorphism gyr[a,b] generated by any
a,b € G possesses the left reduction property

(G5) gyrla, b] = gyr[a®b, b].

The gyrogroup axioms (G1)—(G5) in Definition 4.1 are classified into three
classes:

1. The first pair of axioms, (G1) and (G2), is a reminiscent of the group axioms.
2. The last pair of axioms, (G4) and (G5), presents the gyrator axioms.

3. The middle axiom, (G3), is a hybrid axiom linking the two pairs of axioms
in (1) and (2).



12 A. A. Ungar
- - -]

As in group theory, we use the notation a©b = a®(©b) in gyrogroup theory as
well. In full analogy with groups, gyrogroups split up into gyrocommutative and
non-gyrocommutative gyrogroups.

Definition 4.2. (Gyrocommutative Gyrogroups). A gyrogroup (G,®) is
gyrocommutative if its binary operation obeys the gyrocommutative law

(G6) a®b=gyr[a,b|(bDa)

for all a,b € G.

First gyrogroup properties are studied in [72, Chapter 1], and more gyrogroup
theorems are studied in [60,64,67]. Thus, for instance, as in group theory, any
gyrogroup possesses a unique identity element, which is both left and right, and
any element of a gyrogroup possesses a unique inverse, which is both left and right.

In order to illustrate the power and elegance of the gyrogroup structure, we
solve below the two basic gyrogroup equations (20) and (27).

Let us consider the gyrogroup equation

adx=Db (20)

in a gyrogroup (G, ®) for the unknown x. If x exists, then by the right gyroasso-
ciative law (19) we have

x = 0px
= (cada)dx
= cad(adgyrla, ©alx) (21)
= 6ad(adx)
= cadb,

noting that gyr[a, ©al is trivial by (18).
Thus, if a solution to (20) exists, it must be given uniquely by

x = cadb. (22)

Conversely, if x = ©a®db, then x is indeed a solution to (20) since by the left
gyroassociative law and (18) we have

adx = a®(Cadb)
— (ae(ca))@gyrla, Salb
= 0&b
=b.

(23)

Substituting the solution (22) into its equation (20) and replacing a by ©a we
recover the left cancellation law (7) for Einstein addition,

cad(adb) =b. (24)
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The gyrogroup operation (or, addition) of any gyrogroup has an associated
dual operation, called the gyrogroup cooperation (or, coaddition), which is defined
below.

Definition 4.3. (The Gyrogroup Cooperation (Coaddition)). Let (G, ®) be
a gyrogroup with gyrogroup operation (or, addition) ®. The gyrogroup cooperation
(or, coaddition) B is a second binary operation in G given by the equation

aHb = adgyr[a, Sblb (25)
for all a,b € G.

Replacing b by &b in (25) we have the cosubtraction identity
aHb:=aH (6Sb) = acgyr[a,blb (26)

for all a,b € @G, noting that gyr[a,b] is an automorphism of (G,®) so that
gyr[a, b](©b) = &gyr[a, b]b.

To motivate the introduction of the gyrogroup cooperation and to illustrate
the use of the left reduction property in (19), we solve the equation

xPa=D>b (27)

for the unknown x in a gyrogroup (G, ®).

Equation (27) results from (20) by interchanging a and x. Surprisingly, how-
ever, the solution of (27) is quite different from the solution of (20), suggesting the
introduction of the second binary operation, the cooperation H in G. We will find
that Einstein coaddition, B, proves crucially important (i) in the understanding
of Einstein addition, @, in R} in terms of analogies with vector addition in R",
and (ii) in our mission to capture analogies with classical results.

Assuming that a solution x to (27) exists, we have the following obvious chain
of equations

x = x®0
=x®(aca)
— (xaa)ogyrx, al(ca)
— (x®a)ogyrlx, ala (28)
= (x@a)ogyr[xPa, ala
= bogyr[b, ala
=bHa.

The gyrogroup cosubtraction, (26), comes into play in (28) in order to capture an
analogy with the classical result x +a = b = x = b — a. Thus, if a solution
x to the gyrogroup equation (27) exists, it must be given uniquely by (28). One
can show that the latter is indeed a solution to (27) [67, Section 2.4]. The use of
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the gyration left reduction property in (28) indicates the remarkable reduction of
complexity that this property offers.

The gyrogroup cooperation is introduced into gyrogroups in order to capture
useful analogies between gyrogroups and groups, and it results in the emergence of
duality symmetries that the two gyrogroup operations, @ and H, share. Thus, for
instance, the gyrogroup cooperation uncovers the seemingly missing right coun-
terpart of the left cancellation law (7), giving rise to the right cancellation law,

(bBa)da=Db (29)

for all a,b € G, which is obtained by substituting the result of (28) into (27).
Remarkably, the right cancellation law (29) can be dualized, giving rise to the
dual right cancellation law
(bca)Ba=Db. (30)

As an example, and for later reference, we note that it follows from the right
cancellation law (29) that

d=(bHBc)oa — bHc=dHa (31)

for a, b, c,d in any gyrocommutative gyrogroup (G, ®).
An elegant gyrocommutative gyrogroup identity that involves the gyrogroup
cooperation, verified in [67, Theorem 3.12], is

ad(bda) = al (adb). (32)

5. Emile Borel’s Dream Comes True

It is not well-known that the famous mathematician Emile Borel was interested in
Einstein’s special theory of relativity, particularly in the relativistic phenomenon
known as Thomas precession [79, Chapter 13| and in Einstein addition. Being
noncommutative, Emile Borel considered Einstein addition as “defective”. He,
therefore, proposed an alternative, commutative addition of relativistically admis-
sible velocities.

The gyrocommutative law of Einstein velocity addition was already known
to Silberstein in 1914 [43] in the following sense: According to his 1914 book,
Silberstein knew that the Thomas precession generated by u, v € R? is the unique
rotation that takes vu into u®v about an axis perpendicular to the plane of
u and v through an angle < 7 in R3, thus giving rise to the gyrocommutative
law. However, obviously, Silberstein did not use the terms “Thomas precession”
and “gyrocommutative law”. These terms have been coined later, respectively, (i)
following Thomas’ 1926 paper [53], and (ii) in 1991 [58,59], following the discovery
of the accompanying gyroassociative law of Einstein addition in 1988 [54,55].

A description of the 3-space rotation, which since 1926 is named after Thomas,
is found in Silberstein’s 1914 book [43]. In 1914 Thomas precession did not have
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a name, and Silberstein called it in his 1914 book a “certain space-rotation” [43,
p. 169]. An early study of Thomas precession, made by Emile Borel in 1913, is
described in his 1914 book [10] and, more recently, in [47].

The almost forgotten attempt of Emile Borel to “repair” the seemingly “defec-
tive” Einstein’s velocity addition law in the years following 1912 is described by
Walter in [82, p. 117]:

“Borel could construct a tetrahedron in kinematic space, and deter-
mined thereby both the direction and magnitude of relative [composite]
velocity in a symmetric [commutative] manner.”

Borel has, thus, “repaired” the breakdown of commutativity in Einstein addition
by proposing an alternative, commutative addition. But he did not pay attention
to the accompanying breakdown of associativity in Einstein addition. Accordingly,
it seemed appropriate to consider the Lorentz transformation group, rather than
the groupoid of Einstein addition, as a primitive notion of special relativity [63].

It turns out that Einstein coaddition is commutative. Hence. Emile Borel’s
dream to construct a viable commutative relativistic velocity addition comes true
with the discovery of Einstein coaddition, H. Unlike Borel’s commutative addition,
the commutative Einstein coaddition does not replace Einstein addition. Rather,
it captures analogies with classical results jointly with Einstein addition, as the
study of the Einstein gyroparallelogram addition law in Section 6 reveals.

A gyrogroup cooperation is commutative if and only if its associated gyrogroup
operation is gyrocommutative [64, Theorem 3.4] [67, Theorem 3.4]. Hence, in
particular, Einstein coaddition is commutative. Indeed, Einstein coaddition, H, in
an Einstein gyrogroup (R?, @), abstractly defined in (25), can be manipulated in
Einstein gyrogroups, obtaining the following chain of equations [67, Eq. (3.195)],

Yu T Vv

ulBv= ‘
Tatw w1+ 5

71 (au+ V)

= 7‘5 A (Vau + V)
(7u + r)/v) - (’Yu@v + 1)

YU+ 7V
Yu T Vv

Yult T WV
2+(7u71)+(7v71)

u,v € R?, demonstrating that the cooperation H in Einstein gyrogroups (R?, @)
is commutative.

The symbol ® in (33) represents the Einstein scalar multiplication so that, for
instance, 2@v = v@v, for all v in a gyrogroup (G, ®), as explained in Section 9.
It turns out that Einstein coaddition H is more than just a commutative binary
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operation in the ball. Remarkably, jointly with Einstein addition, @, Einstein
coaddition, H, gives rise to the hyperbolic parallelogram addition law in the ball.
The latter is explained in Section 6 and illustrated in Figure 2.

6. From Parallelograms to Gyroparallelograms

Elements of a real inner product space V = (V,+,-), called points and denoted
by capital italic letters, A, B, P, Q, etc, give rise to vectors in V, denoted by bold
roman lowercase letters u, v, etc. Any two ordered points P, Q € V give rise to a
unique rooted vector v € V, rooted at the point P. It has a tail at the point P
and a head at the point (), and it has the value —P + @,

v=—-P+Q. (34)

The length of the rooted vector v = —P + @ is the distance between the points P
and @, given by the equation

vl =1 -P+@Ql- (35)

Two rooted vectors —P + @ and —R + S are equivalent if they have the same
value, that is,

-P+Q ~ —R+S if and only if -P+Q=-R+S (36)

The relation ~ in (36) between rooted vectors is reflexive, symmetric and transi-
tive, so that it is an equivalence relation that gives rise to equivalence classes of
rooted vectors. To liberate rooted vectors from their roots we define a vector to be
an equivalence class of rooted vectors. The vector —P + @ is thus a representative
of all rooted vectors with value —P + Q.

A point P € V is identified with the vector —O + P, O being the arbitrarily
selected origin of the space V. Hence, the algebra of vectors can be applied to
points as well. Naturally, geometric and physical properties regulated by a vector
space are origin independent, that is, independent of the choice of the origin.

Let A, B,C €V be three non-collinear points, and let

— _A+B
" (37)
v=—-A+C

be two vectors in V that possess the same tail, A. Furthermore, let D be a point
of V given by the parallelogram condition

D=B+C-A. (38)

The quadrangle (also known as a quadrilateral; see [13, p. 52]) ABDC turns
out to be a parallelogram in Euclidean geometry, shown in Figure 1, since its two
diagonals, AD and BC intersect at their midpoints, that is,

LA+ D)= 5(B+0). (39)
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~C+D=-A+B
—B+D=-A+C

The Parallelogram
Condition: D=B+C—- A

M., = 3(A+ D)

=
Q

|
N[

(A+0O)

\(_A+B)+(—A+C)=—A+D

Figure 1: The Euclidean parallelogram and its addition law in a Euclidean vector
plane (R?,+,-). The diagonals AD and BC of parallelogram ABDC intersect
each other at their midpoints. The midpoints of the diagonals AD and BC' are,
respectively, Map and Mzc, each of which coincides with the parallelogram center
Magspc. This figure sets the stage for its hyperbolic counterpart in Figure 2.

Clearly, the midpoint equality (39) is equivalent to the parallelogram condition
(38).

The vector addition of the vectors u and v that generate the parallelogram
ABDC according to (37), gives the vector w by the parallelogram addition law,
shown in Figure 1,

w:i=—A+D=(-A+B)+(-A+C)=u+v. (40)

Here, by definition, w is the vector formed by the diagonal AD of the parallelogram
ABDC, as shown in Figure 1.

Vectors in the space V are, thus, equivalence classes of ordered pairs of points,
which add according to the parallelogram law, shown in Figure 1.

Gyrovectors emerge in an Einstein gyrovector space (V;, @, ®) in a way fully
analogous to the way vectors emerge in the space V, where V, is the c-ball of the
space V, V. ={v e V:|v| <c}.
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Elements of V., called points and denoted by capital italic letters, A, B, P, Q,
etc, give rise to gyrovectors in V., denoted by bold roman lowercase letters u, v,
etc. Any two ordered points P,Q € V, give rise to a unique rooted gyrovector
v € V., rooted at the point P. It has a tail at the point P and a head at the point
@, and it has the value ©P®Q,

v =0PaQ. (41)

The gyrolength of the rooted gyrovector v = SP®(Q is the gyrodistance between
the points P and @, given by the equation

Ivll = l[oPoQ]l- (42)

Two rooted gyrovectors © PHQ and ©R®S are equivalent if they have the same
value, that is,

SP®Q ~ OSR3S if and only if 6P&Q = 6RaS  (43)

The relation ~ in (43) between rooted gyrovectors is reflexive, symmetric and
transitive, so that it is an equivalence relation that gives rise to equivalence classes
of rooted gyrovectors. To liberate rooted gyrovectors from their roots we define a
gyrovector to be an equivalence class of rooted gyrovectors. The gyrovector © P®Q
is thus a representative of all rooted gyrovectors with value © PSQ.

A point P of a gyrovector space (V.,®,®) is identified with the gyrovector
60&P, O being the arbitrarily selected origin of the space V.. Hence, the algebra
of gyrovectors can be applied to points as well. Naturally, geometric and physical
properties regulated by a gyrovector space are expected to be independent of the
choice of the origin of the gyrovector space.

Let A, B,C € V. be three non-gyrocollinear points of an Einstein gyrovector
space (Ve, ®,®), and let

=0A®B
" (44)
v =0A0C

be two gyrovectors in V that possess the same tail, A. Furthermore, let D be a
point of V, given by the gyroparallelogram condition

D=(BEC)CA. (45)

Then, the gyroquadrangle ABDC is a gyroparallelogram in the Beltrami-Klein
ball model of hyperbolic geometry in the sense that its two gyrodiagonals, AD
and BC, intersect at their gyromidpoints, that is,

1®(AE D) = ia(BBO) (46)

as illustrated in Figure 2. Clearly by (31), the gyromidpoint equality (46) is
equivalent to the gyroparallelogram condition (45).



Gyrogroups and Gyrovector Spaces 19
R e e e e

The gyrovector addition of the gyrovectors u and v that generate the gyropar-
allelogram ABDC' gives the gyrovector w by the gyroparallelogram addition law,
shown in Figure 2,

w:=6A8D = (6A®B) B (6A®C) =:ulBv. (47)

Here, by definition, w is the gyrovector formed by the gyrodiagonal AD of the
gyroparallelogram ABDC. The gyrovector identity in (47), where D is given by
(45), is explained in (50) below.

Gyrovectors in the ball V. are, thus, equivalence classes of ordered pairs of
points, which add according to the gyroparallelogram law shown in Figure 2.

The equivalence relation in vectors is origin independent. Hence, expressions
appropriately derived from vectors are origin independent as well. Thus, in par-
ticular, (i) the length of a vector, (ii) the angle between to vectors with a common
tail, and (iii) the parallelogram addition of to vectors with a common tail, are
origin independent.

In contrast, the equivalence relation in gyrovectors is origin dependent. For-
tunately, however, some important expressions derived from gyrovectors are ori-
gin independent. Thus, for instance, (i) the gyrolength of a gyrovector, (ii) the
gyroangle between to gyrovectors with a common tail, and (iii) the gyroparallel-
ogram addition of two gyrovectors with a common tail, are origin independent.
A deep study of origin independence involves the study of gyroisometries, found
in |79, Sections 3.11-3.12].

7. The Gyroparallelogram Addition Law

In Euclidean geometry a parallelogram is a quadrangle the two diagonals of which
intersect at their midpoints. In full analogy, in hyperbolic geometry a gyropar-
allelogram is a gyroquadrangle the two gyrodiagonals of which intersect at their
gyromidpoints, as shown in Figure 2. Accordingly, if A, B and C are any three
non-gyrocollinear points (that is, they do not lie on a gyroline) in an Einstein gy-
rovector space, and if a fourth point D is given by the gyroparallelogram condition

D= (BEC)SA, (48)

then the gyroquadrangle ABDC' is a gyroparallelogram, shown in Figure 2.
Indeed, the two gyrodiagonals of gyroquadrangle ABDC are the gyrosegments
AD and BC, shown in Figure 2, the gyromidpoints of which coincide, that is,

1®(AE D) = i®(BBCO) (49)

where, by (31), the result in (49) is equivalent to the gyroparallelogram condition
(48).

The analogies that equations (48)—(49) in gyrovector spaces share with their
counterpart equations (38) —(39) in vector spaces indicate that both the gyrogroup
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eCaD = gyr|C,oBlgyr|B,cA|(cA®B)
©B®D = gyr[B, ©C|gyr|C, 0 A](cAaC)

The Gyroparallelogram
Condition: D= (BHC)cA

_ Yo A+, D
Yat7Dp

=1ig(ABD)

B+~,C
MBC = % = %@(AEEIC)

YA+ B+voC+vp D
Yatre+7ct7D

MABDC =

MABDC = MAD = MBC

| (649B) B (04aC) = 648D |

ulHv=w

Figure 2: The Einstein gyroparallelogram and its addition law in an Einstein gy-
rovector plane (R? @, ®). The gyrodiagonals AD and BC of gyroparallelogram
ABDC intersect each other at their gyromidpoints. The gyromidpoints of the
gyrodiagonals AD and BC are, respectively, Map and Msc, each of which co-
incides with the gyroparallelogram gyrocenter Maspc. The analogies that this
figure shares with Figure 1 are obvious.

operation and cooperation, @ and H, are necessary for our mission to capture
analogies between vector and gyrovector spaces.

Let ABC be a gyrotriangle in an Einstein gyrovector space (R”, @, ®) and let D
be the point that augments gyrotriangle ABC into the gyroparallelogram ABDC,
as shown in Figure 2. Then, D is determined uniquely by the gyroparallelogram
condition (48), obeying the gyroparallelogram addition law [72, Theorem 5.5]

(6A®B) B (8A®C) = (6A8D) (50)

shown in Figure 2. In full analogy with the parallelogram addition law of vectors in
Euclidean geometry, (40), the gyroparallelogram addition law (50) of gyrovectors
in hyperbolic geometry can be written as

ulBv=w (51)
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where u, v and w are the gyrovectors

u=906AsB
v =60AaC (52)
w=0A®D

which emanate from the point A [67, Chapter 5].
In his 1905 paper that founded the special theory of relativity [17], Einstein
noted that his velocity addition does not satisfy the Euclidean parallelogram law:

“Das Gesetz vom Parallelogramm der Geschwindigkeiten gilt also
nach unserer Theorie nur in erster Annéherung.”

A. Einstein [17]

[English translation: Thus the law of velocity parallelogram is valid according to
our theory only to a first approximation.]

Indeed, Einstein velocity addition, @, is noncommutative and does not give rise
to an exact “velocity parallelogram” in Euclidean geometry. However, as illustrated
in Figure 2, Einstein velocity coaddition, H, which is commutative, does give rise
to an exact “velocity gyroparallelogram” in hyperbolic geometry.

The breakdown of commutativity in Einstein velocity addition law seemed un-
desirable to the famous mathematician Emile Borel. Borel’s resulting attempt to
“repair” the seemingly “defective” Einstein velocity addition in the years following
1912 is described by Walter in [82, p. 117]. Here, however, we see that there is
no need to repair Einstein velocity addition law for being noncommutative since,
despite of being noncommutative, it gives rise to the gyroparallelogram law of gy-
rovector addition, which turns out to be commutative. The compatibility of the
gyroparallelogram addition law of Einsteinian velocities with cosmological obser-
vations of stellar aberration is studied in [67, Chapter 13] and [72, Section 10.2].
The extension of the gyroparallelogram addition law of £ = 2 summands into a
higher dimensional gyroparallelotope addition law of £ > 2 summands is presented
in (54)—(55) below and studied in [67, Section 10.12] and [79, Section 6.4].

8. Gyroparallelotopes

The extreme sides of (33) give the equation

Yul + %V

utiy v=2®
2+(7u71)+(7v71)

(53)

where we replace H by Hs to emphasize that the binary operation H = H, is valid
only for two summands.



22 A. A. Ungar
- - -]

Equation (53) is written in a form that suggests that the extension of the
gyroparallelogram addition law (53), which involves two summands, to the gy-
roparallelepiped addition law, which involves three summands, is given by the
following gyroparallelepiped law

Yul TV + YW
2+(’7u_1)+(’7v_1)+(7w_1)

ubl; vH; w:=2® (54)
u,v,w e R7.

Einstein coaddition (54) of three summands is commutative and associative
in the generalized sense that it is a symmetric function of the summands. The
gyroparallelepiped that results from the gyroparallelepiped law (54) is studied in
detail in [67, Secions 10.9-10.12].

We may note that by (53)—(54) we have uHs v Bz 0 = uHs v, as expected.
However, unexpectedly we have u s v B3 (©v) # u.

The extension of (54) to the Einstein coaddition of k& summands, k > 3 , is
now straightforward, giving rise to the higher dimensional gyroparallelotope law in
RZ,

k
Zi:l ,YVivi
k
2+ 21:1(7\@ -1)

vi € G, k € N. As expected, the gyroparallelotope law (55) is origin independent.
An interesting study of parallelotopes in Euclidean geometry is found in [12].

In the Euclidean limit ¢ — oo, (i) gamma factors tend to 1, and (ii) the
hyperbolic scalar multiplication, ®, of a gyrovector (see Section 9) by 2 tends to
the common scalar multiplication of a vector by 2. Hence, in the Euclidean limit,
the right-hand side of (55) tends to the vector sum Zle v; in R"™, as expected.

vi B vo B ... B v = 2® (55)

9. Einstein Scalar Multiplication

The rich structure of Einstein addition is not limited to its gyrocommutative gy-
rogroup structure. Indeed, Einstein addition admits scalar multiplication (gy-
romultiplication), giving rise to the Einstein gyrovector space. Remarkably, the
resulting Einstein gyrovector spaces form the setting for the Cartesian-Beltrami-
Klein ball model of hyperbolic geometry just as vector spaces form the setting for
the standard Cartesian model of Euclidean geometry, as shown in [60, 64,67, 69,
71,72,79].

Let k®v be the Einstein addition of k copies of v € R}, that is k®v =
vdv...®v (k terms). Then,

Ly,

(1+@)’“+(1_@)k|vn
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for v #£ 0, and k®0 = 0.

The definition of scalar gyromultiplication in an Einstein gyrovector space re-
quires analytically continuing k off the positive integers, thus obtaining the fol-
lowing definition.

Definition 9.1. (Einstein Scalar Multiplication). An Einstein gyrovector
space (R, ®, ®) is an Einstein gyrogroup (R2, ®) with scalar gyromultiplication @
given by

05 -(-1) vl ev
< < = tanh(r tanh~" =1 (57)
c

R

(vl
where v is any real number, r € R, v € R}, v # 0, and r®0 = 0, and with which
we use the notation vRr = rQv.

As an example, it follows from Def. 9.1 that FEinstein half is given by the
equation
WV

V= —Y—
T+,

(58)

N[

so that, as expected, J_—;vv@ 1]_‘;‘,

Einstein gyrovector spaces are studied in [60,64,67,69,71,72,79]. Einstein
scalar multiplication does not distribute over Einstein addition, but it possesses
other properties of vector spaces. For any positive integer k, and for all real

numbers 7,7, € R and v € R?, we have

vV =V.

kQv=v®d...0v k terms
(r, +7,)®v =r,Qver,Qv Scalar Distributive Law

(ryry)®v =71 ,®(r,ov) Scalar Associative Law
(59)
in any Einstein gyrovector space (R, ®, ®).
Additionally, Einstein gyrovector spaces possess the scaling property
|r|®a _a (60)
[reall  |all
aeR? a#0, reR, r#0, the gyroautomorphism property
gyr[u, v](r@a) = r@gyr[u, vja (61)

a,u,v € R? r € R, and the identity gyroautomorphism

gyr[r, @v,r,@v] =1 (62)
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r,r, €ER, veRl
Any Einstein gyrovector space (R”, @, ®) inherits an inner product and a norm
from its ambient vector space R™. These turn out to be invariant under gyrations,

gyr[a, blu-gyrfa, blv =uv
(63)
lgyr[a, blv = [[v]]

for all a,b,u,v € R”.

10. Gyrovector Spaces

Taking the key features of Einstein scalar multiplication as axioms, and guided by
analogies with vector spaces, we are led to the following formal gyrovector space
definition in which gyrovector spaces turn out to form a most natural generalization
of vector spaces.

Definition 10.1. (Real Inner Product Gyrovector Spaces [67, p. 154]). A
real inner product gyrovector space (G,®,®) (gyrovector space, in short) is a
gyrocommutative gyrogroup (G, ®) that obeys the following axioms:

(1) G is asubset of a real inner product vector space V called the ambient space
of G, G C 'V, from which it inherits its inner product, -, and norm, ||-||, which
are invariant under gyroautomorphisms, that is,

(V1) gyr[u, v]a-gyr[u,v]b = a-b Inner Product Gyroinvariance
for all points a,b,u,v € G.

(2) G admits a scalar multiplication, ®, possessing the following properties. For
all real numbers r, 71,7, € R and all points a € G:

(V2) 1®a=a Identity Scalar Multiplication
(V3) (r, +r,)®a=r Radr,Qa Scalar Distributive Law
(V4) (r,r,)®a=r&(r,Qa) Scalar Associative Law
(V5) Iria_ i, a#£0,7r#0 Scaling Property

[real ]l
(V6) gyr[u,v](r®a) = r@gyr[u,v]a Gyroautomorphism Property
(V7)  gyr[r,@v,r,@v] =1 Identity Gyroautomorphism.

(3) Real, one-dimensional vector space structure (|G|, ®,®) for the set |G|| of
one-dimensional “vectors”.

(V8) 1G]l = {*la]:ac G} CR Vector Space
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with vector addition @ and scalar multiplication ®, such that for all » € R

and a,b € G,
(V9) |lreal| = |r|®]al| Homogeneity Property
(V10) |lasb] < ||lal|®|b]| Gyrotriangle Inequality.

Einstein (gyro)addition and scalar (gyro)multiplication in R? thus give rise to
the Einstein gyrovector spaces (R?, ®, ®), n > 2.

11. Relativistic and Classical Kinetic Energy

Kinetic energy depends on mass and relative velocity. The relativistic mass of an
object with Newtonian mass m (also called relativistically invariant mass) moving
with velocity v € R? relative to an inertial frame ¥ is m~,. Having Einstein half
(58) in hand, we can recast the relativistic kinetic energy of moving objects into a
form that shares analogies with its classical counterpart. The relativistic kinetic
energy K, of an object with rest (Newtonian) mass m that moves uniformly with
velocity v relative to an inertial frame ¥ is given by the equation [66]

Ko = ch('yV -1), (64)

where ¢ is the vacuum speed of light. We manipulate (64) in the following chain
of equations, some of which are numbered for subsequent explanation.

L v v +1
Koq=— Am(y, —1) = Yy, — 1)
rel ('Yv ) o+ 1 ('Yv ) 7‘2,
_ ’Yx2/ 2 '7\21 -1
Y+ 1 ok
(65)
2 v
v 2 v
— = MY,V
Y +1 AR

Iye

(3®V) (M),

m~y, being the velocity dependent relativistic mass [73]| of the moving object rel-
ative to Xg.

Derivation of the numbered equalities in (65) follows:
1. Follows from (64).
2. Follows from (10), p. 8.
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3. Follows from Einstein half (58).

The relativistic kinetic energy K¢ in (65),
Ko = (%@V)(mv‘,v) ) (66)

is given by the inner product of a “relativistic half-velocity” and a corresponding
relativistic momentum, in full analogy with the classical kinetic energy K s,

Kys = %mVQ = (%V)'(TI’LV), (67)

which is given by the inner product of a “classical half-velocity” and a correspond-
ing classical momentum. The ability of Einstein scalar multiplication to capture
analogies between modern and classical results thus emerges.

The analogies that (66) and (67) share demonstrate that the relativistic coun-
terpart of the Newtonian mass m is the relativistic, velocity dependent mass m~,,.
The controversy around the relativistic mass is described in [73]. It is owing to
analogies that Newtonian mass and Einsteinian relativistic mass share that the no-
tion of barycentric coordinates in Euclidean geometry can be translated into the
notion of gyrobarycentric coordinates in hyperbolic geometry, as shown in [71,72]
and [70,75,76], and in Sections 16-18.

12. Einstein Gyrolines — The Hyperbolic Lines

In applications to geometry, where the letters a,b,c are frequently used, it is
convenient to replace the notation R7 for the c-ball of an Einstein gyrovector
space by the s-ball, R?. We thus switch from ¢ to s to avoid notational confusion.
Moreover, it is understood that n > 2, unless specified otherwise.

Let A, B € R” be two distinct points of the Einstein gyrovector space (R?, @, ®),
and let ¢ € R be a real parameter. Then, the graph L, of the set of all points

Lis = AS(CADB)®t, (68)

t € R, in the Einstein gyrovector space (R?,®,®) is a chord of the ball R?. As
such, it is a geodesic line of the Beltrami-Klein ball model of hyperbolic geometry,
shown in Figure 3 for n = 2. The geodesic line (68) is the unique gyroline that
passes through the points A and B. It passes through the point A when ¢ = 0 and,
owing to the left cancellation law, (7), it passes through the point B when t = 1.
Furthermore, it passes through the midpoint m4 g of A and B when ¢ = 1/2.
Accordingly, the gyrosegment AB that joins the points A and B in Figure 3 is
obtained from gyroline (68) with 0 <t < 1.

Gyrolines (68) are the geodesics of the Beltrami-Klein ball model of hyperbolic
geometry. Similarly, gyrolines (68) with Einstein addition @ replaced by Mobius
addition @, are the geodesics of the Poincaré ball model of hyperbolic geometry.
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d(A,B) = |AeB||

d(A> mA,B) = d(B’ mA,B)

d(A, P)&d(P, B) = d(A, B)

| Las = A®(CA®B)ot |

—o00 <t <00

Figure 3: Gyrolines, the hyperbolic lines Laz in Einstein gyrovector spaces, are
fully analogous to the straight line A + (—A + B)t, t € R, in the Cartesian model
of the Euclidean geometry of R". Here © = @, is Einstein addition, as opposed
to Figure 4 where ® = @,, is Mébius addition. The figure shows that Einstein
gyrolines in the hyperbolic plane (R?, ®, ®) are Euclidean segments in the disc R2.

These interesting results are established by methods of differential geometry in [65],
and are illustrated in Figures 3 and 4.

Each point of (68) with 0 < ¢ < 1 is said to lie between A and B. Thus, for
instance, the point P in Figure 3 lies between the points A and B. As such, the
points A, P and B obey the gyrotriangle equality according to which

d(A, P)®d(P,B) = d(A, B), (69)
in full analogy with Euclidean geometry. Here
d(A, B) = [|[eAeB||, (70)

A,B € R?, is the Einstein gyrodistance function, also called the Einstein gy-
rometric. This gyrodistance function in Einstein gyrovector spaces corresponds
bijectively to a standard hyperbolic distance function, as demonstrated in [67, Sec-

tion 6.19).
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A contact between Einstein gyrodistance function and differential geometry
is provided by the Riemannian gyroline element of Einstein gyrovector spaces,
studied in [64, Section 7.5] and [65]. It turns out that the Riemannian gyroline
element of Einstein gyrovector spaces, given by

ds® = [[(v+ dv)6v||2 (71)

is identical with the well-known Riemannian line element of the Beltrami-Klein
disc model of hyperbolic geometry.

13. Mobius Addition

The most general Mobius transformation of the complex open unit disc
D={zeC: |z| <1} (72)
in the complex plane C is given by the polar decomposition [2,2§],

0 a4+ z
619

133 = e (ad, 2). (73)

Z

It induces the Mébius addition @, in the disc, allowing the M&bius transformation
of the disc to be viewed as a Mobius left gyrotranslation

a—+z
1+az

zZ = ad,z = (74)
followed by a rotation. Here 6 € R is a real number, a, z € D, and @ is the complex
conjugate of a.

In order to extend Mobius addition from the disk to the ball, let us identify
complex numbers of the complex plane C with vectors of the Euclidean plane R?
in the usual way,

C>u=uj+iug = (u,us) = u e R?. (75)
Then
uv + uv = 2u-v
(76)

uf = [[ul|

give the inner product and the norm in R?, so that Mobius addition in the disc D
of C becomes Mobius addition in the disc

R2_, ={veR?:|v|<s=1} (77)
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of R?. Indeed,

U+ v

14+ av

(14 ud)(u+v)

(14 av)(1 4 ud)

(1 + av + uv + |v]?)u + (1 — |ul?)v (78)
14+ av + ub + |ul?|v]?

(1+2uv + [v[*u+ (1 - [[uf*)v
L+ 2uv A [Juf?]v]]?

=udpv e R?_,

D> udpv =

for all u,v € D and all u,v € R2_,. The last equation in (78) is a vector equation,
so that its restriction to the ball of the Euclidean two-dimensional space is a mere
artifact. Suggestively, we thus arrive at the following definition of M&bius addition
in the ball R?,

1+ Zuv+ | v[P)u+ (1 - Fluf*)v
L+ Zuv+ lul?|v?

u@l\/lv = (79)
Like Einstein groupoids (R}, &, ), Mobius groupoids (R7, ,,) are gyrocommuta-
tive gyrogroups. The gyrogroup isomorphism between Einstein addition ®& = @,
and Mobius addition @, is given by the equations [67, p. 227]
lo (ue,v) =1e,ue, le, v
2<E E 2 <M M 2 M
(80)

for all u,v € Vg.
The operations ®, and ®,, are identical to each other, ®, = ®,, =: ®. Hence,
Identities (80) can be written equivalently as

ud,v = 2®(%®U@M %®V)
(81)
ud, v = 13(20ud,2®v)

for all u,v € V.

The related connection between Mobius transformation and Lorentz transfor-
mation of Einstein’s special theory of relativity was recognized by H. Liebmann in
1905 [36, pp. 122-123].

When u and v are parallel in R} C R", scalar gyromultiplication is distributive
over gyroaddition [27]. Hence, in the special case when ul|v in R™ the two equations
in (81) degenerate to the single equation

ug,v=ug,v, ulv (2)
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d(A, B) = |[AoB||

A d(A,mAYB) = d(B)mA,B)

d(A, P)@d(P, B) = d(A, B)

| Las = A®(CA®B)ot |

—o0 <t <o

Figure 4: Gyrolines, the hyperbolic lines Laz in Mobius gyrovector spaces, are
fully analogous to lines in Euclidean spaces. The gyroline Laz = A®(©ADB)Rt,
t € R, in a Mobius gyrovector space (R?, @, ®) is a geodesic line in the Cartesian-
Poincaré ball model of hyperbolic geometry. Here & = @,, is Mdbius addition, as
opposed to Figure 3 where ® = @, is Einstein addition. The figure indicates that
Mébius gyrolines in the hyperbolic plane (R2?,®, ®) are Euclidean circular arcs in
the disc R? that approach the boundary of the disc orthogonally.

Accordingly, Einstein scalar multiplication, ®,, and Mo6bius scalar multiplication,
®,,, share the same formula, ®, = ®,, =: ®, where ® is given by (57),

Einstein and M6bius addition are originated from totally two different disci-
plines. Accordingly, the elegant relationship (81) between Einstein and Mobius
addition indicates, once again, the intrinsic beauty, harmony and interdisciplinar-
ity in Einstein addition.

14. Mobius Gyrolines

Replacing Einstein addition ® = @, in Section 12 by Md&bius addition & = @,; in
this section, we obtain the Md&bius gyrolines

Lis = AS(CADB)®t, (83)
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t € R, in a Mobius gyrovector space (R?, @, ®), shown in Figure 4 for n = 2. As
we see from Figure 4, Mobius gyrolines in the Mobius gyrovector plane (R2, &, ®)
are circular arcs that approach the boundary of the disc R? orthogonally. These
are the well-known geodesics of the Poincaré disc model of hyperbolic geometry.
Along with Mo6bius gyrolines we have the Mobius gyrodistance function

d(A, B) = ||cA®B|| (84)
and the gyrotriangle equality
d(A, P)®d(P, B) = d(A, B) (85)

for any A, B, P € (R?,®), where P lies between A and B, as shown in Figure 4.

A contact between Mdbius gyrodistance function and differential geometry is
provided by the Riemannian gyroline element of M&bius gyrovector spaces, studied
in [64, Section 7.3] and [65]. It turns out that the Riemannian gyroline element of
Mobius gyrovector spaces, given by

ds? = (v + clv)9v||2 , (86)

is identical with the well-known Riemannian line element of the Poincaré disc
model of hyperbolic geometry.

It should be emphasized that Equations (83) - (86) of this section are identical
in form with Equations (68) - (71) of Section 12. However, & = &, in Section 12,
while & = @, in this section, where Einstein addition & = &, is given by (2),
p. 7, and Mdbius addition @, is given by (79), p. 29.

15. Gyrotrigonometry

Hyperbolic trigonometry is called gyrotrigonometry and, similarly, hyperbolic an-
gles are called gyroangles. Graphically, gyrotrigonometry is best illustrated in
the Poincaré disc model of hyperbolic geometry since the Poincaré ball model is
conformal in the following sense. A gyroangle between two intersecting Mobius
gyrolines equals the angle between corresponding intersecting tangent lines, as
shown in Figure 5. The equations in this section are valid in any gyrovector space.
In particular, they are valid in Einstein gyrovector spaces, when © = @, and in
Mobius gyrovector spaces, when @ = @,,. Graphical illustrations are presented
for Mé6bius gyrovector planes in Figures 5 and 6.

The gyroangle included by the gyrosegments AB and AC that emanate from
the point A, denoted ZBAC, has the measure « given by the equation [64,67,69,
71,72,79]

OADB OABC
|oADB| [oAaC|’

CcCos&x =

(87)



32 A. A. Ungar

B

_ 6A®B o©AeC
= NcAaB| [oAaC]
OAGB  oAsC’
[cA®B|| |odaC’|

Ccosax =

Figure 5: A Mobius gyroangle « generated by two intersecting Mdbius geodesic
rays (gyrorays). Its measure equals the measure of the Euclidean angle generated
by corresponding intersecting tangent lines.

A,B,C € R?, where “cos” is the common cosine function of trigonometry. Ac-

cordingly,

_1 OA®B . cAaC
|ledAeB| ||eAaC|’

0 < a <. The point A is the vertex of the gyroangle ZBAC. A gyroangle with
vertex at the origin, O = 0, of the ball coincides with its Euclidean counterpart,

a = cos (88)

C0OB  c08C B C_
le0®B|| [eoaC| |IB] lIC]

cosa = (89)

The measure of a gyroangle is invariant under the motions of hyperbolic geom-
etry, which are left gyrotranslations and rotations. In particular, any gyroangle
with vertex A can be moved by a hyperbolic motion (gyromotion) to a gyroangle
with vertex O while keeping the gyroangle measure invariant. Having vertex O,
the resulting gyroangle behaves like an angle. Hence, trigonometric identities for
angles as, for instance, cos? a + sin? @ = 1, remain valid for gyroangles as well.
Gyrotrigonometry and its application in analytic hyperbolic geometry are studied
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in [64,67,69,71,72,79]. An elegant application of gyrotriangle gyrotrigonometry,
which has no Euclidean counterpart, is presented in Figure 6.

A Mobius gyrotriangle along with its standard notation and some basic iden-
tities is presented in Figure 6. Let ABC be a gyrotriangle in a M&bius gyrovector
space (R?, @, ®) with vertices A, B,C € R?, sides a, b, ¢ € R” and side gyrolengths
a,b,c € (—s,s),

a = oBaC, a = |al],
b=6C®A, b=|b], (90)
c=O0A®B, c=c|.

The gyroangle measures «, 8 and «y of the gyroangles at the vertices A, B and
C are given by the gyrotrigonometric identities

0A®B ©A®C

Y= cAa B[ [eAaC]
oB®A SB®A
= . 91
cosB = 1=pac] TeBaC] (91)
oCpA oCoB
cosy =

[eCaA| |[eCaB||

in full analogy with corresponding trigonometric identities.

In Euclidean geometry the triangle angles do not determine its side lengths. In
contrast, in hyperbolic geometry the gyrotriangle gyroangles determine uniquely
its side gyrolengths according to the gyrotriangle gyrotrigonometric identities (92)
of the following theorem 15.1 [64, Theorem 8.48].

Theorem 15.1. (AAA to SSS Conversion Law). Let ABC be a gyrotrian-
gle in a Mobius gyrovector space (R?, ®,®) with vertices A, B,C, corresponding
gyroangles o, 8,7, 0 < a+ B+ v < 7, and side gyrolengths a,b,c, as shown in
Figure 6. The side gyrolengths of the gyrotriangle ABC are determined by its
gyroangles according to the AAA to SSS conversion equations

a?  cosa+cos(B+7)
2 cosa+cos(B—7)

S

b?>  cos B+ cos(a +7)
s2 cosfB + cos(a—7)

¢ cosy + cos(a + f3)
cosy + cos(a — 3)

In the Euclidean limit s — oo, the equations in (92) reduce, respectively, to
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a=0Ce®B
b=6CsA
c=0BpA

a = [lal|, b= bl ¢= ||

A 2 _ cosa+cos(B8+7)
s cos a+cos(B—7)

a®b > ¢
p2 — cos B+cos(a+7)
cos B+cos(a—7)

cos y+cos(a+f3)

@t 5 tys<m s cos y+cos(a—p)

cosy = cos(m — a — ) + 2(72 — 1) sin o cos 3

J asbs siny
2 l1—asbs cosy

d=m—(a+B+7v)>0

Figure 6: A Mobius gyrotriangle ABC in the Mobius gyrovector plane D =
(R% &, ®) is shown. Its sides are formed by gyrovectors that link its vertices,
in full analogy with Euclidean triangles. Its hyperbolic side lengths, a,b,c, are
uniquely determined in (93) by its gyroangles. The gyrotriangle gyroangle sum is
less than 7. Here, as = a/s, etc. Note that in the limit of large s, s — oo, the cos~y
equation reduces to cosy = cos(m — a — ) so that a« + 8 + v = 7, implying that
both sides of each of the squared side gyrolength equations, shown in the figure
and listed in (93), vanish.

the equations
0 = cosa + cos(B +7)
0 = cos B + cos(a + 7) (93)
0 = cosvy + cos(a + )
each of which is equivalent to the Euclidean identity
a+fB8+y=m. (94)

Hence, the AAA (gyroAngle gyroAngle gyroAngle) to SSS (gyroSide gyroSide
gyroSide) Conversion Law (92) in Theorem 15.1 is valid in hyperbolic geometry,
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where o + 5+ < m, and it is invalid in Euclidean geometry, where the triangle
angle identity (94) holds.

16. Resultant Relativistically Invariant Mass

The relativistic mass m~,,, already encountered in Section 11, plays an impor-
tant role in Einstein’s special relativity and in analytic hyperbolic geometry [73].
Einstein velocity addition admits the following theorem about relativistic mass.

Theorem 16.1. (Resultant Relativistically Invariant Mass Theorem). Let
(R?, ®) be an FEinstein gyrogroup, and let m € R and v, € R?, k =1,2,..., N,
be N real numbers and N elements of RY satisfying

> M, # 0. (95)

N

Vv Vv,
ka< * >m0< 0) (96)
k=1 Vv Vk Yvo VO

be an (n + 1)-vector equation for the two unknowns mo € R and vo € R™.
Then (96) possesses a unique solution (mg,vo), mo # 0, vo € R?, satisfying
the following three identities for all w € R? (including, in particular, the interest-

ing special case of w =10):

Furthermore, let

N
Zk:l mk’YWEka (W@Vk)

wdvy = = (97)
Zk:l mk’YWEka
Zszl MEYwe
Ty = S (99
N
1 m woOvV
’YW@VO (W@VO) — Zk-l k’YW@Vk( k) (99)

mo
where

N 2 N
mg = (Z mk> + 2 Z mjmk('ye(w@vj)@(w@vk) —-1). (100)
k=1

k=1
i<k
The proof of Theorem 16.1 is found in [71, Theorem 3.7] and in {72, Theorem
3.2].
It follows from (96) that (i) mq7,,, is the resultant relativistic mass of a system
of N particles with relativistic masses my7,, , and (ii) mo7y,, Vo is the resultant rel-
ativistic momentum of a system of N particles with relativistic momenta myy,, v,
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k =1,...,N. In physical applications n = 3, and my > 0, £k = 0,1,..., N, are
positive real numbers that represent relativistically invariant (Newtonian) masses.
In geometry, however, n > 1 and myj are any real numbers that need not be
positive.

Identities (97)—(99) of Theorem 16.1 are covariant in the sense the vy and
v, vary together under left gyrotranslations by any w € R?. The constant mg in
(100) in invariant in the sense that it remains invariant under left gyrotranslations
of v by any w € R7.

It follows from (100) that the relativistically invariant mass mg of a particle
system of NV particles is greater than the sum Z,]cvzl my, of the Newtonian Masses of
its constituents. The excessive mass, mg — Zgil myg, is dark in the sense that (i) it
is generated by internal relative velocities between the constituents of the particle
system, and that (ii) it reveals its presence only gravitationally, since it emits no
radiation and it involves no collisions [68,73]|. Interestingly, the relativistically
invariant mass mg of a particle system in (100) is precisely what we need in order
to adapt the Euclidean notion of barycentric coordinates for use in hyperbolic
geometry without losing covariance.

To appreciate the power and elegance of Theorem 16.1 in relativistic mechanics
in terms of novel analogies that it shares with familiar results in classical mechanics,
we present below the classical counterpart, Theorem 16.2, of Theorem 16.1. The-
orem 16.2 is derived from Theorem 16.1 by approaching the Newtonian /Euclidean
limit when s = ¢ tends to infinity. The resulting Theorem 16.2 is immediate, and
its importance in classical mechanics is well-known. Like Theorem 16.1, Theorem
16.2 involves an expression, (103) below, which is covariant under translations and,
as such, fully analogous to (97), which is covariant under left gyrotranslations.

Theorem 16.2. (Resultant Newtonian Invariant Mass Theorem). Let
(R™,+) be a Euclidean n-space, and let my, € R and v e R", k=1,2,...,N, be
N real numbers and N elements of R™ satisfying

N
> mp # 0 (101)
k=1

N 1 1
> < ) =mg ( ) (102)
k=1 Vi Vo

be an (n + 1)-vector equation for the two unknowns my € R and vy € R™.

Then (102) possesses a unique solution (mg,vo), mo # 0, satisfying the fol-
lowing equations for all w € R™ (including, in particular, the interesting special
case of w=10):

Furthermore, let

_ 25:1 mi(w + vi)

N
D k1 Mk

W + Vo (103)
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and

N
mo = ka. (104)
k=1

The proof of Theorem 16.2 is immediate.

Unlike Identity (103) of Theorem 16.2, which is immediate, its counterpart in
Theorem 16.1, Identity (97), is not immediate and, hence, unexpected. Yet, in full
analogy with Theorem 16.2, the validity of Identity (97) in Theorem 16.1 for all
w € R” is geometrically important. This geometric importance of Identity (97)
stems from its following implication: The velocity vg of the center of momentum
frame of a particle system relative to a given inertial rest frame in relativistic
mechanics is independent of the choice of the origin of the relativistic velocity
space R7 with its underlying Cartesian-Beltrami-Klein ball model of hyperbolic
geometry.

Not unexpectedly, the Newtonian mass mg in (104) of a particle system plays an
important role in Theorem 17.3, p. 39, on the covariance of barycentric coordinates
under the motions of Euclidean geometry, which are translations and rotations.
Remarkably, the relativistic invariant mass mg in (100) of a particle system plays
an analogous important role in Theorem 18.3, p. 42, on the gyrocovariance of
gyrobarycentric coordinates under the gyromotions of hyperbolic geometry, which
are left gyrotranslations and rotations. Left gyrotranslations, in turn, play an
important role in the application of gyrobarycentric coordinates for determining
analytically various gyrotriangle gyrocenters in [71,72,79].

17. Barycentric Coordinates

The notion of barycentric coordinates dates back to Mobius. The use of barycen-
tric coordinates in Euclidean geometry is described in [84], and the historical
contribution of Mdbius’ barycentric coordinates to vector analysis is described
in [14, pp. 48-50].

In this section we set the stage for the introduction in Section 18 of barycentric
coordinates into hyperbolic geometry by illustrating the way Theorem 16.2, p. 36,
suggests the introduction of barycentric coordinates into Euclidean geometry.

For any positive integer N, let my € R be N given real numbers such that

N
> mp # 0 (105)
k=1

and let Ay € R™ be N given points in the Fuclidean n-space R", k = 1,..., N.
Theorem 16.2, p. 36, states the trivial, but geometrically significant, result that

the equation
mp, =my 106
k=1 Ap P
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for the unknowns my € R and P € R" possesses the unique solution given by

N
mo =Y my (107)
k=1
and N
A
p = k=1 Midr (108)
D k=1 Mk

satisfying for all X € R™,

Soaly m(X + Ap)

N
D h—1 Mk

We view (108) as the representation of a point P € R™ in terms of its barycentric
coordinates my, k = 1,..., N, with respect to the set of points S = {A4;1,..., Ax}.
Identity (109), then, insures that the barycentric coordinate representation (108)
of P with respect to the set S is covariant (or, invariant in form) in the following
sense. The point P and the points of the set S of its barycentric coordinate
representation vary together under translations. Indeed, a translation X + A of
Ap by X, k=1,...,N, in (109) results in the translation X + P of P by X.

In order to insure that barycentric coordinate representations with respect to
a set S are unique, we require S to be pointwise independent.

X+P= : (109)

Definition 17.1. (Pointwise Independence). A set S of N points S =
{A1,..., An} in R"™, n > 2, is pointwise independent if the N —1 vectors — A; + A,
k=2,...,N, are linearly independent.

Definition 17.2. (Barycentric Coordinates). Let

S={A4,...,An} (110)
be a pointwise independent set of IV points in R™. The real numbers mq,...,mny,
satisfying

N
> mi #£0 (111)
k=1

are barycentric coordinates of a point P € R™ with respect to the set .S if

N
p— 21 Mk Ak _

— k=1 Tk 112)
N (
D k=1 Mk
Barycentric coordinates are homogeneous in the sense that the barycentric
coordinates (myq, ..., my) of the point P in (112) are equivalent to the barycentric

coordinates (Amy,...,Amy) for any real nonzero number A € R, A # 0. Since
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in barycentric coordinates only ratios of coordinates are relevant, the barycentric
coordinates (my,...,my) are also written as (my: ... :my).
Barycentric coordinates that are normalized by the condition

WE

my = 1 (113)
k=1

are called special barycentric coordinates.
Equation (112) is said to be the (unique) barycentric coordinate representation
of P with respect to the set S.

Theorem 17.3. (Covariance of Barycentric Coordinate Representa-
tions). Let
N
A
pP= 72167; 0k h (114)
D k=1 Mk

be the barycentric coordinate representation of a point P € R™ in a Fuclidean
n-space R™ with respect to a pointwise independent set S = {A1,..., An} C R™.
The barycentric coordinate representation (114) is covariant, that is,

Sy m(X + Ap)

X+P= S (115)
k=1
for all X € R™, and
N
RA
Rp = 2=t R (116)
> k=1 Mk

for all R € SO(n).

Proof. The proof is immediate, noting that rotations R € SO(n) of R™ about its
origin are linear maps of R"™. O

Following the vision of Felix Klein in his Erlangen Program [8,35], it is owing
to the covariance with respect to translations and rotations that barycentric co-
ordinate representations possess geometric significance. Indeed, translations and
rotations in Euclidean geometry form the group of motions of the geometry, studied
in [79], and according to Felix Klein’s Erlangen Program [8], a geometric property
is a property that remains invariant in form under the group of motions of the
geometry.

18. Gyrobarycentric Coordinates

Guided by analogies with Section 17, in this section we introduce barycentric coor-
dinates into hyperbolic geometry where, naturally, they are called gyrobarycentric
coordinates [70-72,75,77,78]. Gyrobarycentric coordinates prove useful in the
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analytic determination of various gyrotriangle gyrocenters, just as barycentric co-
ordinates prove useful in the analytic determination of various triangle centers.

For any positive integer N, let m; € R be N given real numbers, and let
Aj € R? be N given gyropoints in an Einstein gyrovector space (R?, ®,®), k =
1,..., N, satisfying,

N
> mryy, > 0 (117)
k=1

Theorem 16.1, p. 35 presents the result that the equation

N

5 5
ka< A >:m0< P) (118)
k=1 ’YAkAk vp P

for the unknowns mgo € R and P € R} possesses the unique solution given by

N 2 N
mo = <ka> +2 ) mimi (Ve a,e4, — 1) (119)
k=1

Jk=1
i<k
mo > 0, satisfying
N 2 N
Mo = (Z mk) +2 Z mimk (Yo xea,)e(xean) — 1) (120)
k=1 §ok=1
j<k
for all X € RY, and
N
p = k=1 MY Ak (121)
- N
D k=1 Mgy a,
satisfying
N
XoP = D k=1 MEYx A, (XDAy) (122)

ZN
k=1 "Mk Y x A,

for all X € RY.
Furthermore, Theorem 16.1, p. 35, also asserts that P and mg satisfy the two

identities

_ Zgﬂ MEY A,

(123)
mo

TP

and
N
Zk:1 mk'YAkAk

(124)
mo

P =
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and, more generally,

N
Zk:l MEYXx A,

Txor = m—O (125)

and

N
_ XA,
Trop(XoP) = Zimt 04, TOM (126)

for all X € RY.

We view (121) as the representation of a gyropoint P € R” in terms of its
hyperbolic barycentric coordinates my, k = 1,..., N, with respect to the set of
gyropoints S = {A;,..., Ay}. Naturally in gyrolanguage, hyperbolic barycentric
coordinates are called gyrobarycentric coordinates. Identity (122) insures that the
gyrobarycentric coordinate representation (121) of P with respect to the set S is
gyrocovariant as stated in Theorem 18.3 below. The gyropoint P and the gyro-
points of the set S of its gyrobarycentric coordinate representation vary together
under left gyrotranslations. Indeed, a left gyrotranslation X @Ay of A; by X,
k=1,...,N in (122) results in the left gyrotranslation X®P of P by X.

In order to insure that gyrobarycentric coordinate representations with respect
to a set S are unique, we require S to be hyperbolically pointwise independent or,
in gyrolanguage, gyropointwise Independent.

Definition 18.1. (Gyropointwise Independence). A set S of N gyropoints
S ={A1,...,An} in R?, n > 2, is gyropointwise independent if the N — 1 gy-
rovectors in R?, ©0A;®Ax, k=2,..., N, considered as vectors in R", are linearly

independent.

We are now in the position to present the formal definition of gyrobarycentric
coordinates, as motivated by mass and center of momentum velocity of Einsteinian
particle systems and by analogies with barycentric coordinates.

Definition 18.2. (Gyrobarycentric Coordinates). Let
S={A1,...,An} (127)

be a gyropointwise independent set of N gyropoints in R?. The real numbers
mi,...,my, satisfying

N
> miya, >0 (128)
k=1

are gyrobarycentric coordinates of a gyropoint P € R? with respect to the set S if

N
_ L= MYa Ak

P N
> k=1 MEY A,

(129)

Gyrobarycentric coordinates are homogeneous in the sense that the gyrobarycen-
tric coordinates (mq,...,my) of the gyropoint P in (129) are equivalent to the
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gyrobarycentric coordinates (Amy, ..., Amy) for any real nonzero number A € R,
A # 0. Since in gyrobarycentric coordinates only ratios of coordinates are relevant,
the gyrobarycentric coordinates (mq,...,my) are also written as (my: ...:my).

Gyrobarycentric coordinates that are normalized by the condition

N
ka -1 (130)
k=1

are called special gyrobarycentric coordinates.

Equation (129) is said to be the gyrobarycentric coordinate representation of
P with respect to the set S.

Finally, the constant of the gyrobarycentric coordinate representation of P in
(129) is mg > 0, given by

N 2 N
Mo = (ka> +2 Z mimie(Vo a0, — 1) - (131)
k=1

jk=1
i<k

Theorem 18.3. (Gyrocovariance of Gyrobarycentric Coordinate Rep-
resentations). Let
N
_ Zk:1 mk’YAkAk
- TN
D k=1 Mk 4,

be a gyrobarycentric coordinate representation of a gyropoint P € RY in an Einstein

gyrovector space (R7, @, ®) with respect to a gyropointwise independent set S =
{Al,...,AN} C RZ

P (132a)

Then N
D k1 MY A,
===k 132b
Tp mo ( )
and N
m A
= k=t M Ak (132¢)

mo

where mg, given by

N 2 N
mo = <Z mk) +2 > myme(Yoa,0a, — 1) 5 (132d)
k=1

jk=1
j<k

mo > 0, is the constant of the gyrobarycentric coordinate representation (132a).
Furthermore, the gyrobarycentric coordinate representation (132a) and its as-
sociated identities in (132b) —(132d) are gyrocovariant, that is,
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N
_ Dk Mk Yxea, (XDAR)

XaP - (133a)
D k=1 MEYx A,
N
_1 Mg
Sy — AT A .
mo
N
=1 XPA
Yxqpp(X®P) = D ke1 MY xoa, k) s
mo
where
N 2 N
mo = (Z mk) +2 Z mjmk('Y@(X@Aj)@(X@Ak) —1) (133d)
k=1 =
j<k
for all X € R?, and
N
L m RA
RP= Zkf}v IR (134a)
Zk:l MEYRA,,
N
i m
Yrp = M (134b)
mo
N
_m RA
Yrp(RP) = Liz k;I;Ak( k) (1540)

where

N 2 N
my = (Z mk) +2 Z mjmk('Y@(RAj)@(RAk) -1) (134d)
k=1

J,k=1
i<k

for all R € SO(n).

The proof of Theorem 18.3 is found in [72, Theorem 4.6].

Following the vision of Felix Klein in his Erlangen Program [8,35], it is owing
to the gyrocovariance, that is, covariance with respect to left gyrotranslations
and rotations, that gyrobarycentric coordinate representations are geometrically
significant. Indeed, left gyrotranslations and rotations in hyperbolic geometry form
the group of motions of the geometry, studied in [79, Section 3.12] and, according
to Felix Klein’s Erlangen Program, a geometric property is a property that remains
invariant in form under the motions of the geometry.

The following two corollaries of Theorem 18.3 prove useful.
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Corollary 18.4. Let S ={A1,...,An} CR? be a gyropointwise independent set
of N gyropoints in RY, and let

N
_ Zk:1 mk'YAkAk

r
N
D k=1 Mk 4,

(135)

be a gyrobarycentric coordinate representation of a gyropoint P € R™ with respect
to the set S. Furthermore, let mqg be the representation constant, given by

N 2 N
m2 = <ka> +2 ) mime(Yoa,0a, — 1)- (136)
k=1

J,k=1

i<k
Then, the point P lies in the ball R?, P € R, if and only if m3 > 0 (In other
words, the point P is a gyropoint if and only if mg > 0).

The proof of Corollary 18.4 is found in [72, Corollary 4.9].

Corollary 18.5. Let S = {A1,...,An} CR? be a gyropointwise independent set
of N gyropoints in RY, and let

S

N
_ 2kt YA, Ak

P
N
Zk:1 MEY A,

(137)

be a gyrobarycentric coordinate representation of a point P € R™ with respect to
the set S, with positive gyrobarycentric coordinates myi > 0, k =1,...,N. Then,
P e RY. Moreover, P lies on the the conver span of S if and only if my > 0,
k=1,...,N.

The proof of Corollary 18.5 is found in [72, Corollary 4.10]

19. Gyrolanguage

The checkered history of gyrolanguage begins in 1988 [54] with the discovery of
the parametric realization of the Lorentz transformation group of special rela-
tivity theory in terms of relativistically admissible velocities. It turned out that
the group structure of Lorentz transformations induces the gyrocommutative gy-
rogroup structure of the space R of all relativistically admissible velocities with
the binary operation @ given by Einstein’s velocity addition law.

The gyrocommutative gyrogroup structure (R2, &) that regulates Einstein ad-
dition was initially called a nonassociative group [55]. In the initial study of
the concrete example (R3, @), the gyrocommutative and gyroassociative laws of
Einstein addition were called weakly commutative and weakly associative laws
and, accordingly, gyrocommutative gyrogroups were called weakly associative-
commutative groups (WACGs, in short) [57]. Furthermore, in this initial study of
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gyrocommutative gyrogroups the rich algebra of the gyrations that are associated
with Einstein addition was discovered. Gyrations were called Thomas rotations
for being related to the special relativistic phenomenon known as Thomas preces-
sion [55]. The term K-loop with “K” after Karzel, which refers to the gyrocommu-
tative gyrogroup, was coined by the author in [56] as evidenced from [26, pp. 169-
170]. The term K-loop is in use by some authors, and its prehistory is unfolded
in [42, p. 142] and in [60, Remark 6.12].

Prior to its introduction by the author, the term “K-loop” has already been in
use by Soikis, in 1970 [45] and later, but independently, by Basarab, in 1992 [9].
Unlike the term “K-loop” that Ungar coined, the “K” in each of the terms “K-loop”
coined by Soikis and by Basarab does not refer to “Karzel”.

Finally, in 1991 [58] the author has realized that a most appropriate term
for the abstract Thomas precession is Thomas gyration (or gyration, in short) so
that, accordingly, the weakly commutative and weakly associative laws of Ein-
stein addition became the gyrocommutative and the gyroassociative laws. Hence,
consistently, the extension by abstraction of the Einstein groupoid (R3, @) is now
called a gyrocommutative gyrogroup.

Merging gyroterminology with terminology [59], the emergence of gyrolanguage
is thus natural. It is a language in which we prefix a gyro to terms that describe
concepts in algebra and geometry to mean the analogous concepts in gyroalgebra
and gyrogeometry. An interesting example is provided by the term gyrolayout,
which has been coined by D. K. Urribarri, S. M. Castro and S. R. Martig in
the title of their paper [81], where the 3-dimensional Einstein gyrovector space is
employed for the generation of computer hyperbolic visualization.
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Special Subgroups of Gyrogroups:

Commutators, Nuclei and Radical

Teerapong Suksumran®

Abstract

A gyrogroup is a nonassociative group-like structure modelled on the
space of relativistically admissible velocities with a binary operation given
by Einstein’s velocity addition law. In this article, we present a few of groups
sitting inside a gyrogroup G, including the commutator subgyrogroup, the
left nucleus, and the radical of G. The normal closure of the commutator
subgyrogroup, the left nucleus, and the radical of G are in particular normal
subgroups of G. We then give a criterion to determine when a subgyrogroup
H of a finite gyrogroup G, where the index [G: H] is the smallest prime
dividing |G/, is normal in G.

Keywords: Gyrogroup, commutator subgyrogroup, nucleus of gyrogroup,
subgyrogroup of prime index, radical of gyrogroup.
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1. Introduction

A gyrogroup, discovered by Abraham A. Ungar [16], is a nonassociative group-like
structure modelled on the space of relativistically admissible velocities, together
with Einstein’s velocity addition [18]. It is remarkable that the gyrogroup struc-
ture appears in various fields such as mathematical physics [10,17], non-Euclidean
geometry [19,20], group theory [6,7], loop theory [8,14], harmonic analysis [3,4],
abstract algebra [13,15], and analysis [1,2].

This article explores an algebraic aspect of gyrogroups. Recall that in ab-
stract algebra the following theme recurs: given an object X and a subobject Y,
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e

determine whether the quotient object X/Y has the same algebraic structure as
X. It is known, for instance, that a subgroup = of a group I' gives rise to the
quotient group I'/Z if and only if Z is normal in I". Sometimes, it is possible
to use information on a normal subgroup = and on the quotient I'/=Z to obtain
information about I'. Therefore, determining the normal subgroups of I" is useful
for studying properties of I itself. The situation in gyrogroup theory is analogous.
For example, the Lagrange theorem for finite gyrogroups follows from the fact that
every gyrogroup GG has a normal subgroup Z such that G/E is a gyrocommutative
gyrogroup [6, Theorem 4.11]. For more details, see Section 5 of [13]. From this
point of view, we examine some normal subgyrogroups of a gyrogroup that form
groups under the gyrogroup operation.

For basic knowledge of gyrogroup theory, the reader is referred to [13,15,19].
Here is the formal definition of a gyrogroup.

Definition 1.1 (Gyrogroup). A groupoid (G,®) is a gyrogroup if its binary
operation satisfies the following axioms.

(G1) There is an element 0 € G such that 0@ a = a for all a € G.
(G2) For each a € G, there is an element b € G such that b® a = 0.

(G3) For all a, b € G, there is an automorphism gyr [a, b] € Aut (G, ®) such that

a® (bdc)=(a®b)®gyr|a,blc (left gyroassociative law)
for all c € G.
(G4) For all a, b € G, gyr[a ® b,b] = gyr[a, b]. (left loop property)

2. The Commutator Subgyrogroup

Throughout this section, G is an arbitrary gyrogroup unless otherwise stated.

2.1 The Direct Product and Normal Closure

Recall that the intersection of normal subgroups of a group I' is again a normal
subgroup of I'. This result continues to hold for gyrogroups, as we will see shortly.
Because of the missing of associativity in gyrogroups, it is not straightforward to
determine whether a given subgyrogroup H of a gyrogroup G is normal in G. How-
ever, according to Theorem 2.3, the smallest (by inclusion) normal subgyrogroup
of G that contains H, called the normal closure of H, always exists. The normal
closure of H and H have some common features, and sometimes it is possible
to obtain information about H from the normal closure of H. See for instance
Corollary 2.12.
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Given an indexed family of gyrogroups {G;: i € I}, the direct product of G;,

1 € I, denoted by H G, consists of all functions f: I — U G; with the property
i€l i€l

that f(i) € G; for all i € I. For f,g € HG“ define a function f @ g by the

i€l
(fog)l)=fi)ogl), iel (1)
Theorem 2.1. Let {G;: i € I} be an indexed family of gyrogroups. The direct

equation

product HGi with operation defined by (f,g) — f ® g is a gyrogroup.
icl

Proof. Set G = HG,-. The zero function, i — 0, ¢ € I, is a left identity of
i€l

G. For each f € G, the function i — ©f(i), @ € I, is a left inverse of f. The

gyroautomorphisms of G are given by

(gyr [f, glh) (i) = gyr [f (), g(D]n(i), i€,

for all f,g,h € G. It is straightforward to check that the axioms of a gyrogroup
are satisfied. O

Theorem 2.2. Let {N;: i € I} be an indexed family of normal subgyrogroups of
G. Then the intersection m N; is a normal subgyrogroup of G.

il
Proof. For each ¢ € I, there exists a gyrogroup homomorphism ¢; of G to a

gyrogroup G; such that kerp, = N;. Set H = HG"' For each a € G, define a
icl

function ¢(a) by ¢(a)(i) = p;(a) for all i € I. Then a — p(a), a € G, defines a

gyrogroup homomorphism from G to H. Direct computation shows that ker p =

ﬂkerapi. Hence, ﬂNi = ﬂkerg@i =kerp JG. O
icl iel icl

Theorem 2.3. Let A be a nonempty subset of G. Then there exists a unique

normal subgyrogroup of G, denoted by (A), such that

1. AC (A4), and
2. if N<G and AC N, then (A) C N.

Proof. Set A = {K CG: K<4G and A C K}. By Theorem 2.2, (A) := ﬂ K

KecA
forms a normal subgyrogroup of G satisfying the two conditions. The uniqueness

of (A) follows from condition (2). O
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Definition 2.4 (Normal closure). Let A be a nonempty subset of a gyrogroup

G. The normal subgyrogroup (A) in Theorem 2.3 is called the normal closure of
A or normal subgyrogroup of G generated by A.

According to Theorem 2.3, the normal closure of A is the smallest (by inclusion)
normal subgyrogroup of G that contains A. Note that if A itself is a normal
subgyrogroup of G, then (A) = A. In other words, any normal subgyrogroup of
G equals its normal closure. The concept of normal closures is needed in studying

the commutator subgyrogroup of a gyrogroup in the next section.

2.2 Commutators

In this section, we extend the notion of commutators, which is defined for groups,
to gyrogroups. Recall that if I" is a group, then the commutator subgroup of T,
denoted by I", is the smallest normal subgroup of T" such that the quotient I'/T” is
an abelian group. Unlike the situation in group theory, it is still an open problem
whether the commutator subgyrogroup of a gyrogroup G, denoted by G’, is normal
in G. However, it is true that if G’ is normal in G, then the quotient G/G’ forms a
gyrocommutative gyrogroup. Therefore, we focus attention on the normal closure
of G’ instead of G’. It turns out that the normal closure of G’ is the smallest
normal subgyrogroup of G' such that the quotient G/(G’) is gyrocommutative.
Further, the normal closure of G’ (and hence G’) forms a subgroup of G, as we
will see shortly.

Let G be a gyrogroup. Given a,b € G, define the commutator of a and b,
denoted by [a, b], by the equation

[a,b] = S(a ®b) ® gyr [a,b](b D a). (2)

Define
G’ = ([a,b]: a,b € G), (3)

the subgyrogroup of G generated by commutators of elements from G, called
the commutator subgyrogroup of G. Note that if G is a gyrogroup with trivial
gyroautomorphisms, then G becomes a group, [a,b] becomes the group-theoretic
commutator of a and b, and G’ becomes the familiar commutator subgroup of G.

Theorem 2.5. Let G be a gyrogroup. Then the following hold.
1. For all a,b € G, [a,b] =0 if and only if a ® b= gyr [a,b](b D a).
2. For alla,be G, ©(a®b) = (0a0b)® [Oa,Ob).

3. If ¢ is a gyrogroup homomorphism of G, then ¢([a,b]) = [p(a), p(b)] for all
a,beq.

4. If T € Aut (G), then 7(G') = G'.

5. G' = {0} if and only if G is gyrocommutative.
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6. If G' 4G, then G/G' is gyrocommutative.

Proof. Ttem (1) follows from the left cancellation law.
To verify item (2), we compute

(©a©b) @ [Ga,0b] = gyr[©Ga,Obl(6bO a)
= gyr|a,b|(60S a)
S(a®b).

We have the first equation from the definition of a commutator; the second equation
from Theorem 2.34 of [19]; and the last equation from Theorem 2.11 of [19].
(3) By Proposition 23 of [15],

o([a,0) = @(S(a®b)®gyr[a,b)(b® a))
= O(p(a) ®p(b) ® gyr [p(a), p(b)](¢(b) ® ¢(a))
= [p(a), (b)].

(4) Let 7 € Aut(G). First, we prove that G’ C 7(G’). For all a,b € G, we
have [a,b] = 7([t7(a), 771(b)]) belongs to 7(G’). Hence, 7(G’) contains all the
commutators of G. Since G’ is the smallest subgyrogroup of G containing the
commutators of G and 7(G’) < G, it follows that G’ C 7(G’). Since 771 is also
in Aut (G), G" C 7=YG’). This implies 7(G") C 7(t71(G")) = G’ since 7 is a
bijection. Hence, 7(G') = G'.

Item (5) follows immediately from item (1).

(6) Suppose that G’ < G. Then G/G’ has the quotient gyrogroup structure.
Let a,b € G. According to Theorem 27 of [15], we have

S(ea@)a(bed)) =6(aab)ad)
= (6(a®?)) ® G
=((aob)®[ea,0h)) d G
=((cacb)®G)d ([a,6b & G)
=(Gaob) oG
=(CadG)d (b G)

=o(@aG)o (b ).

This proves that G/G’ satisfies the automorphic inverse property and so G/G’ is
gyrocommutative by Theorem 3.2 of [19]. O

A subgyrogroup H of G is called an L-subgyrogroup of G, denoted by H <p, G,
if gyrla,h](H) = H for all @ € G and h € H. For more information about
L-subgyrogroups, see Section 4 of [15].

Theorem 2.6. The commutator subgyrogroup of G is an L-subgyrogroup of G.
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Proof. By Theorem 2.5 (4), G’ is invariant under the gyroautomorphisms of G.
Hence, G’ <1, G. O

Proposition 2.7. Let N be a normal subgyrogroup of G. The following are
equivalent:

1. G/N is gyrocommutative.
2. G'CN.
3. [a,b] € N for all a,b € G.

Proof. (1) = (2) Let a,b € G. Set X =a® N and Y = b&® N. Since G/N is
gyrocommutative, X ®Y = gyr [X,Y](Y @ X). From Theorem 27 of [15], we have

(a®b)® N = (gyr[a,b](b® a)) & N.
It follows that

[a,b] ® N

(©(a®b) ®gyr[a,bl(bda)) ®N
((a®b) ® N)® (gyr[a,bl(b® a) ® N)

(adbd)dN)D ((a®b)® N)

® N.

S
S
0

Hence, [a,b] € N for all a,b € G and so G’ C N by the minimality of G'.

The implication (2) = (3) is trivial.

(3) = (1) Since N < G, G/N admits the quotient gyrogroup structure. The
proof that G/N is gyrocommutative follows the same steps as in the proof of
Theorem 2.5 (6). O

Theorem 2.8. The normal closure of G’ is the unique normal subgyrogroup of G
such that

1. G/{(G'") is gyrocommutative, and

2. if p: G — A is a gyrogroup homomorphism into a gyrocommutative gyro-
group A, then ¢ factors through (G') in the sense that (G') C ker ¢.

Proof. By Theorem 2.3, (G’)<G and G’ C (G’). Hence, by Proposition 2.7, G/(G’)
is gyrocommutative. Suppose that ¢: G — A is a gyrogroup homomorphism of
G, where A is a gyrocommutative gyrogroup. For a,b € G, we have

¢o([a,b]) = [p(a), (b)) =0

since ¢(a), p(b) € A and A is gyrocommutative. Thus, [a,b] € ker ¢ for all a,b € G,
which implies G’ C ker . Since ker ¢ < G, it follows from the minimality of (G’)
that (G”) C ker .
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(Uniqueness) Assume that K; and Ks are normal subgyrogroups of G that
satisfy the two conditions. Let II;: G — G/K; and Ils: G — G/Ks be the
canonical projections. As K satisfies the second condition and IIs is a gyrogroup
homomorphism, we have K; C kerIl, = K. Interchanging the roles of K; and
K5, one obtains that Ko C kerIl; = K;. Hence, K; = K. O

Theorem 2.8 implies the universal property of the normal closure of G’: given
any gyrogroup homomorphism ¢ from G to a gyrocommutative gyrogroup A, there
is a unique gyrogroup homomorphism ®: G//(G’) — A such that ® o IT = ¢, that
is, the following diagram commutes.

G k@ | (I)

G/{G"

A

Here, IT denotes the canonical projection given by Il(a) = a ® (G') for all a € G,
and & is given by

2(a® (G")) = ¢(a) (4)
forall a € G.

Theorem 2.9. Let N be a normal subgyrogroup of G. Then G/N is gyrocommu-
tative if and only if (G') C N.

Proof. Suppose that G/N is gyrocommutative. Then the canonical projection
II: G — G/N fits item (2) of Theorem 2.8. Hence, (G’) C kerIT = N. Conversely,
if (G’ C N, then G’ C N and so G/N is gyrocommutative by Proposition 2.7. [

Proposition 2.10. (G’) = {0} if and only if G is gyrocommutative.

Proof. If (G') = {0}, then G = G/{G") via the canonical projection. Hence, G is
gyrocommutative. Conversely, if G is gyrocommutative, then so is G/{0}. Hence,
(G'") C {0} by Theorem 2.9. This implies (G") = {0}. O

By a subgroup of a gyrogroup G we mean a subgyrogroup of G that forms
a group under the operation of G [13, Proposition 3.3]. One of the remarkable
consequences of Theorem 2.8 is that the normal closure of G’ (and hence G') is a
subgroup of G.

Theorem 2.11. The normal closure of G’ is a subgroup of G.

Proof. By Theorem 4.11 of [6], G has a normal subgroup = such that G/= is a
gyrocommutative gyrogroup. By Theorem 2.9, (G’) C Z. Since Z is a subgroup
of G, so is (G'). O
Corollary 2.12. The commutator subgyrogroup of G is a subgroup of G.

Proof. The corollary follows from the fact that G’ C (G). O



60 T. Suksumran

3. Nuclei and the Radical of a Gyrogroup

Throughout this section, G is an arbitrary gyrogroup. We follow [5] in presenting
a few normal subgroups sitting inside a gyrogroup. The main goal of this section
is to prove that the left nucleus and radical of G are normal subgyrogroups of G
that form groups under the gyrogroup operation. The key idea is as follows. Every
gyrogroup can be embedded into its left multiplication group, and normality of
the subgyrogroup under consideration follows from normality of the corresponding
subgroup of the left multiplication group. This in particular shows a remarkable
connection between groups and gyrogroups.

As in loop theory, the left nucleus, middle nucleus, and right nucleus of G are
defined, respectively, by

N(G)={aeG:Yb,ceG, ad(bd®c)=(a®b)®c},
Np(G)={beG:Va,ceG, a® (bDc)=(aDdb) Dc},
N.(G)={ceG:Va,be G, a®d (bdc)=(a®b) ®c}.

Since G satisfies the left gyroassociative law and the general left cancellation law,
the left nucleus, middle nucleus, and right nucleus of G can be restated in terms
of gyroautomorphisms as follows:

N(G) ={a e G:V¥beG, gyr[a,b] =idg},
Ny (G)={be G:Va € G, gyrla,b] =idg},
N,.(G) ={ce G: Va,b e G, gyra,blc=c}.

By Theorem 2.34 of [19], gyr~'[a, b] = gyr [b, a] for all a,b € G. It follows that the
left nucleus and middle nucleus of G are identical.

Theorem 3.1. The left nucleus, middle nucleus, and right nucleus of G are L-
subgyrogroups of G. Furthermore, they are subgroups of G.

Proof. Because gyr [0,a] = idg for all @ € G, 0 € N;(G). Let a € N;(G) and let
b € G. By Theorem 2.34 of [19], gyr [©a, b] = gyr [©a, ©(6b)] = gyr [a, Ob] = id¢.
Hence, ©a is in N;(G). Let a,b € N;(G) and let ¢,z € G. According to the gyrator
identity [19, Theorem 2.10], we compute

(a@b)®(cdx))
2 ® (b® gyt [b,a](c ©2))
a® (b (cdw)))
a®((bdc)dx))
a® (bdc))
a®b)dc)

gyrla®b,de =0

x)

e
@ x)

—~

I
EENORORBORORNO)
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We have the second equation from the right gyroassociative law; the third and
forth equations since b € N;(G); the fifth and sixth equations since a € N;(G); the
last equation from the left cancellation law. Since z is arbitrary, gyr[a ® b, c] =
idg and so a @ b € Ni(G). By the subgyrogroup criterion [15, Proposition 14],
Ni(G) < G. By definition of Ni(G), Ni(G) <r G. Since gyr [a,b]|n,()= 1dw, (@)
for all a,b € Ni(G), N;(G) is a subgroup of G. Since N,,(G) = Ni(G), we have
N, (G) €1, G and N,,(G) is a subgroup of G as well. The proof that N,.(G) is an
L-subgyrogroup and a subgroup of G is straightforward. O

Let a be an arbitrary element of G. Recall that the left gyrotranslation by a,
L, is a permutation of G defined by

Ly(z) =a®ux, z € G.

For a given subgyrogroup H of G, define L(H) = {L,: a € H}. In the case H = G,
we have L(G) = {L,: a € G}. The left multiplication group of G, LMIt (G), is the
subgroup of the symmetric group on G generated by L(G). In other words,

LMt (G) = (Lq: a € G).

A subset X of a group I is a twisted subgroup [5, p. 187] of T'if 1 € X, 1 being
the identity element of I'; z € X implies z7! € X; and z,y € X implies zyz € X.

Theorem 3.2. L(G) is a twisted subgroup of LMIt (G).

Proof. The theorem follows from the fact that L;! = Lo, and
La o Lb o La = L(aEBb)EEa

for all a,b € G. Here, the coaddition B of G is defined by a Bb = a @ gyr [a, ©b]b
for all a,b € G. O

In light of Theorem 3.2, L(G) is a generating twisted subgroup of LMlt (G).
This leads to the following theorem.

Theorem 3.3. Define
L(G)* = () LaL(G).

a€eG

Then L(G)# is a normal subgroup of LMlt (G) contained in L(G).
Proof. The theorem is an application of Theorem 3.8 of [5]. O
Theorem 3.4. L(N;(Q)) is a normal subgroup of LMt (G).

Proof. From Theorem 5.7 of [5], we have L(N;(G)) = L(G)#. Hence, L(N,;(G)) is
a normal subgroup of LMIt (G) by Theorem 3.3. O
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Following [5], we define
L(G) ={L4y0Lgy0--+0Lg, :a; €Gand Ly, 0Ly, ,0-- 0L, =idg}. (5)

Since L(G) is a generating twisted subgroup of LMIt (G), it follows from a result
of Foguel, Kinyon, and Phillips [5, p. 189] that L(G)’ is a normal subgroup of
LMIt (G). In fact, we have the following theorem.

Theorem 3.5. L(G)' is a normal subgroup of LMlt (G) such that L(G)" C L(G)*.

Proof. The theorem follows directly from Proposition 3.10 of [5]. O

Set Symy(G) = {0 € Sym (G): o(0) = 0}. Note that L(G)NSymy(G) = {idg}.
This implies that if G is a gyrogroup with a nonidentity gyroautomorphism, say
gyr [a, b], then L(G) is a proper twisted subgroup of LMIt (G). In fact, gyr [a,b] =

L;éb o Lg o Ly belongs to LMIt (G), but does not belong to L(G) since otherwise

gyr [a, b] would belong to L(G)NSym,(G) = {id¢}. In this case, L(G)" and L(G)#
form proper normal subgroups of LMIt (G) for they are contained in L(G).

The following proposition provides a sufficient condition for normality of a
subgyrogroup. As an application of this proposition, we prove that the left nucleus
and radical of G are normal subgyrogroups of G.

Proposition 3.6 ([11]). If H is a subgyrogroup of G such that
1. gyr[h,a] =idg for allh € H,a € G,
2. gyrla,b|(H) C H for all a,b € G, and
3.a®H=H®a foralacd,
then H is a normal subgyrogroup of G.
Lemma 3.7. Let G be a gyrogroup. Then
L. gyr[a,b](N:(G)) € Ni(G) for all a,b € G, and
2. N(G)®a=adN(G) foralla € G.

Proof. (1) Set N = N;(G) and let n be an arbitrary element of N. Let a,b € G.
According to the commutation relation [15, Equation (14)], we have

Lgyr la,bln = BYT [av b] oL,o gyril [av b]

Since gyr [a, b] € LMIt (G) and L(N)<LMIt (G), it follows that Lgy, 4,4)» Delongs to
L(N). Hence, Lgyy(q.4)n = Li for some 71 € N, which implies gyr [a,bln =71 € N.
Since n is arbitrary, we obtain gyr [a,b](N) C N.
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(2) Let a € G and let n € N. By the left cancellation law, z = Sa ® (n ® a) is
such that n ® a = a & x. We compute

Ly, = Lea@(n@a)
= L(ea@n)@a
= Leaen © La o gyr ™' [Ga ® n, ]
= Loagn © Lo o gyr™ ' [Ca @ n,a @ (Sa ®n)]
= Leaan © La 0 gyr ' [©a & n,n]
= Logan © Lg
= Lego Ly ogyr *[Sa,n]o L,
=L 'oL,0L,.

We obtain the second equation since n € N = N,,,(G); the third and seventh
equations from the identity L,ap = Lq © Ly o gyr~![a, b]; the forth equation from
the right loop property; the sixth and last equations since n € N. Since L(N) <
LMlt (G), we have L, € L(N), which implies z € N. Thus, N®a Ca@® N.
From Lemma 2.19 of [19], we can let y € G be such that a ®n =y ® a. To
conclude that a ® N C N @ a, we have to show that y belongs to N. In fact, one
obtains similarly that L,, = L, 'oL,o0L,, which implies L, = L,oL 0L, € L(N).
Hence, y € N, as desired. O

Theorem 3.8. The left nucleus of G is a normal subgroup of G.

Proof. The theorem follows immediately from Theorem 3.1, Proposition 3.6, the
defining property of N;(G), and Lemma 3.7. O

Corollary 3.9. The middle nucleus of G is a normal subgroup of G.
Proof. This is because the left nucleus and middle nucleus of G are the same. [

Following [5], the radical of G, denoted by Rad (G), is defined by
Rad (G) ={a € G: L, € L(G)'}. (6)

Theorem 3.10. The radical of G is a subgroup of G contained in the left nucleus
of G.

Proof. First, we prove that Rad (G) C N;(G). Let a € Rad (G). Then L, € L(G)'.
By Theorem 3.5, L(G)' C L(G)# and by Theorem 5.7 of [5], L(G)# = L(N,(Q)).
It follows that L, € L(N;(G)), which implies a € N;(G).

Let a € Rad (G). Then Lo, = L;! € L(G) for L(G)" < LMIt (G). Hence,
©a € Rad (G). Let a,b € Rad (G). Since Rad (G) C N;(G), gyr [a,b] = idg. Thus,
Logh = Lo o Ly o gyr~t[a,b] = L, o Ly, € L(G)'. This proves a & b € Rad (G) and
by the subgyrogroup criterion, Rad (G) < G. Since N;(G) is a subgroup of G, so
is Rad (G). O
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Lemma 3.11. Let G be a gyrogroup. Then
1. gyra,b](Rad (G)) C Rad (GQ) for all a,b € G, and
2. Rad(G)@a=a@®Rad(G) foralla € G.

Proof. The proof of this lemma follows the same steps as in the proof of Lemma
3.7 with appropriate modifications. O

Theorem 3.12. The radical of G is a normal subgroup of G.

Proof. The theorem follows directly from Proposition 3.6, Theorem 3.10, and
Lemma 3.11. O

Note that a gyrogroup G is a group if and only if G equals its left nucleus.
Hence, if G is a gyrogroup that is not a group, then N;(G) and Rad (G) are proper
normal subgroups of G. Note also that normality of N;(G) and Rad (G) in G
follows from normality of L(N;(G)) and L(L(G)’) in the left multiplication group
of G, see the proof of Lemma 3.7.

4. Subgyrogroups of Prime Index

Motivated by the study of subgroups of prime index in [9], we study subgyrogroups
of prime index. Specifically, we are going to prove a gyrogroup version of the
following well-known result in abstract algebra: if = is a subgroup of a finite group
" such that the index [I': Z] is the smallest prime dividing the order of I, then =
is normal in I [9, Theorem 1]. It is notable that normality of a subgyrogroup H of
a finite gyrogroup G, where [G: H] is the smallest prime dividing the order of G,
depends on the invariance of the left cosets of H in G under the gyroautomorphisms
of GG, see Theorem 4.4.

Unless stated otherwise, GG is an arbitrary finite gyrogroup.

Let G be a gyrogroup, let a € G, and let m € Z. Define recursively the
following notation:

0a=0, ma=ad®((m—1a),m>1, ma=(—m)(Sa), m <O0. (7)
By induction, one can verify the following usual rules of integral multiples:
1. (—m)a = &(ma) = m(Sa),
2. (m+k)a = (ma) ® (ka), and
3. (mk)a = m(ka)
for all a € G and m, k € Z.

Theorem 4.1. Suppose that H is a subgyrogroup of a gyrogroup G such that
[G: H] = p, p being a prime. The following are equivalent:
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1. Foranya € G—H, pa € H.

2. For any a € G — H, na € H for some positive integer n, depending on a,
with no prime divisor less than p.

3. Foranya€ G—H, a,2a,...,(p—1)a g H.

Proof. (1) = (2) Choosing n = p gives item (2).

(2) = (3) Let @ € G — H and let n be as in item (2). By the well-ordering
principle, we can let s be the smallest positive integer such that sa € H. Note that
s> 1. Write n = st +r with 0 <r < s. Then ra = (n — st)a = (na) ® (—st)a =
(na) © (t(sa)). Thus, ra € H for na,sa € H. The minimality of s forces r = 0,
son = st. If s < p, then s (and hence n) would have a prime divisor less than p.
Hence, s > p, which implies a,2a,...,(p —1)a & H.

(3) = (1) First, we prove that 0@ H,a® H,...,(p— 1)a® H are all distinct.
Assume to the contrary that ra ® H = sa @ H for some integers r and s such
that 0 < r < s < p—1. Then sa = (ra) ® h for some h € H. It follows that
(=r + s)a = ©(ra) @ (sa) = h € H. This contradicts the assumption because
0<s—r<p.

Since |G/H| = [G: H] = p, we have G/H ={0® H,a® H,...,(p—1)a® H}.
Hence, pa ® H = ta @ H for some t with 0 <t < p — 1. As before, the equality
gives (p —t)a € H. Since 0 <t < p—1, we have 1 < p —¢ < p. By assumption,
p —t = p, which implies t = 0. Hence, pa ® H =0® H = H andsopa € H. [

Proposition 4.2. Let H be a subgyrogroup of a gyrogroup G such that [G: H| = p,
p being a prime. If H satisfies one of the conditions in Theorem 4.1, then

G/H={0®H,a®H,...,(p—1)a®d H}
foranya e G- H.

Proof. There is no loss in assuming that H satisfies condition (3) of Theorem 4.1.
As proved in Theorem 4.1, G/H ={0® H,...,(p—1)a@® H} forany a ¢ H. O

Proposition 4.3. Let H be a subgyrogroup of G. If [G: H] is the smallest prime
dividing the order of G, then H satisfies condition (2) of Theorem 4.1.

Proof. By Proposition 6.1 of [13], |Gla = 0 € H. Since |G| has no prime divisors
less than [G: H], condition (2) of Theorem 4.1 holds. O

Theorem 4.4. Let H be a subgyrogroup of G such that [G: H| is the smallest
prime dividing the order of G. Then H < G if and only if there is an element
y € G — H such that

gyr[a,b](iy & H) Ciy o H
for alla,b € G and i€ {0,1,...,p—1}.
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Proof. Set [G: H| = p.

(=) Suppose that H < G. Then G/H admits the gyrogroup structure and
becomes a gyrogroup of order p. By Theorem 6.2 of [13], G/H forms a cyclic group.
In particular, gyr [X,Y]Z = Z for all X,Y,Z € G/H. Let a,b,c be arbitrary
elements of G. Set X =a® H and Y = b@ H. From Theorem 27 of [15], we have
c®H =gyr[X,Y](c®» H) = (gyra,blc) ® H. Since H A G, gyr[a,b](H) = H,
which implies (gyr [a, blc)® H = gyr [a, b](c ® H). Hence, gyr [a,bl(c® H) = ¢ H.

(<) Let y be as in the assumption. By Propositions 4.2 and 4.3,

G/H={0@&H,y®H,...,p—1)y®d H}.
For each x € G, x @ H = iy ® H for some i € {0,1,...,p — 1}. By assumption,
gyt [a,b](z ® H) = gyr[a,b](iy ® H) Ciy® H =2 @ H.

By Theorem 4.5 of [12], G acts on G/ H by left gyroaddition. By Proposition 3.5 (2)
and Theorem 4.6 of [12], ker¢p C H, where ¢ is the associated permutation
representation of G. By the first isomorphism theorem [15, Theorem 28],

G/kerp 2 Im¢ < Sym (G/H).
Hence, [G: ker ¢] divides p!. Since ker ¢ <y, G and H <, G, we have
[G: kerg| = [G: H|[H: ker¢| = p[H: ker ¢,

which implies [H: ker ¢] divides (p—1)!. If [H: ker¢] > 1, one would find a prime
q dividing [H: ker ¢] and would have ¢|(p — 1)!. Thus, ¢ < p and ¢ divides |H]|.
Since | H| divides |G|, we have ¢ divides |G|, a contradiction. Hence, [H : ker ¢] =1
and so H = ker ¢ < G. O

Recall from abstract algebra that a subgroup of a group I' of index two is
normal in I'. This result can be generalized to the case of gyrogroups as follows.

Theorem 4.5. If H is a subgyrogroup of G such that gyr[a,b](H) C H for all
a,b € G and |G: H] =2, then H QG.

Proof. Let y € G — H be fixed. By Propositions 4.2 and 4.3, G/H = {H,y ¢ H}.
To complete the proof, we show that gyr[a,b](y & H) C y & H for all a,b € G.
If z € gyr[a,b](y ® H), then z = gyra,b](y ® h) = (gyr [a,bly) & (gyr [a,b]h) for
some h € H. By assumption, z € (gyr [a,bly) ® H. Note that gyr[a,bly & H since
otherwise gyr [a, bly = h € H would imply y = gyr’l[a,bﬁz = gyr[b, aﬁz € H, a
contradiction. Hence, (gyr[a,bly) @ H = y @ H and so z € y & H. This proves
gyr[a,bl(x @ H) Cax @ H for all a,b,x € G. By Theorem 4.4, H 1 G. O
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Gyroharmonic Analysis on

Relativistic Gyrogroups

Milton Ferreira®

Abstract

Einstein, Mobius, and Proper Velocity gyrogroups are relativistic gy-
rogroups that appear as three different realizations of the proper Lorentz
group in the real Minkowski space-time R™!. Using the gyrolanguage we
study their gyroharmonic analysis. Although there is an algebraic gyroiso-
morphism between the three models we show that there are some differences
between them. Our study focus on the translation and convolution oper-
ators, eigenfunctions of the Laplace-Beltrami operator, Poisson transform,
Fourier-Helgason transform, its inverse, and Plancherel’s Theorem. We show
that in the limit of large ¢, ¢ — +o00, the resulting gyroharmonic analysis
tends to the standard Euclidean harmonic analysis on R"™, thus unifying
hyperbolic and Euclidean harmonic analysis.

Keywords: Gyrogroups, gyroharmonic analysis, Laplace Beltrami operator,
eigenfunctions, generalized Helgason-Fourier transform, Plancherel’s theo-
rem.
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1. Introduction

Harmonic analysis is the branch of mathematics that studies the representation of
functions or signals as the superposition of basic waves called harmonics. Closely
related is the study of Fourier series and Fourier transforms. Its applications are
of major importance and can be found in diverse areas such as signal processing,
quantum mechanics, and neuroscience (see [23] for an overview). The classical
Fourier transform on R™ is still an area of research, particularly concerning Fourier
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transformation on more general objects such as tempered distributions. Some of
its properties can be translated in terms of the Fourier transform. For instance, the
Paley-Wiener theorem states that if a function is a nonzero distribution of compact
support then its Fourier transform is never compactly supported [22]. This is a
very elementary form of an uncertainty principle in the harmonic analysis setting.
Fourier series can be conveniently studied in the context of Hilbert spaces, which
provides a connection between harmonic analysis and functional analysis.

In the last century the Fourier transform was generalised to compact groups,
abelian locally compact groups, symmetric spaces, etc.. For compact groups, the
Peter-Weyl theorem establish the relationship between harmonics and irreducible
representations. This choice of harmonics enjoys some of the useful properties
of the classical Fourier transform in terms of carrying convolutions to pointwise
products, or otherwise showing a certain understanding of the underlying group
structure. For general nonabelian locally compact groups, harmonic analysis is
closely related to the theory of unitary group representations. Noncommutative
harmonic analysis appeared mainly in the context of symmetric spaces where many
Lie groups are locally compact and noncommutative. These examples are of in-
terest and frequently applied in mathematical physics, and contemporary number
theory, particularly automorphic representations. The development of noncommu-
tative harmonic analysis was done by many mathematicians like John von Neu-
mann, Harisch-Chandra and Sigurdur Helgason [13,14].

It is well-known that Fourier analysis is intimately connected with the action
of the group of translations on Euclidean space. The group structure enters into
the study of harmonic analysis by allowing the consideration of the translates of
the object under study (functions, measures, etc.). First we study the spectral
analysis finding the elementary components for the decomposition and second we
perform the harmonic or spectral synthesis, finding a way in which the object
can be construed as a combination of its elementary components [16]. Harmonic
analysis in Euclidean spaces is rich because of its connection with several classes
of transformations: the dilations and the rotations as well as the translations. The
Fourier transform in R™ has a very simple transformation law under dilations and
it commutes with the action of rotations.

The real hyperbolic space is commonly viewed as a homogeneous space obtained
from the quotient SOg(n,1)/SO(n) where SOg(n,1) is the proper Lorentz group
in the Minkowski space R™! and SO(n) is the special orthogonal group. It is well
known that pure Lorentz transformations (the translations in hyperbolic space)
do not form a group since the composition of two is no longer a pure Lorentz
transformation. However, by incorporating the gyration operator it is possible to
obtain a gyroassociative law. The resulting algebraic structure called gyrogroup
by A.A. Ungar [25] repairs the breakdown of associativity and commutativity of
the relativistic additions. The gyrogroup structure is a natural extension of the
group structure, discovered in 1988 by A. A. Ungar in the context of Einstein’s
velocity addition law [24,25]. It has been studied by A. A. Ungar and others
see, for instance, [6,8,26,27,29,30]. Gyrogroups provide a fruitful bridge between
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nonassociative algebra and hyperbolic geometry, just as groups lay the bridge
between associative algebra and Euclidean geometry.

In this survey paper we show the similarities and differences between gyro-
harmonic analysis on three relativistic gyrogroups: Mébius, Einstein, and Proper
Velocity gyrogroups. For the Mébius and Eintein cases we provide a generalization
of the results in [9,10] by replacing the real parameter o by a complex parameter z,
under the identification 2z = n+ o0 — 2, where n is the dimension of the hyperbolic
space.

The paper is organized as follows. In Section 2 we review harmonic analy-
sis on R™ as spectral theory of the Laplace operator. In Sections 3, 4, and 5 we
present the results concerning gyroharmonic analysis for the Einstein, Mobius, and
Proper Velocity gyrogroups, respectively. Each of these sections focus the follow-
ing aspects: the relativistic addition and its properties, the generalised translation
operator and the associated convolution operator, the eigenfunctions of the gen-
eralised Laplace-Beltrami operator, the generalized spherical functions, the gener-
alized Poisson transform, the generalized Helgason Fourier transform, its inverse
and Plancherel’s Theorem. We show that in the limit ¢ — 400 we recover the
well-known results in Euclidean harmonic analysis. Two appendices, A and B,
concerning all necessary facts on spherical harmonics and Jacobi functions, are
found at the end of the paper.

2. Euclidean Harmonic Analysis Revisited

Euclidean harmonic analysis in R™ is associated to the translation group (R",+)
and the spectral theory of the Laplace operator A. The Fourier transform of f €
LY(R™) N L?(R") is defined by

GO = [ 0w e
Since § is a unitary operator on L*(R™) N L?(R™) which is dense in L?(R™) then
the Fourier transform can be uniquely extended to a unitary operator in L?(R"),

denoted by the same symbol. Denoting (Ff)(&) = f(g) we can write the Fourier
inverse formula in polar coordinates

) = 1 - iy ” ei)\<:c,u) U) n—1
f() (%)”/o (/Snlf(A) du ) A1 dA.

The expression in parenthesis is an eigenfunction of the Laplace operator with
eigenvalue —\? (Afy, = —)\2f)). Thus, the function f can be represented by an
integral of such eigenfunctions. Defining the spectral projection operator

1
(2m)"

Prf(z) = )\"_1/5 » f()\u) eM@u) gy



72 M. Ferreira

we obtain the spectral representation formula

fla) = [ T Paf(a) d

We can also write

Paf@) = [ oalle =) (0) do )
where
oa(r) = (27r)_%)\%r1_%J%,1(r)\)

is a multiple of the usual spherical function, because (0) = (27) "\ lw, 4
instead of one. Formula (1) involves only the distance |z — y| between points in
R™ and the Euclidean measure, which are both invariants of the Euclidean motion
group. The following characterisation of Py f for f € L?(R") was given in [21]

Theorem 2.1. [21] Let fr(x) be a measurable function on (0,00) X R™ such that
Afyx = —N2fy for almost every \. Then there exists f € L*(R™) with Pyf = fx
a.e. if and only if one of the following equivalent conditions holds:

(7) /0 (Sﬁ)i/&,(z) |fa(2))? d:c) d\ < 00

<1
(41) sup/ f/ |fa(2)]? dz d)\ < oo
=t Jo tJB,(2)

t
1 2
(#i1) lim — |fa(z)]? dz ) dX < oo for some z
0 t—oo t Bi(2)

1
(fv)  lim / ?/ |fa(x)? ded) < oo, for some 2.
0 By(z)

t—o0

Furthermore, we have

> 1
f2:7r/ limf/ f(x)? dz | dA.
/112 Ly Bt(z)l (@)

3. Gyroharmonic Analysis on the Einstein Gyrogroup

3.1 Einstein Addition in the Ball

The Beltrami-Klein model of the n—dimensional real hyperbolic geometry can be
realised as the open ball B} = {z € R" : ||z|| < t} of R", endowed with the
Riemannian metric

ds® =

lde]® _ ({@dz)*
1- 2 t2(1_W)2

t2
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This metric corresponds to the metric tensor
52']' xixj
2 + 29
1 — Izl |
72 (1 - —)

t2

gij(x) = i,7€{l,...,n}

and its inverse is given by

i z|? T\
g (z) = (1_t2”> (51“7‘—7]), i,7€{1,...,n}.

The group of all isometries of the Klein model [34] consists of the elements of
the group O(n) and the mappings given by

a+ Pa(x) + MaQa(x)

To(z) = 2
where
_[{e2) e ifa#0 _ _ lall?
nw={ 7Y Que) = Pule), and =1 1%

Some properties are listed in the next proposition.

Proposition 3.1. Let a € B}. Then
(i) P2=P,, Q>=Q., (a,Pi(x))=/{a,z), and {(a,Q.(z))=0.
(ii) To(0) = a and Ty(—a)=0.

(it1) Tu(T_o(2)) = T_o(Ta(z)) =3, Yz € By,

w) T, iti = iti. Moreover, T, fizes two points on OB} and no point
lall llall !
a a
of BY.

(v) The identity

e (1) (- 42) @)

t2 (1 + <wt2a>> (1 + <'t72a>)

holds for all z,y € BY. In particular, when x =y we have
9 1= lal®y (1 — L=l
[T ()] & &
1= - 2
t2 (z,a)
(1+42)

and when x =0 in (3) we obtain

2
1_ (a, Tu(y)) _ 1- H(tl% (5)
tQ 1 + <yaa> ’
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(vi) For R € O(n)
RoT,=TrqoR. (6)

To endow the ball B} with a binary operation, closely related to vector addition
in R", we define the Einstein addition on B} by

a®z:=Ty(x), a,zecB} (7)

This definition agrees with Ungar’s definition for the Einstein addition since we
can write (2) as

1 1
adx <a+x+ il (a,a:}a) (8)
i Y

T + {a2)

12

-1

where 7, = <\ /1 — ";f) is the relativistic gamma factor.

It is known that (B}, ®) is a gyrogroup (see [24,27]), i.e., it satisfies the fol-
lowing axioms:

(G1) There is at least one element 0 satisfying 0 ® a = a, for all a € B};
(G2) For each a € B there is an element ©a € B} such that ©a & a = 0;

(G3) For any a,b,c € B} there exists a unique element gyr|a, bjc € B} such that
the binary operation satisfies the left gyroassociative law

a® (bdc)=(a®b) D gyra,blc (9)

(G4) The map gyr[a,b] : B} — B} given by ¢ — gyr|a,blc is an automorphism of
(B}, @);

(G5) The gyroautomorphism gyr|a,b] possesses the left loop property
gyrla,b] = gyrla ® b, b] (10)
for all a,b € B.

The gyration operator can be given in terms of the Einstein addition ® by the
equation (see [27])

gyrfable = S(a @) @ (a® (b & o)),
The Einstein gyrogroup is gyrocommutative since Einstein addition satisfies
a®b=gyr[a,bl(b® a). (11)

In the limit ¢ — +o00, the ball B} expands to the whole of the space R"™, Einstein
addition reduces to vector addition in R™ and, therefore, the gyrogroup (B}, @)
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reduces to the translation group (R™, +). Some useful gyrogroup identities ( [27],
pp. 48 and 68) that will be used in this paper are

S(a®b) = (ca) ® (D)
a®(©Cadb)=0>
(gyr[a, b))~ = gyr[b, a]
gyr [a ®b, @a] = gyr [aa b]
gyr [Sa, ©b] = gyr [a, b]
gyr[a, ©a] =1
eyt [a,b(b® (&) = (e @ b) &
Properties (14) and (15) are valid for general gyrogroups while properties (12) an
(18) are valid only for gyrocommutative gyrogroups. Combining formulas (15) and
(18) with (14) we obtain the identities

—_
[\
~

— =
= W
S—

NN N N~~~
—_ = = =
o ~J S Ot

(e TN ZNED NN

gyr [@aa ad b] = gyr [ba a] (19)
bd (a®c)=gyr[b,al((a®b) D c). (20)
In the special case when n = 1, the Einstein gyrogroup becomes a group

since gyrations are trivial (a trivial map being the identity map). For n > 2 the
gyrosemidirect product of (B}, @) and O(n) (see [27]) gives the group B} x4, O(n)
for the operation

(a, R)(b,S) = (a ® Rb, gyr [a, RB]RS) .

This group is a realisation of the Lorentz group O(n,1). In the limit ¢ — +o0
the group B} x4y, O(n) reduces to the Euclidean group E(n) = R™ x O(n). In [9]
we developed the harmonic analysis on the Einstein gyrogroup depending on a
real parameter 0. We provide here a generalization of these results considering a
complex parameter z, under the identification 2z = n + o — 2. Most of the proofs
are analogous as in [9] and therefore will be omitted.

3.2 The Generalised Translation and Convolution

Definition 3.2. For a complex valued function f defined on B}, a € B} and
z € C we define the generalised translation operator 7, f by

Taf () = ja(2) f((—a) © z) (21)

with the automorphic factor j,(z) given by

; i 22
Ja(fﬂ)— W . ( )

For z = n + 1 the multiplicative factor j,(z) agrees with the Jacobian of the
transformation T_,(z) = (—a) @ x. For any z € C, we obtain in the limit ¢ — +o0
the Euclidean translation operator 7, f(z) = f(—a+ z) = f(x — a).
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Lemma 3.3. For any a,b,z,y € B} the following relations hold
j_ 23
24

25

<

) (=) = ja(2) (
) (a)ja(0) =1 (
) Ja(@) = ju(a)ja(0)5a(2) (
) Jala®a) = (jalx)) ! (26
) (0) = Jzw(-a)(0) = jz(a)ja(0) = ja(2)jx(0) (27
) dase((=a) @ 2) = (Jol2) " u(@) (28
(vit)  Tady(®) = [T—ajz(y)]iz(2)y(0) (29
i) (
) (
) (
) (
) (
) (

S

a

Ja
j(—a)@m

(viii)  T_aja(z) =1 30
(tx)  Tady(T) = Jagy(2) 31
(0) 7l (@) = e (—ey [ aJa))ja 0)fu () 32
(z1)  m7af(2) = Togaf(gyr[a, 0] x) 33
(zii)  T_aTaf(x) = f(2) 34

N Y~ Y N N~ Y Y —

TbTaf(x) = [beTmf(—gyr [_bv D a] gyr [(E, a] a)] ja (O)Jm (1') 35

For the translation operator to be an unitary operator we have to properly de-
fine a Hilbert space. We consider the complex weighted Hilbert space L?(B2, du. ;)

with )
2\ 25
= (1Y,

where dz stands for the Lebesgue measure in R™. For the special case z = 0 we
recover the invariant measure associated to the transformations T, (x).

Proposition 3.4. For f,g € L*(B},du..) and a € B} we have

[ b @) 5@ dpeato) = [ 1@) g @) diealo) (36)
Corollary 3.5. For f,g € L*(B?,du.+) and a € B} we have
() [ 7uf@) dpsla) = [ F@)iala) duzafo) ()
By By
(il) /=0 then / Taf (@) dpey(@) = | F@) dpieo(a); (38)
By By
(iii) |I7afll> = [I/]]2 (39)

From Corollary 3.5 we see that the generalised translation 7, is an unitary operator
in L2(IB%?, dp,+) and the measure dpu,, is translation invariant only for the case
z = 0. Now we define the generalised convolution of two functions in Bj}.
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Definition 3.6. The generalised convolution of two measurable functions f and
g is given by

(Fr9)w) = | F0) 7o) jo(o) dreely), w € By (40)

By Proposition 3.4 and the change of variables —y +— 2z we can see that the
generalised convolution is commutative, i.e., f x g = g * f.

Before we prove that it is well defined for Re(z) < 251
lemma.

we need the following
Lemma 3.7. Let Re(z) < 251, Then

/Snf1 |72 (ré) ju(x)| do(&) < C,
with
) i Re(2) €] - 1,0]
= r(3) (225521
P (2 p (neheemt)

Proof. Using (A.2) in Appendix A we obtain

if Re(z) €] — oo, 1] U [0, 252

é”mmummm@ZQH(

Re(z) Re(z) +1 n r?[zf?
2 7 2 27 ¢4 ’

Re(z) Re(z)+1
2 0 2

Considering the function g(s) = 2 F} (
(A.6) in Appendix A we get

x s) and applying (A.8) and

J(s) = Re(z)(f;t;(z) + 1)2F1 (Re(z2) + 2’ Re(z2) + 3; g et s)
Re(z)(Re(z) + 1) no2Re(2)=3 n—Re(z) n—Re(z) -1 n )
= T(lfs) 2F1< 2 ) B ,§+1,8).

(I) (I1)

Since Re(z) < ”Tfl then the hypergeometric function (IT) is positive for s > 0,
and therefore, positive on the interval [0, 1]. Studying the sign of (I) we conclude
that the function g is strictly increasing when Re(z) €] — oo, —1] U [0, 252 [ and
strictly decreasing when Re(z) €] — 1,0[. Since Re(z) < %71, then it exists the

5
limit lim,_,;- g(s) and by (A.5) it is given by

P50 ()

n—Re(z) —Re(2)-1)"
F(L 2ez)r(n 622 )

g(1) =
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Thus,
9(s) < max{g(0),9(1)} = C:
with g(0) = 1. O

Proposition 3.8. Let Re(z) < 7% and f,g € L*(B},dpu. ). Then

1f =gl < C: I f]l1 191 (42)
where g(r) = esssup g(gyr [y, r€]rl) for any r € [0,¢[.
gegnfl
yEeBY

In the special case when ¢ is a radial function we obtain as a corollary that
[1f*glli < C.llfll1llgl|1 since g = g. We can also prove that for f € L= (B}, du. )
and g € L*(B?,du, +) we have the inequality

1F # glloe < C2 g1 [1f]]oo- (43)

By (42), (43), and the Riesz-Thorin interpolation Theorem we further obtain for
f€LP(BY,du,,) and g € L'(BY,dp, ;) the inequality

F* gllp < C= gl [1£1]p-

To obtain a Young’s inequality for the generalised convolution we restrict ourselves
to the case Re(z) < 0.

Theorem 3.9. Let Re(z) < 0, 1 < p,q,r < o0, %—i—% =1+ %, s=1-14,
feLP(B},du,s) and g € LY(BY, dpy ). Then
£ gllr < 27 %@ g1 gl 1111 (44)
where g(x) := esssup g(gyr [y, z]x), for any x € BY.
yEBY

The proof is analogous to the proof given in [9] and uses the following estimate:
G2 () (2)] < 27 ®), Y,y € BY, YRe(2) < 0. (45)

Corollary 3.10. Let Re(z) < 0,1 < p,q,r < oo, ;%Jré =1+ %, feLP(ByY,du. )
and g € LY(BY,dp, ) a radial function. Then,

1/ % glle < 277 lgllq 11f1],- (46)

Remark 1. For z = 0 and taking the limit ¢ — 400 in (44) we recover Young’s
inequality for the Euclidean convolution in R"™ since in the limit g = g.

Another important property of the Euclidean convolution is its translation invari-
ance. Next theorem shows that the generalised convolution is gyro-translation
invariant.
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Theorem 3.11. The generalised convolution is gyro-translation invariant, i.e.,

7a(f* g)(z) = (1 f () * g(gyr [-a,z] - ))(2). (47)

In Theorem 3.11 if g is a radial function then we obtain the translation invariant
property 7o(f * g) = (7of) * g. The next theorem shows that the generalised
convolution is gyroassociative.

Theorem 3.12. If f,g,h € L'(BY,du, ) then

(f *a (g %2 h))(a) = (((f (x) *y g(gyr [a, —(y © 2)|gyr [y, z]7)) (y)) *a h(y))(a) (48)

Corollary 3.13. If f,g,h € L*(BY,dp. ) and g is a radial function then the
generalised convolution is associative. i.e.,

fx(g*h)=(f*g)=*h

From Theorem 3.12 we see that the generalised convolution is associative up to a
gyration of the argument of the function g. However, if ¢ is a radial function then
the corresponding gyration is trivial (that is, it is the identity map) and therefore
the convolution becomes associative. Moreover, in the limit ¢ — +oo gyrations
reduce to the identity, so that formula (48) becomes associative in the Euclidean
case. If we denote by LL(B?,du, ) the subspace of L'(BY,dpu, ) consisting of
radial functions then, for Re(z) < 251, LL(B}, dyu. ) is a commutative associative
Banach algebra under the generalised convolution.

3.3 Laplace Beltrami Operator A,; and its Eigenfunctions

The gyroharmonic analysis on the Einstein gyrogroup is based on the generalised
Laplace Beltrami operator A ; defined by

]2  xir; 02 20z 41) & 0 2(z+1)
A i=(1—-—— A — — i _
t < 2 ]Zzl 12 Ow0x, a2 gy, 2

A simpler representation formula for A, ; can be obtained using the Euclidean
Laplace operator A and the generalised translation operator 7.

Proposition 3.14. For each f € C*(B?) and a € BY

(B-u))@) = GuO) AN - X o) )

A very important property is that the generalised Laplace-Beltrami operator A, ;
commutes with generalised translations.

Proposition 3.15. The operator A, ; commutes with generalised translations, i.e.

AL i(rof) =T(AL.f)  VfeC*BY), Vbe By
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There is an important relation between the operator A, ; and the measure dy, ¢.
Up to a constant the Laplace-Beltrami operator A, ; corresponds to a weighted
Laplace operator on B} for the weighted measure dj, ¢ in the sense defined in [12],
Section 3.6. From Theorem 11.5 in [12] we know that the Laplace operator on a
weighted manifold is essentially self-adjoint if all geodesics balls are relatively com-
pact. Therefore, A, ; can be extended to a self adjoint operator in L*(BY, du, +).

Proposition 3.16. The operator A, ; is essentially self-adjoint in L*(BY, du, 1)

Definition 3.17. For A € C, £ € S"7!, and z € B} we define the functions ey ¢

by
—z+ "2 L +iAt
( - t2>

n—1 ix
] z,§

The hyperbolic plane waves ey ¢;:(x) converge in the limit ¢ — +oo to the Eu-
clidean plane waves e*{**8)  Since

_no1_gyy —z+ 25 At
s — (1 @Y TP
A5t r)= t t2

then we obtain

i1 i
lim eye(z) = lim l(l - M) ] = el{@A8), (51)

exet(r) =

t——+oo t——+oo t

Proposition 3.18. The function ey ¢, is an eigenfunction of A, ; with eigenvalue
2 (n—1-—22)?

4¢2 '
In the limit ¢ — +oo the eigenvalues of A, ; reduce to the eigenvalues of A in
R™. In the Euclidean case given two eigenfunctions e{**¢) and el{(*7%) X\ ~ € R,
& w € S" ! of the Laplace operator with eigenvalues —\2 and —v2 respectively,
the product of the two eigenfunctions is again an eigenfunction of the Laplace
operator with eigenvalue —(\? + 42 + 2\y (£, w)). Indeed,

A(ei(x,/\£>ei<m,'yw>) — _||/\§ + ,yw”Qei(x,/\f—&-Ww) — _()\2 + 72 + 2)\,}/ <€7w>)ei<x,/\£+7w).

(52)
Unfortunately, in the hyperbolic case this is no longer true in general. The only
exception is the case n = 1 and z = 0 as the next proposition shows.

Proposition 3.19. Forn > 2 the product of two eigenfunctions of A, is not an
eigenfunction of A, and for n =1 the product of two eigenfunctions of A, is
an eigenfunction of A, ; only in the case z = 0.
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In the case when n = 1 and z = 0 the hyperbolic plane waves (50) are independent

of £ since they reduce to
it
14 2\2
exale) = (1 )
Tt

and, therefore, the exponential law is valid, i.e., ex.;(2)ey:t () = extqy(x). In the
Euclidean case the translation of the Euclidean plane waves e¢/{*:*¢) decomposes
into the product of two plane waves one being a modulation. In the hyperbolic
case, the generalised translation of (50) factorises also in a modulation and the
hyperbolic plane wave but it appears an Einstein transformation acting on S”~!
as the next proposition shows.

Proposition 3.20. The generalised translation of ex¢.(x) admits the factorisa-
tion
Taexgt(2) = Ja(0) exgie(—a) exapen(z). (53)

Remark 2. The fractional linear mappings T,(£) = a @ £,a € B, & € S*71 are
obtained from (2) making the formal substitutions £ = ¢ and %@ =T,(¢) and

t
are given by

Q+Pa(§)+ﬂaQa(§)
Ta(f) =< 1+ @

They map S"~! onto itself for any ¢t > 0 and @ € BY, and in the limit t — +o0
they reduce to the identity mapping on S*~!. Therefore, formula (53) converges
in the limit to the well-known formula in the Euclidean case

el{—ata ) _ ei<—a»/\€>ei(l‘7>\§>’ a,z,\ € R".

Now we study the radial eigenfunctions of A, ;, the so called spherical functions.

Definition 3.21. For each A € C, we define the generalised spherical function
d))\;t by

o) = [ engala) dofe). a ey (54)

Using (A.2) in Appendix A and then (A.6) in Appendix A we can write this
function as

—z+ 251 4ixe

]2 : n—1+2iIX n+1+2iXt n_ |z|?
Pai(w) = <1_ 2 2 Fy 1 ) 1 oty (55)

[P ek SRR PV

l=2\~ ? n41—2M n—1—2X n ||z]?
= (1-"—F%— 2 ; S el I
I 1 1 2 1

Therefore, ¢y, is a radial function that satisfies ¢+ = ¢_»x; i.e., Pa; is an even
function of A € C. Putting ||z| = ¢ tanhs, with s € RT, and using (A.7) in
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Appendix A we have the following relation between ¢y, and the Jacobi functions
et (see (B.2) in Appendix B):

— 1+ 2iAt —1—2iAt
oy (t tanhs) = (coshs)® oFy (n Z . ; i 1 - ; %; sinhQ(s))
z (%71’7%)
= (coshs)?¢y; (s). (56)

The following theorem characterises all generalised spherical functions.

Theorem 3.22. The function ¢, is a generalised spherical function with eigen-

value

—\2— M Moreover, if we normalize spherical functions such that ¢»,.(0) =

1, then all generalised spherical functions are given by ¢y,
Now we study the asymptotic behavior of ¢y, at infinity.

Lemma 3.23. For Im(\) < 0 we have

lim @y (¢t tanh s)e(n_l‘z_% s — c(Xt)

s—+o00o

where c(At) is the Harish-Chandra c-function given by

n—1

2" 5 TN (1) (i)
r (n—li—QiAt) T (n+11—21>\t) :

c(\t) = (57)

Remark 3. Using the relation I'(2)I" (z + §) = 2!722/7 ['(22) we can write

p(BELEBN) _p(nobemn 1y 2y o)
n—1+2i)

: TN ey

and, therefore, (57) simplifies to

2n=2=2 T (2) T (iMt)
VT T (25 4 i)t)

Finally, we have the addition formula for the generalised spherical functions.

c(M) = (58)

Proposition 3.24. For every A € C, t € R, and z,y € BY

noni(e) = 50 [ eongela) exeaa) dofe)
= 50 [ ensel@) ergela) dofe), (59)



Gyroharmonic Analysis 83

3.4 The Generalised Poisson Transform

Definition 3.25. Let f € L*(S"1). Then the generalised Poisson transform is
defined by

Poid@) = [ enealw) 1) dole), v By (60)

For a spherical harmonic Y}, of degree k we have by (A.1)

2\ " v+k v+k+1 n |z|? T
(P/\,tYk)(x):Ck,U( *u) 2F1( 2 ’T;k+§; HtQH )Yk (?) (61)

with v = "71;21/\2 0= 17”12”‘2 and Cj, = 2_k(757)2’3k. For f =Y arYs €
L?(S"~1) then is given by

e )" vk vk+l o n ) o
(Px,tf)(x)—;)akc‘k,% o) b (o ik i ) Y (5).

(62)

Proposition 3.26. The Poisson transform Py, is injective in L*(S*™1) if and

only if N #1 (%) forallk € Z,.

(Eorollary 3.27. Let N\ # 1(%) ko € Z*+. Then the space of functions
FX€) as f ranges over C§°(BY) is dense in L*(S™~1).

3.5 The Generalised Helgason Fourier Transform

Definition 3.28. For f € C5°(B}), A € C and ¢ € S"~! we define the generalised
Helgason Fourier transform of f as

~

Fongit) = [ eoneno) £(@) des(a). (63)

~

Remark 4. If f is a radial function i.e., f(z) = f(||z]]), then f(A, &;t) is indepen-
dent of £ and we obtain by (54) the generalised spherical transform of f defined
by

o~

fxst) = A G-xit(2) f2) dpze(). (64)
Moreover, by (51) we recover in the Euclidean limit the usual Fourier transform
in R™.
From Propositions 3.16 and 3.18 we obtain the following result.
Proposition 3.29. If f € C§°(B}) then

— — 1 = 2 —~
et = - (4 B 220 ) g (65)
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Now we study the hyperbolic convolution theorem with respect to the generalised
Helgason Fourier transform. We begin with the following lemma.

Lemma 3.30. Fora € B} and f € C§°(B}) we have

~

Taf N E58) = 4a(0) e_rei(a) F(N, (—a) @ &;t). (66)

Theorem 3.31 (Generalised Hyperbolic convolution theorem). Let f, g € C5°(B}).
Then

Fo O = [ ) enenl) G0 (—9) @ 61) diiza(v) (67)

where gy(x) = g(gyr [y, z]).

Since in the limit ¢ — 400 gyrations reduce to the identity and (—y) ® & reduces
to &, formula (67) converges in the Euclidean limit to the well-know Convolution
Theorem: f xg = f g. By Remark 4 if g is a radial function we obtain the
pointwise product of the generalised Helgason Fourier transform.

Corollary 3.32. Let f,g € C°(BY) and g radial. Then

-~

Fran&t) = FNEL) gnt). (68)

3.6 Inversion of the Generalised Helgason Fourier Trans-
form and Plancherel’s Theorem

We obtain first an inversion formula for the radial case, that is, for the generalised
spherical transform.

Lemma 3.33. The generalised spherical transform H can be written as
H = .,7%71’7% OMZ

where ‘7%71 1 is the Jacobi transform (B.1) in Appendiz B with parameters a =

51 andﬁ:—% and
(M. f)(s) :=2"""A,,_1t"(cosh s) % f(t tanh s). (69)

The previous lemma allow us to obtain a Paley-Wiener Theorem for the gener-
alised Helgason Fourier transform by using the Paley-Wiener Theorem for the
Jacobi transform (Theorem B.1 in Appendix B). Let Cg%(B}) denotes the space
of all radial C* functions on B} with compact support and £(C x S"~1) the
space of functions g(\,€) on C x S"~1, even and holomorphic in A and of uniform
exponential type, i.e., there is a positive constant A, such that for all n € N

sup |g()\,§)|(1 + |)\|)TL eAg|IIn()\)| < 00
(A, ¢)eCxsn—1

where Im(\) denotes the imaginary part of A.
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Corollary 3.34. (Paley-Wiener Theorem) The generalised Helgason Fourier trans-
form is bijective from Cg%(B}) onto E(C x S™~1).
1

In the sequel we denote C,, ;. = 22z42—ngn—1gp A "

Theorem 3.35. For all f € C§%(B}) we have for the radial case the inversion
formulas

+oo
f(@) = Coy- / FOut) () 1M~ dA (70)

or

flx) = CTt /R FOst) dau(x) [e(At)| 72 dA. (71)

Now that we have an inversion formula for the radial case we present our main
results, the inversion formula for the generalised Helgason Fourier transform and
the associated Plancherel’s Theorem.

Proposition 3.36. For f € C§°(B}) and X € C,

~

[ oae(@) = - FO &) exgu(x) do(§). (72)
Theorem 3.37. (Inversion formula) If f € C§°(B}) then we have the general
inversion formulas

+o0 .
f@) = Core [ [ FOE1) exgalo) KOOI do()ar (73)

or

fa) == [ [ Fosn eneo) kOO P dodr ()
2 JoJons

Theorem 3.38. (Plancherel’s Theorem) The generalised Helgason Fourier trans-
form extends to an isometry from L?(BY, du. +) onto L*(R* xS"=1 C,, 4 . |c(At)| 72
dA do), i.e.,

+oo
z 2 t\T) = Unitz 7 xS 2 Cc —2 o .
L1 drea@) = G [ [ OGP €00 oty ax 79

Having obtained the main results we now study the limit ¢ — +oo of the previous
results. It is anticipated that in the Euclidean limit we recover the usual inversion
formula for the Fourier transform and Plancherel’s Theorem on R™. To see that
this is indeed the case, we observe that from (58)

2

1 (Anf 1 )2 (76)

\c(/\t) ‘2 T gn—192n—2-2z

L (%5 +iXt)
T (iAt)
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n

T2
r'(3)
alised Helgason inverse Fourier transform (73) simplifies to

with A,_1 = being the surface area of S"~!. Finally, using (76) the gener-

T (25 +ine) |

+oo
@) = oy [ [ gt eveto)| =g | do© ax
+o00 =N n—1
_ [ TOED exenle) Foy d6 A (77)
with )
| TG -
N = | = ()" (78)

Some particular values are N(D(Xt) = 1, N@(Xt) = coth (M), N®) = 1, and

D(At) = % Since hm N(")(/\t) =1, for any n € N and A € R*

(see [3]), we conclude that in the Euchdean limit the generalised Helgason inverse
Fourier transform (77) converges to the usual inverse Fourier transform in R"
written in polar coordinates:

+oo . .
f(z) = / FOAE) @A An=1 qe dX,  z, A\ e R™.
0 Sn 1

(271')”

Finally, Plancherel’s Theorem (75) can be written as

) 1 +oo N A1
LR s = oz [ [ 10O g e @)

and, therefore, we have an isometry between the spaces L2 (BY, dpes )
n—1 . . .

and L?(R* x S"—1, m dX d¢). Applying the limit ¢ — 400 to (79) we

recover Plancherel’s Theorem in R” :

1 Hoo ~ .
[ r@par =g [ [ fagR et agan

4. Gyroharmonic Analysis on the Mobius Gyrogroup

The Mobius gyrogroup appears in the study of the Poincaré ball model of hyper-
bolic geometry. Considering again the open ball B} = {z € R™ : ||z|| < t} of R™,
we now endow it with the Poincaré metric

dz? + ...+ dx?

2
B
(1-15)

ds® =
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The group of all conformal orientation preserving transformations of B} is given
by the mappings K¢,, where K € SO(n) and ¢, are Mobius transformations on
B} given by (see [1,2,8])

1+ & (a,2) + Flz*)a+ (1 - Elal*)=

pol) = T+ 2 (w.a) + &lalPlal? 0
Mobius addition @j; on the ball appears considering the identification
a®py = pa(x), a,x € B (81)
Mobius addition satisfies the “gamma identity”
aonrs =t/ L+ 5 (0.0) + el P (52)

for all a,b € B} where v, is the Lorentz factor. The gyrogroup (B}, ®ys) is gy-
rocommutative. In [10] we developed harmonic analysis on the M6bius gyrogroup
depending on a real parameter 0. We provide here a generalization of these results
considering a complex parameter z under the identification 2z = n + o — 2. Most
of the proofs are analogous as in [10] and therefore will be omitted.

4.7 The Generalised Translation and Convolution

For the Mdobius gyrogroup the generalised translation operator is defined by

Taf(2) = ja(2) f((—a) ®u ) (83)

where a¢ € BY, f is a function defined on B}, and the automorphic factor j,(z) is

given by
1— Lo ’
Ja(2) = T (84)
1- 2 (a,z)+ HHi%”2

with z € C. For z = n the multiplicative factor j,(z) agrees with the Jacobian
of the transformation ¢_,(z) = (—a) ® z and for z = n the translation operator
reduces to 7, f(x) = f((—a) ® z). For any z € C, we obtain in the limit ¢ — +o0
the Euclidean translation operator 7, f(x) = f(—a + x) = f(z — a). The relations
in Lemma 3.3 are also true in this case. We define the complex weighted Hilbert
space L*(BY,du, +), where

2\ 2z2—n
ot~ (1)

12

and dz stands for the Lebesgue measure in R™. Proposition 3.4 and Corollary
3.5 remains the same in this case. For two measurable functions f and g the
generalised convolution is defined by

(fxg)(z) = . f() T29(=y) ju(x) dpze(y), = € BY. (85)
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Proposition 4.1. Let Re(z) < %5t and f,g € L' (B}, dyu. ). Then

1 = glly < C: £l 119l (86)
where §(r) = esssup g(gyr [y, r&]re) for any r € [0,t] and
1, if Re(z) €]2,%52[
C. = [ () (n—2Re(z) - 1)

F(W)T(n—l{e(z) —1) R € e D

(87)

For the case of the Md&bius gyrogroup Young’s inequality for the generalised con-
volution is given by the next theorem.

Theorem 4.2. Let Re(2) < 0,1 < pgr < o0, 3+ 2 =1+, 5s=1-1
feLP(B},du,s) and g € LY(BY, dpy ). Then
__Re(2) o _s s
1 *gll- <2772 [[gllg™ llgll; 11 £l (88)
where g(x) := esssup g(gyr [y, z]x), for any x € B}.

yEBY
The proof is analogous to the proof given in [9] and uses the following estimate:
o (1) ()] < 27757, Y,y € B}, VRe(2) < 0. (89)
Corollary 4.3. Let Re(z) < 0,1 < p,q,r < o0, %—i— % =1+ %, feLPByY,dusy)
and g € LY(B},dp. 1) a radial function. Then,
_ Re(z)
£+ gllr <2772 lgllq ||.f1]p- (90)
For z = 0 and taking the limit ¢ — +o0 in (44) we recover Young’s inequality
for the Euclidean convolution in R™ since in the limit ¢ = g. The generalised
convolution (85) is gyro-translation invariant and gyroassociative in a similar way
as expressed in Theorems 3.11 and 3.12.

4.8 Laplace Beltrami Operator and Eigenfunctions

The gyroharmonic analysis on the Mdobius gyrogroup is based on the Laplace
Beltrami operator A, ; defined by

_ [l |2 22z2+2-n)~_ 0 | 2:2:-n+2)
A”_(l t2 - )4 12 ;x’axiJr 12 '

A simpler representation formula for A.; can be obtained using the Euclidean
Laplace operator A and the generalised translation operator 7.




Gyroharmonic Analysis 89

Proposition 4.4. For each f € C*(B}) and a € B}

22(2z+2—n)

(Azf)(@) = (Ga(0) T A(T—a f)(0) — 2

f(a) (91)

An important fact is that the generalised Laplace-Beltrami operator A, ; com-
mutes with generalised translations.

Proposition 4.5. The operator A, commutes with generalised translations, i.e.
Asi(nf) = (AL f) YV feC*(BY), VbeBy.

The operator A, ; can be extended to a self adjoint operator in L?(B}, s, ¢).

Proposition 4.6. The operator A, ; is essentially self-adjoint in L*(B, du, ).

Definition 4.7. For A € C, £ € S}, and = € B} we define the functions ey ¢
by

ol
(1 _ ||zu2) T+

12

exet(x) = . (92)

(he-217) ="
t

The hyperbolic plane waves ey ¢, (z) converge in the limit ¢ — +oo to the Eu-
clidean plane waves ¢?(*:A8)

Proposition 4.8. The function ey ¢ is an eigenfunction of A, , with eigenvalue
e (n—1-22)?

12 '
In the limit ¢ — 400 the eigenvalues of A ; reduce to the eigenvalues of A in R".

Proposition 3.19 holds also in the M6bius case. In the case whenn =1 and z =0
the hyperbolic plane waves (92) are independent of £ since they reduce to

it
1 + x 2
exa(a) = ( )

-3

and, therefore, the exponential law is valid in this particular case, i.e.
exit(z)ey(r) = expqyu ().
Proposition 4.9. The generalised translation of ey ¢,.(x) admits the factorisation

Taer&t(2) = Ja(0) exnge(=a) examn et (@)- (93)
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Remark 5. The fractional linear mappings a @y &, a € B, ¢ € S"~! are obtained

from (80) making the formal substitutions ¢ = £ and ‘p%(x) = pq(§) and are given
by

2(1+30.) s+ (1- 1)
a®py f = 1+ % <a’€> - Httl2‘|2 .

They map S"~! onto itself for any ¢t > 0 and a € B?, and in the limit t — +oo
they reduce to the identity mapping on S*~!. Therefore, formula (93) converges
in the limit to the well-known formula in the Euclidean case

ei(—a-‘rw,/\f) _ ei(—a,kaei(aﬁ,)\{}’ a,r, )\g e R™.
The radial eigenfunctions of A, ;, the so called spherical functions, are defined
by
oral) = [ encelw) do@), x € By, (9)
Sn—

Using (A.4) in Appendix A and then (A.6) in Appendix A we have

—2z4n—1+iXt

2\ T TS VI 9
Sra(@) = (1_|37;||> P (n X +1/\t;g; IIx) (95)

2 2 2
—2z4n—1—ilt

z||? 2 n—1—ixt 1—iX n |z|?
_ (1 e - L el
t 2 2 27t

Therefore, ¢y, is a radial function that satisfies ¢+ = ¢_»x;t i.e., Px;+ is an even
function of A € C. Putting ||z|| = ¢ tanhs, with s € RT, and using (A.7) in
Appendix A we have the following relation between ¢,,, and the Jacobi functions
©xt (see (B.2) in Appendix B):

n—1—1i\t n—l—%—i)\t.n.
2 ’ 2 727

dxt(t tanhs) = (coshs)® 2 Fy ( sinh2(s)>

— (coshs)Zp{FE ), (96)
Now we study the asymptotic behavior of ¢,; at infinity.

Lemma 4.10. For Im()\) < 0 we have

lim @y (¢ tanh s)e(m~17227A0s — ()

s——+oo
where ¢(At) is the Harish-Chandra c-function given by

2n—1—22—i)\t1" (%) F(i)\t)

c(At) = T <n712+i)\t) T (1+21)\t)

(97)
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The addition formula for the generalised spherical functions is given in the next
theorem.

Proposition 4.11. For every A € C, t € R*, and z,y € B}
rinel@) = 0al0) [ eosesla) engals) do(€)
sn—
= 00 [ erneula) eongalo) dote) (98)

4.9 The Generalised Poisson Transform

Definition 4.12. Let f € L?(S"!). Then the generalised Poisson transform is
defined by

Pl = [ exeel@) £6) do(e). @ e By, (99)

For f =332, arYy € L(S"™1) we have by (A.3)

e lz2\* v+k v4+k+1 n_|z|? x
(PA,tf)(x)—;akck,v (1_? 2F1 T’f’k+§’ 12 Yk(?)

Proposition 4.13. The Poisson transform Py, is injective in L*(S*~1) if and

only if
)\#i(%) forallk € Z,.

Corollary 4.14. Let A # i (242=1) [k € Z*. Then the space of functions J?()\,ﬁ)
as f ranges over C§°(BY) is dense in L2(S™71).

4.10 The Generalised Helgason Fourier Transform

Definition 4.15. For f € C5°(B?), A € C and £ € S"~! we define the generalised
Helgason Fourier transform of f as

~

Fongit) = [ eoneno) £(@) des(a). (101)

~

Remark 6. If f is a radial function i.e., f(x) = f(||z|), then f()\ &;t) is indepen-
dent of ¢ and we obtain by (54) the generalised spherical transform of f defined
by

~

fnt) = ¢—xie(z) f(z) dps (). (102)

n
Bt

Moreover, by (51) we recover in the Euclidean limit the usual Fourier transform
in R™.
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From Propositions 4.6 and 4.8 we obtain the following result.

Proposition 4.16. If f € C§°(B}) then

Aof(N&1) =~ (v + ("_1;22)2) f&:1). (103)

The hyperbolic convolution theorem remains the same in the Mobius case.

Lemma 4.17. For a € B} and f € C§°(BY)

o~

Taf N E1) = 3a(0) e_neu(a) FOA (—a) @ &1). (104)

Theorem 4.18 (Generalised Hyperbolic convolution theorem). Let f, g € C5°(B}).
Then

Fo0O = [ ) eornenly) A (-p) @61 dpealy)  (105)

where g,(x) = g(gyr [y, z]z).

Since in the limit ¢ — 400 gyrations reduce to the identity and (—y) ® & reduces
to &, formula (105) converges in the Euclidean limit to the well-know Convolution

— o~

Theorem: fxg = f - g. By Remark 6 if g is a radial function we obtain the
pointwise product of the generalised Helgason Fourier transform.

Corollary 4.19. Let f,g € C°(B}) and g radial. Then

o~

Fra\&t) = FIN&D) G ). (106)

4.11 Inversion of the Generalised Helgason Fourier Trans-
form and Plancherel’s Theorem

We obtain first an inversion formula for the radial case, that is, for the generalised
spherical transform.

Lemma 4.20. The generalised spherical transform H can be written as
H=JTz_1,2-10M,

where Jn_1 n_1 is the Jacobi transform (B.1) in Appendiz B with parameters
a=03=35—-1and

(M, f)(s) :=22"2"A,,_11"(cosh s) 2% f (¢ tanh s). (107)
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The previous lemma allow us to obtain a Paley-Wiener Theorem for the gener-
alised Helgason Fourier transform by using the Paley-Wiener Theorem for the
Jacobi transform (Theorem B.1 in Appendix B). Let Cg%(B}') denotes the space
of all radial C* functions on B} with compact support and £(C x S™1) the
space of functions g(\,¢) on C x S"~1, even and holomorphic in A and of uniform
exponential type, i.e., there is a positive constant A, such that for all n € N

sup g\, O)|(1 + [\ e MmN < o0
(X,€)ECxSn—1

where Im(\) denotes the imaginary part of A.

Corollary 4.21. (Paley-Wiener Theorem) The generalised Helgason Fourier trans-
form is bijective from CG%(B}) onto E(C x S*~1).

1

In the sequel we denote Cy, ¢ . = DYEEE Ty

Theorem 4.22. For all f € C§%(B}) we have for the radial case the inversion
formulas

+oo
(@) = Coye / Tt (@) Je(At)]~2 d (108)

fla) = 2= [ FOst) onata) lea0)] * an (109)

Now that we have an inversion formula for the radial case we present our main
results, the inversion formula for the generalised Helgason Fourier transform and
the associated Plancherel’s Theorem.

Proposition 4.23. For f € C§°(B}) and A € C,
fromle) = [ FO&0 engala) doto). (110)

Theorem 4.24. (Inversion formula) If f € C§°(B}) then we have the general
iversion formulas

+oo R
F@) = Cone [ [ FOED exale) 1600 dof)ar ()

or

fa) =22 [ [ Fouen v kOO doldr (112)
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Theorem 4.25. (Plancherel’s Theorem) The generalised Helgason Fourier trans-
form extends to an isometry from L*(BY,du, ) onto L2(RT xS, C,, 4 . |c(\t)| 72
dXdo), i.e

+oo
/n‘f( )| d.uzt = ntz/ Anl )\§t|2|()\t)| 2d0'() . (113)

By (76) the generalised Helgason inverse Fourier transform (111) simplifies to

o T (2L x|
f(x):W/o - FNED) exenla) (13(1;)) do(€) dx
1 oo ~ )\nfl
= (271_)'”/0' 1 f()\af,t) eA,g;t(x) m df dA (114)

with N (\t) defined by (78). As in the Einstein case, the generalised Helgason
inverse Fourier transform (114) converges, when ¢ — 400, to the usual inverse
Fourier transform in R™ written in polar coordinates:

f@)= /+OO FOE) A0 An=1 e dX,  z, M6 € R™
@m™ Jo o Jen C

Finally, Plancherel’s Theorem (113) can be written as

[ 1P dneste

and, therefore, we have an isometry between the spaces L2?(B7,du. )

n—1 . . .
and L2(R* x S, m dX d¢). Applying the limit ¢ — +oo to (115)

we recover Plancherel’s Theorem in R™ :

+oo N
[or@par= g [ [ faor et agan

5. Gyroharmonic Analysis on the Proper Velocity
Gyrogroup

—+oo

9P

- ( 7 dedy (115)

In this section we present the main results about the gyroharmonic analysis on
the proper velocity gyrogroup. Proper velocities in special relativity theory are
velocities measured by proper time, that is, by traveler’s time rather than by
observer’s time [6]. The addition of proper velocities was defined by A.A. Ungar
in [6] giving rise to the proper velocity gyrogroup.
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Definition 5.1. Let (V,+,(,)) be a real inner product space with addition +,
and inner product (,). The PV (Proper Velocity) gyrogroup (V,®) is the real
inner product space V equipped with addition & given by

Ba (a,x) 1

a@x:x—l—(lJrﬂa 2 +E a (116)

where ¢t € RT and ,, called the relativistic beta factor, is given by the equation
1

/1 1 lloJp

PV addition is the relativistic addition of proper velocities rather than coordinate
velocities as in Einstein addition. PV addition satisfies the beta identity

BabBz

Ba = (117)

Bage = ————— (118)
1+ BB, 4457
or, equivalently,
Ba 1 (a,z)
= — . 119
Ba@w ﬂa N 51 t2 ( )

It is known that (V,®) is a gyrocommutative gyrogroup (see [27]). In the limit
t — 400, PV addition reduces to vector addition in (V,+) and, therefore, the
gyrogroup (V,@®) reduces to the translation group (V,+). To see the connection
between proper velocity addition, proper Lorentz transformations, and real hyper-
bolic geometry let us consider the one sheeted hyperboloid H* = {z € R"*! :
a2 —af— ... —x2 =t* Axpgq > 0} in R™ where ¢ € RT is the radius of the
hyperboloid. The n—dimensional real hyperbolic space is usually viewed as the
rank one symmetric space G/K of noncompact type, where G = SOq(n, 1) is the
identity connected component of the group of orientation preserving isometries of
H} and K =S0(n) is the maximal compact subgroup of G which stabilizes the
base point O := (0,...,0,1) in R**1. Thus, H* = SOg(n,1)/SO(n) and it is one
model for real hyperbolic geometry with constant negative curvature. Restricting

the semi-Riemannian metric dz2,; — da? — ... — dz? on the ambient space we
obtain the Riemannian metric on H;* which is given by
x, dx))?
d52 — (g >)2 _ deH2
2 4 [||
with = (21,...,2,) € R™ and dz = (dz1,...,dz,). This metric corresponds to

the metric tensor
Tilj

gij(x) = W_(Sij, i,je{l,...,n}

whereas the inverse metric tensor is given by
tJ — PP
9" (x) = =0y

?7 'L,]E{l,,n}
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The group of all orientation preserving isometries of H{* consists of elements of
the group SO(n) and proper Lorentz transformations acting on H;*. A simple
way of working in H;' is to consider its projection into R™. Given an arbitray
point (z,+/t% + ||z||?) € H}* we define the mapping II : H* — R"™, such that
II(x, \/t? + [|2]]?) = @.

A proper Lorentz boost in the direction w € S"~! and rapidity a acting in an
arbitrary point (z,+/t? + ||z||?) € H}* yields a new point (2, Zn+41)w.o € H}* given
by (see [7])

(T, Znt1)w,a = (x + ((cosh(a) — 1) (w,z) — sinh(a)/t? + ||x||2) w,
cosh(a)/t? + ||z||? — sinh(«) (w,x)) . (120)

Since

\/152 + Hgg + ((cosh(a) —1){w,z) — sinh(a)W) wH2 = Tpi1
the projection of (120) into R™ is given by
(2, Trst o = T + ((cosh(a) 1) (w,z) — sinh(a)W) w. (121)
Rewriting the parameters of the Lorentz boost to depend on a point a € R™ as

[la]”

2’

[lall

sinh(a) = -5 and w= ——

cosh(a) =14/1+ (122)

lall

and replacing (122) in (121) we finally obtain the relativistic addition of proper

velocities in R” :
2
it L
e e T AT RV R e o

lal[?

B Ba {a,x) 1
_ x+<1+ﬂa 5 +Bw>a (123)

The results presented for the Proper Velocity gyrogroup were obtained in [11].
The proofs are omitted here.

5.12 The Generalised Translation and Convolution

For the proper velocity gyrogroup the generalised translation operator is defined
by
Taf () = ja(2) f((—a) ®p x) (124)
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where a € R, f is a complex function defined on R”, and the automorphic factor

Ja(z) is given by
. Ba
o) = [ — P 125
J (37) <1 _ 5aﬁz <0;21> > ( )

with z € C. For z = 1 the multiplicative factor j,(x) agrees with the Jacobian
of the transformation (—a) @p = and for z = 0 the translation operator reduces
to 7o f(x) = f((—a) ® z). For any z € C, we obtain in the limit ¢ — +oo the
Euclidean translation operator 7, f(z) = f(—a + ) = f(x — a). The relations in
Lemma 3.3 are also true in this case. We define the complex weighted Hilbert
space L*(R",dpu. ), where

2\ "2
dp, (z) = (1 + Hﬂ') dz,

and dz stands for the Lebesgue measure in R™. For the special case z = 0 we
recover the invariant measure associated to a @ x. Proposition 3.4 and Corollary
3.5 remains the same in this case. For two measurable functions f and g the
generalised convolution is defined by

(fxg)(z) = o f) 129(=y) ju(z) dpze(y), = €R™ (126)

Proposition 5.2. Let Re(z) < %5t and f,g € L*(R",dp. ). Then

1f * gl < C £l 1911 (127)
where g(r) = esssup g(gyr [y, r&]rl) for any r € [0,t] and
568”71
yER™

1, if Re(z) €] —1,0]

= 5 n=2Re(z)~1
o T (I;L(Zﬁi(f)g T (n2Re(z)>1) , if Re(z) €] —o0,—1] U [0, L—l[ . (128)
2 2

2
For the case of the PV gyrogroup Young’s inequality for the generalised convolution
is given by the next theorem.

Theorem 5.3. [11] Let Re(z) < 0, 1 < p,q,r < 00, %—F% =1+ %, s=1-1,
feLP(R™ du,) and g € LY(R™, du, ). Then
1S * gl < 27 @111 gl 11 £l (129)

where g(x) := esssup g(gyr [y, z]x), for any x € R™.
yEeR™
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The proof is analogous to the proof given in [9] and uses the following estimate:

o (y)da(@)] < 277, Vo y € R, YRe(2) < 0. (130)
Corollary 5.4. Let Re(z) <0, 1< p,q,r < o0, %Jr% =1+ %, feLP(R™,dps )
and g € LY(R",du, ) a radial function. Then,

1f # gl < 27 % gllq || £]],- (131)

For z = 0 and taking the limit ¢ — 400 in (44) we recover Young’s inequality
for the Euclidean convolution in R™ since in the limit ¢ = ¢g. The generalised
convolution (126) is gyrotranslation invariant and gyroassociative in a similar way
as expressed in Theorems 3.11 and 3.12.

5.13 Laplace Beltrami Operator and Eigenfunctions

The gyroharmonic analysis on the proper velocity gyrogroup is based on the
Laplace Beltrami operator A, ; defined by

xi; " z; 0 z—l—l) 2
Zt_m; L L)

A simpler representation formula for A, ; can be obtained using the Euclidean
Laplace operator A and the generalised translation operator (124).

Proposition 5.5. For each f € C*(R") and a € R

Az ef(a) = (ja(0) T A(r—a f)(0). (133)

An important fact is that the generalised Laplace-Beltrami operator A, ; com-
mutes with generalised translations.

Proposition 5.6. The operator A, ; commutes with generalised translations, i.e.
AL (mf) =7(ALcf) YV feC*HR™),VbeR"

There is an important relation between the operator A, ; and the measure dy, ;.
Up to a constant the Laplace-Beltrami operator A, ; corresponds to a weighted
Laplace operator on B} for the weighted measure dj, ¢ in the sense defined in [12],
Section 3.6. From Theorem 11.5 in [12] we know that the Laplace operator on a
weighted manifold is essentially self-adjoint if all geodesics balls are relatively com-
pact. Therefore, A, ; can be extended to a self adjoint operator in L*(BJ, du, 1)

Proposition 5.7. The operator A, ; is essentially self-adjoint in L*(R™,dpu, ;).
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Definition 5.8. For A € C, £ € S"™!, and z € R" we define the functions e ¢
by

(ﬁm)fzﬁ”T*lﬂ)\t

2L ing
Bz 2,8) | 2
(1-9)

exgt(z) = (134)

The hyperbolic plane waves ey ¢4(x) converge in the limit ¢ — 400 to the Eu-
clidean plane waves e*{#A&)

Proposition 5.9. The function ey ¢y is an eigenfunction of A, , with eigenvalue
e (-1 ne
42 2

As we can see the parametrization of the eigenvalues of the Laplace-Beltrami
operator in the PV gyrogroup is different from the cases of Mébius and Einstein
gyrogroups. In the limit ¢ — +o00 the eigenvalues of A ; reduce to the eigenvalues
of A in R™. Proposition 3.19 holds also in the PV case. In the case when n =1
and z = 0 the hyperbolic plane waves (134) are independent of & since they reduce

to
3 —iAt
X X
exe(z) = (\/ I+ 5= t)

and, therefore, the exponential law is valid in this particular case, i.e.

ext(T)eyi(2) = extqye(@).

Proposition 5.10. The generalised translation of ey ¢..(x) admits the factorisa-
tion

Tae}u&;t(x) = Ja(0) e%i;t(*a) ex\,Ta(i);t(m)' (135)
where b (e
4 & 4 Lo 1050
To(6) = 0=t (136)
1 + <G7E>
6@ t

Remark 7. The fractional linear mappings T, (), with a € R™, ¢ € S"~! defined in
(136) map the unit sphere S™~! onto itself for any ¢ > 0 and a € R™. Moreover, in
the limit ¢ — 400 they reduce to the identity mapping on S*~!. It is interesting
to observe that the fractional linear mappings obtained from PV addition (123)

making the formal substitutions 7 = { and —a?”” = a & ¢ given by
Ba  (a,§) a
+v2) =
a®é=E+ <1 5t V2 :

do not map S™! onto itself. This is different in comparison with the Md&bius
and Einstein gyrogroups. It can be explained by the fact that the hyperboloid
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is tangent to the null cone and therefore, the extension of PV addition to the
the null cone is not possible by the formal substitutions above. Surprisingly, by
Proposition 5.10 we obtained the induced PV addition on the sphere which is given
by the fractional linear mappings T, ().

The radial eigenfunctions of A, ;, the so called spherical functions, are defined by

oi@) = [ ercale) da(e), e (137)

Using (A.4) in Appendix A and then (A.6) in Appendix A we have

2z—n41—2iAt

l|z||? 1 n—14+2iM n+142iX n

, = (1 F S
d))\,t(‘r) ( + t2 211 4 5 4 a2

[l

Therefore, ¢y, is a radial function that satisfies ¢+ = ¢_»;+ i.e., dx;+ is an even
function of A € C. Applying (A.7) in Appendix A we obtain that

2|2\ | (n—1-2iA n—1+2i\ n |z]?
d))\,t(x)_(l"_tz 2F1 4 ) 4 a§7_ t2 .

i1— 53)(138)

2z—n+1+42iXt
4

n—1-2IM n+1-2i\ n 9
2F1( 4 ) 4 7§a1 ng)

Finally, considering x = tsinh(s)¢, with s € RT and ¢ € S" ! we have the
following relation between ¢y, and the Jacobi functions ¢y, (see (B.2) in Appendix
B):
n_q 1
Oz (tsinh(s) &) = (cosh s)® gogf b 2)(5) (139)
Now we study the asymptotic behavior of ¢, at infinity.
Lemma 5.11. For Im(\) < 0 we have

lim ¢y, (¢ sinhs) e —2miA)s c(At)

s§——+00
where c¢(At) is the Harish-Chandra c-function given by
2n=2=2 T (2) T (iMt)
v (% +in)

The addition formula for the generalised spherical functions is given in the next
theorem.

c(\t) = (140)

Proposition 5.12. For every A € C, t € R™, and a,z € R"
raonele) = a0) [ eneela) exala) dot€)
Sn—l
= 00) [ erneal@) eorealo) doe). (141)
Sn—l
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5.14 The Generalised Poisson Transform

Definition 5.13. Let f € L*(S"71). Then the generalised Poisson transform is
defined by

Puf@) = [ eneela) £6) do(e), e R (142

For f =372 apY) € L*(S"~') we have by (A.3)

— —a s i v+k v+k+1 no. a2 z
Praf(@) = Y aucns (6.7 m( Tk 21— B2 ) Y (BT )
(143)

with o, = 27F 0 and v = 251 4 it

Proposition 5.14. The Poisson transform Py is injective in L*(S™™1) if and
only if
A#i (L) for all k € ZF.

Corollary 5.A15. Let X # 1(%) Jk € Zt. Then for [ in C(R™) the space
of functions f(\,€) is dense in L*(S"1).

5.15 The Generalised Helgason Fourier Transform

Definition 5.16. For f € C§°(R"), A € C and ¢ € S"~! we define the generalised
Helgason Fourier transform of f as

~

Fonest) = [ eoneala) (@) dnesto) (144)

Remark 8. If f is a radial function i.e., f(z) = f(||z|), then f(),&;¢) is indepen-
dent of £ and we obtain by (54) the generalised spherical transform of f defined

by

Fout) = [ ooxel@) f(2) dpele). (145)

Moreover, by (51) we recover in the Euclidean limit the usual Fourier transform
in R™.

From Propositions 5.7 and 5.9 we obtain the following result.

Proposition 5.17. If f € C§°(R™) then
N 7 [ 2 (n—1)° _nEN 2y e
Az,tf()‘v fa t) - ()‘ + 4t2 t2 ) f()‘v 67 t) (146)

Now we study the hyperbolic convolution theorem with respect to the generalised
Helgason Fourier transform. We begin with the following lemma.



102 M. Ferreira
L

Lemma 5.18. Fora € R" and f € C°(R™)

~

Taf (N E1) = ja(0) e_xex(a) FN (—a) @ &;1). (147)

Theorem 5.19 (Generalised Hyperbolic convolution theorem). Let f,g € C5°(R™).
Then

Fro0O = | ) eneul) GO Ty(€i0) dusaly)  (143)

where gy (z) = g(gyr [y, x]x).
Since in the limit ¢ — 400 gyrations reduce to the identity and T_, (&) reduces
to &, formula (148) converges in the Euclidean limit to the well-know Convolution

Theorem: f/:k\g = ]? g. By Remark 8 if ¢ is a radial function we obtain the
pointwise product of the generalised Helgason Fourier transform.

Corollary 5.20. Let f,g € C°(R™) and g radial. Then

— -~

frgX&t) = F(A&61) g(A; ). (149)

5.16 Inversion of the Generalised Helgason Fourier Trans-
form and Plancherel’s Theorem

We obtain first an inversion formula for the radial case, that is, for the generalised
spherical transform.

Lemma 5.21. The generalised spherical transform denoted by H can be written

as
H - j%_17_% OMZ

where ‘7%71,7% is the Jacobi transform (see (B.1) in Appendiz B) with parameters
a=735-1 and,@:—% and

(M. f)(s) :=2"""Ap_1t"(cosh s)~* f(t sinh s). (150)

The previous lemma allow us to obtain a Paley-Wiener Theorem for the gener-
alised Helgason Fourier transform by using the Paley-Wiener Theorem for the
Jacobi transform (Theorem B.1 in Appendix B). Let C§%(R"™) denotes the space
of all radial C* functions on R" with compact support and £(C x S™~1) the
space of functions g(\,€) on C x S*~1, even and holomorphic in A and of uniform
exponential type, i.e., there is a positive constant A, such that for all n € N

sup  [g(A O)I(L+ A" etV < oo
(A 6)eCxsn—t

where Im(\) denotes the imaginary part of A.
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Corollary 5.22. (Paley- Wiener Theorem) The generalised Helgason Fourier trans-
form is bijective from Cg%(R™) onto £(C x S™1).

1

In the sequel we denote Cy, ¢ . = CEETE T ey

Theorem 5.23. For all f € Cg%R(R"™) we have for the radial case the inversion
formulas

+oo
f(z) = CM,Z/O FOst) () |e(At)]72 dA (151)

f(z) = %/Rf(/\;t) Oz () le(At)| 72 dA. (152)

Now that we have an inversion formula for the radial case we present our main
results, the inversion formula for the generalised Helgason Fourier transform and
the associated Plancherel’s Theorem.

Proposition 5.24. For f € C§°(R") and A € C,

fron@) = [ FOugst) exale) dofo). (153)

Theorem 5.25. (Inversion formula) If f € C5°(R™) then we have the general
inversion formulas

+0o0 R
F@) = Cone [ [ FOED exale) 1600 dof)ar (154

or

fla) =S5 [ [ FE) enalo) )] 2 do)ar. (159

Theorem 5.26. (Plancherel’s Theorem) The generalised Helgason Fourier trans-
form extends to an isometry from L*(R™, dp, ¢) onto L*(RT xS"™1 C,, 1 .|c(At)| 72
dX do), i.e.,

+o0 R
L @R @) = Coe [ [T 100 do(e) ax. - (150)

By (76) the generalised Helgason inverse Fourier transform (154) simplifies to

2
do(€) dA

o~

A, _ +oo
fz) = W/o . FNE 1) enei()

L (5% +i)t)
I (ixt)

N A1

1 +oo
= WA —_— f()\vgyt) eA’E;t(Z) ]V(T()\t) dé’ d\ (157)
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with N ()t) defined by (78). As in the Einstein case, the generalised Helgason
inverse Fourier transform (157) converges, when ¢ — 400, to the usual inverse
Fourier transform in R™ written in polar coordinates:

1 [t > .
fz) = (27r)"/o 109 A ATl dgdr, z, A ER™.

Finally, Plancherel’s Theorem (156) can be written as

n—1

+o00o R
L@ dnste) = o [ [ FOOF g dear (s

and, therefore, we have an isometry between the spaces L*(R™, dpu. )

and L2(R* x S"1, m dX d¢). Applying the limit ¢ — 400 to (158)

we recover Plancherel’s Theorem in the Euclidean setting:

2 _ 1 e Y 2 yn—1
[os@rar= o [0 [ F0eR a7 ag an

6. Appendices

A Spherical Harmonics

A spherical harmonic of degree k > 0 denoted by Y} is the restriction to S*~! of
a homogeneous harmonic polynomial in R™. The set of all spherical harmonics of
degree k is denoted by H;(S"~1). This space is a finite dimensional subspace of
L2(S"~1) and we have the direct sum decomposition

LQ(Sn—l) — @Hk(gn_l).
k=0

The following integrals are obtained from the generalisation of Proposition 5.2
in [34].
Lemma A.1. Letv € C,k € No,t € RT, and Yy, € Hip(S"1). Then
Yi (&) ok (W) vtk vik+1 o0 |lz)? z
/SH (1_ (xf))u do(§) =2 (n/2) e s e Lt al RO (t)
(A1)

where x € BY, (v)k, denotes the Pochhammer symbol, and do is the normalised
surface measure on S"~1. In particular, when k = 0, we have

1 v v+l n |zf?
S — L, (2 D . A2
/SH (1_<x,s>>” do(8) =2 1(2’ 2 2 g2 (A-2)
t
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For the Mébius case we need a generalization of Lemma 2.4 in [19].

Lemma A.2. Letv € C,k € No,t € RT, and Yy, € Hp(S"1). Then

2

/SH_IHYk(f)dU(f)_ (V)k 21 (V"_k’l/_ﬁ—kl;k—kg; H‘;H )Yk(ﬁ) (A.3)

F—e” T :
where x € BY, In particular, when k = 0, we have
1 n n |z
——do(§) = o1 (1/ v——+1;—; . (A4)
T 2v ’ PP
VA 2

The Gauss Hypergeometric function o F; is an analytic function for |z| < 1 defined
by
N (@k(b)e 2
2 F1(a,b;c;2) = Z “On M

k=0

with ¢ ¢ —Np. If Re(c —a —b) > 0 and ¢ ¢ —Npy then exists the limit
lim 9Fi(a,b;c;t) and equals
t—1—

L(c)T'(c—a—0)

o Fy(a,b;c;1) = m. (A.5)
Some useful properties of this function are
oF1(a,b;c;2) = (1 — 2)7 % Py Fi(c — a, ¢ — by ¢; 2) (A.6)
oF1(a,byc;2) = (1 —2) 0oy (c —a,b;c zi1> (A7)
d ab
&zFl(a,b;C;Z):?QFl(a+1,b+1;C+ 1;2). (A.8)

B Jacobi Functions

The classical theory of Jacobi functions involves the parameters «, 8, A € C (see
[17,18]). Here we introduce the additional parameter ¢ € R since we develop
our hyperbolic harmonic analysis on a ball of arbitrary radius ¢ and a hyperboloid
of radius t. For a, 8,A € C, t € R*, and o # —1,—2,..., we define the Jacobi
transform as

“+o0
T pa(M) = / o(r) 9P () wa p(r) dr (B.1)

for all functions g defined on RT for which the integral (B.1) is well defined. The
weight function wq g is given by

wa p(r) = (2 sinh(r))%”rl (2 (:osh(r))wJrl
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and the function (pf\i"ﬁ ) (r) denotes the Jacobi function which is defined as the even

C®° function on R that equals 1 at 0 and satisfies the Jacobi differential equation

(% +((2a + 1) coth(r) + (28 + 1) tanh(r))% + )2+ (a+ B+ 1)2> e (r) = 0.

The function @E\‘fﬁ )(7‘) can be expressed as an hypergeometric function

;a+ 1; —sinh® (r)) . (B.2)

a, a+B+1+iXt a+B+1—iXt
o\ (r) :2F1< 3 ; 3

Since 4,0&6;’6 ) are even functions of A\t € C then Ja,39(At) is an even function of

At. Inversion formulas for the Jacobi transform and a Paley-Wiener Theorem are
found in [18]. We denote by C§%(R) the space of even C'*°-functions with compact
support on R and £ the space of even and entire functions g for which there are
positive constants A, and Cy,,n = 0,1,2,..., such that for all A € C and all
n=0,1,2,...

9] < Cyn(1 + A7 ol

where Im () denotes the imaginary part of A.

Theorem B.1. ([18],p.8) (Paley-Wiener Theorem) For all o, 8 € C with o #
—1,-2,... the Jacobi transform is bijective from Cg%(R) onto E.

The Jacobi transform can be inverted under some conditions [18]. Here we only
refer to the case which is used in this paper.

Theorem B.2. ([18],p.9) Let o, 8 € R such that « > —1,a £ 8+ 1> 0. Then
for every g € C3%R(R) we have

1

T or

+oo
g(r) / (Ta59) (M) 537 (1) Jea,s(A)] 72 ¢ d), (B.3)

where cq,5(At) is the Harish-Chandra c-function associated to Jo g(At) given by
20FBFI=IND (o + 1)[(iNt)

r (a+5+21+m> T (a—ﬂ+21+m) : (B.4)

Caﬁ()\t) =

This theorem provides a generalisation of Theorem 2.3 in [18] for arbitrary ¢ €
R*. From [18] and considering ¢ € R arbitrary we have the following asymptotic

behavior of ¢3;7 for Im(\) < 0 :

im 5 (el — ¢ s (0), (B5)
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Bi-Gyrogroup: The Group-Like Structure
Induced by Bi-Decomposition of Groups

Teerapong Suksumran* and Abraham A. Ungar

Abstract

The decomposition I' = BH of a group I' into a subset B and a sub-
group H of T" induces, under general conditions, a group-like structure for
B, known as a gyrogroup. The famous concrete realization of a gyrogroup,
which motivated the emergence of gyrogroups into the mainstream, is the
space of all relativistically admissible velocities along with a binary operation
given by the Einstein velocity addition law of special relativity theory. The
latter leads to the Lorentz transformation group SO(1,n), n € N, in pseudo-
Euclidean spaces of signature (1,n). The study in this article is motivated by
generalized Lorentz groups SO(m,n), m,n € N, in pseudo-Euclidean spaces
of signature (m,n). Accordingly, this article explores the bi-decomposition
I' = HLBHR of a group I' into a subset B and subgroups H; and Hg
of I', along with the novel bi-gyrogroup structure of B induced by the
bi-decomposition of I As an example, we show by methods of Clifford
algebras that the quotient group of the spin group Spin (m,n) possesses the
bi-decomposition structure.

Keywords: Bi-decomposition of group, bi-gyrogroup, gyrogroup, spin group,
pseudo-orthogonal group.
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1. Introduction

Lorentz transformation groups I' = SO(1,n), n € N, possess the decomposition
structure I' = BH, where B is a subset of I" and H is a subgroup of I' [26]. The
decomposition structure of I' induces a group-like structure for B. This group-like
structure was discovered in 1988 [26] and became known as a gyrogroup [27,28].
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Subsequently, gyrogroups turned out to play a universal computational role that
extends far beyond the domain of Lorentz groups SO(1,n) [32,33], as noted by
Chatelin in [4, p. 523] and in references therein. In fact, gyrogroups are special
loops that, according to [17], are placed centrally in loop theory.

The use of Clifford algebras to employ gyrogroups as a computational tool in
harmonic analysis is presented by Ferreira in the seminal papers [9,10]. The use
of Clifford algebras to obtain a better understanding of gyrogroups is found, for
instance, in [7,8,11,20,24].

Generalized Lorentz transformation groups I' = SO(m, n), m,n € N, possess
the so-called bi-decomposition structure I' = Hy BHpR, where B is a subset of T’
and Hj, and Hp are subgroups of I'. The bi-decomposition structure of I' induces
a group-like structure for B, called a bi-gyrogroup [34]. The use of Clifford algebras
that may improve our understanding of bi-gyrogroups is found in [12]. Clearly,
the notion of bi-gyrogroups extends the notion of gyrogroups. Accordingly, “gyro-
language”, the algebraic language crafted for gyrogroup theory is extended to “bi-
gyro-language” for bi-gyrogroup theory.

As a first step towards demonstrating that bi-gyrogroups play a universal com-
putational role that extends far beyond the domain of generalized Lorentz groups
SO(m,n), the aim of the present article is to approach the study of bi-gyrogroups
from the abstract viewpoint.

The article is organized as follows. In Section 2 we give the definition of a
bi-gyrogroupoid. In Section 3 we show that the bi-transversal decomposition of a
group with additional properties yields a highly structured type of bi-gyrogroupoids.
In Section 4 we introduce the notion of bi-gyrodecomposition of groups and prove
that any bi-gyrodecomposition of a group gives rise to a bi-gyrogroup. Finally, in
Sections 5 and 6 we demonstrate that the pseudo-orthogonal group SO(m,n) and
the quotient group of the spin group Spin (m,n) possess the bi-gyrodecomposition
structure.

2. Bi-Gyrogroupoids

We begin with the abstract definition of a bi-gyrogroupoid, which is modeled on
the groupoid R™"*™ of all n x m real matrices with bi-gyroaddition studied in
detail in [34]. We recall that a groupoid (B, ®;) is a non-empty set B with a
binary operation ®;. An automorphism of a groupoid (B, ®;) is a bijection from
B to itself that preserves the groupoid operation. The group of all automorphisms
of (B, ®p) is denoted by Aut (B, @) or simply Aut (B).

Definition 2.1 (Bi-gyrogroupoid). A groupoid (B, ®;) is a bi-gyrogroupoid if
its binary operation satisfies the following axioms.

(BG1) There is an element 0 € B such that 0@, a =a @, 0 = a for all a € B.
(BG2) For each a € B, there is an element b € B such that b @ a = 0.

(BG3) Each pair of @ and b in B corresponds to a left automorphism lgyr[a, b] and
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a right automorphism rgyr[a, b] in Aut (B, @;) such that for all ¢ € B,
(a & b) By lgyr[a, blc = rgyr[b, cla By, (b By ). (1)
(BG4) For all a,b € B,
(a) rgyrla,b] = rgyr(lgyria, ba, a @y b], and
(b) lgyrla, b] = lgyr[lgyrfa, ba, a &y b].
(BG5) For all a € B, lgyr[a, 0] and rgyr[a, 0] are the identity automorphism of B.

A concrete realization of Axioms (BG1) through (BG5) will be presented in
Section 5.

Roughly speaking, any bi-gyrogroupoid is a groupoid that comes with two
families of automorphisms, called left and right automorphisms or, collectively,
bi-automorphisms. Note that if bi-automorphisms of a bi-gyrogroupoid (B, ®;)
reduce to the identity automorphism of B, then (B, ®;) forms a group.

Let Igyr—![a,b] and rgyr~[a, b] be the inverse map of lgyr|a,b] and rgyr|a, b],
respectively. Let o denote function composition and let idx denote the identity
map on a non-empty set X. The following theorem asserts that bi-gyrogroupoids
satisfy a generalized associative law.

Theorem 2.2. Any bi-gyrogroupoid B satisfies the left bi-gyroassociative law
a®y (b @y c) = (rgyr™'[b, cJa @s b) s lgyrfrgyr™ [b, Ja, e (2)
and the right bi-gyroassociative law
(a @y b) By ¢ = rgyr(b, lgyr™[a, blcla By, (b @y lgyr™'[a, blc) (3)
for all a,b,c € B.

Proof. Let a,b,c € B be arbitrary. Since rgyr[b, | is surjective, there is an element
d € B for which rgyr[b, cJd = a. By (BG3),

a ®p (b®p ¢) = rgyr[b, c]d By (b ®p ¢) = (d By b) By 1gyr]d, blc.
Since d = rgyr~1[b, cla, (2) is obtained. One obtains (3) in a similar way. O
Lemma 2.3. Any bi-gyrogroupoid B has a unique two-sided identity element.

Proof. By Definition 2.1, B has a two-sided identity element. Suppose that e and
f are two-sided identity elements of B. As e is a left identity, e ®, f = f. As f is
a right identity, e @, f = e. Hence, e =e®, f = f. O

Following Lemma 2.3, the unique two-sided identity of a bi-gyrogroupoid will
be denoted by 0. Let B be a bi-gyrogroupoid and let a € B. We say that b € B is
a left inverse of a if b @, a = 0 and that ¢ € B is a right inverse of a if a ®, ¢ = 0.
To see that each element of a bi-gyrogroupoid has a unique two-sided inverse, we
investigate some basic properties of a bi-gyrogroupoid.
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Theorem 2.4. Let B be a bi-gyrogroupoid. The following properties are true.
1. For all a,b € B, 1gyr[a,bl0 = 0 and rgyr[a, b0 = 0.
2. For all a € B, lgyr|a,a] = idp and rgyr[a,a] = idp.
3. If a is a left inverse of b, then lgyr|a,b] = idg and rgyr[a,b] = idp.
4. For all b,c € B, if a is a left inverse of b, then rgyr[b, cla By (b Py ¢) = c.
5. For all a € B, if b is a left inverse of a, then b is a right inverse of a.

Proof. (1) Let a,b € B. Let ¢ € B be arbitrary. Since lgyr[a,b] is surjective,
¢ = lgyr|a, bld for some d € B. Then

¢ @y lgyr[a, b)0 = lgyr[a, b]d @ 1gyr[a, b]0 = lgyr[a, b](d B 0) = lgyr[a, bld = c.

Similarly, (Igyr|[a, b]0) @, ¢ = c¢. Hence, lgyr[a, b]0 is a two-sided identity of B. By
Lemma 2.3, lgyr[a, b0 = 0. Similarly, one can prove that rgyr[a, b]0 = 0.

(2) Setting b = 0 in (BG4a) gives rgyrfa,a] = rgyr[a,0] = idp by (BG5).
Similarly, setting b = 0 in (BG4b) gives lgyr[a, a] = idp.

(3) Let b € B and let a be a left inverse of b. By (BG4a) and (BG5),

rgyr(a, b = rgyr(lgyr(a, bla, a @ b] = rgyr[lgyr(a, bla, 0] = idp.

Similarly, lgyr[a, b] = idp by (BG4b) and (BG5).

(4) Let b,c € B and let a be a left inverse of b. From Identity (1) and Item
(3), we have rgyr[b, cla @ (b By ¢) = (a Dp b) By lgyr[a,ble = 0By ¢ = c.

(5). Let a € B and let b be a left inverse of a. By (BG2), b has a left inverse,
say b. From Items (4) and (3), we have

a = rgyr[b, alb @y (b ®y a) = rgyr(b, alb &y 0 = rgyrlb, alb = b.
It follows that a @y b="bdp b = 0, which proves b is a right inverse of a. O

Theorem 2.5. Any element of a bi-gyrogroupoid B has a unique two-sided inverse
m B.

Proof. Let a € B. By (BG2), a has a left inverse b in B. By Theorem 2.4 (5), b
is also a right inverse of a. Hence, b is a two-sided inverse of a. Suppose that ¢
is a two-sided inverse of a. Then a is a left inverse of ¢. By Theorem 2.4 (3)—(4),
¢ = rgyrla, c]b @y (a By ¢) = rgyra, c]b @&, 0 = rgyr[a, c]b = b, which proves the
uniqueness of b. O

Following Theorem 2.5, if a is an element of a bi-gyrogroupoid, then the unique
two-sided inverse of a will be denoted by ©ya. We also write a & b instead of
a @y (Spb). As a consequence of Theorems 2.4 and 2.5, we derive the following
theorem.
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Theorem 2.6. Let B be a bi-gyrogroupoid. The following properties are true for
all a,b,c € B:

1. @b(@ba) =a;
2. lgyr[a, b](©vc) = Splgyrla, bl and rgyr(a, b](Suc) = Sprgyrla, be;
3. lgyr[a, ©pa] = lgyr[Gsa, a] = rgyr[a, Opa] = rgyr[SGpa, a] =idp.

Any bi-gyrogroupoid satisfies a generalized cancellation law, as shown in the
following theorem.

Theorem 2.7. Any bi-gyrogroupoid B satisfies the left cancellation law
oprgyr(a, bla ©p (a pb) = b (4)
and the right cancellation law
(a @y b) ©p lgyr[a,blb = a (5)
for all a,b € B.

Proof. Identity (4) follows from Theorem 2.4 (4) and Theorem 2.6 (2). Identity
(5) follows from (BG3) with ¢ = ©b. O

Definition 2.8 (Bi-gyrocommutative bi-gyrogroupoid). A bi-gyrogroupoid
B is bi-gyrocommutative if it satisfies the bi-gyrocommutative law

a &y b = (Igyrla, b] o rgyr(a, b]) (b & a) (6)
for all a,b € B.

Definition 2.9 (Automorphic inverse property). A bi-gyrogroupoid B has
the automorphic inverse property if

Op(a @y b) = (Spa) Gy (Opd)
for all a,b € B.

Definition 2.10 (Bi-gyration inversion law). A bi-gyrogroupoid B satisfies
the bi-gyration inversion law if

lgyr—'[a,b] = lgyr[b,a] and rgyr~'[a,b] = rgyr[b,d]
for all a,b € B.

Under certain conditions, the bi-gyrocommutative property and the automorphic
inverse property are equivalent, as the following theorem asserts.

Theorem 2.11. Let B be a bi-gyrogroupoid such that
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1. lgyr[a, b] o rgyr[a, b] = rgyr[a, b] o lgyr]a, b];

2. lgyr—Ya, b] = lgyr[©ph, Opa] and rgyr—i[a, b] = rgyr[Cpb, Opal;

3. Sp(a dp b) = (Igyr[a, b] o regyra, b])(Epb Op a)
for all a,b € B. If B is bi-gyrocommutative, then B has the automorphic inverse
property. The converse is true if B satisfies the bi-gyration inversion law.

Proof. Suppose that B is bi-gyrocommutative and let a,b € B. Then b ®, a =
(lgyr[d, a] o rgyr[b, al)(a @y b) and hence
a ®p b = (Igyr[b, a] o rgyr[b, a]) " (b By a)

= (rgyr~'[b, a] o lgyr~"[b, a])(b ®p a)

= (rgyr[Spa, Opb] o lgyr[Spa, Opb]) (b ©p a) (7)

= (Igyr[©pa, ©ub] o rgyr[Spa, ©pb]) (b @y a)

= Sp(Spa Sy b).
The extreme sides of (7) imply ©,(a®pb) = ©paSpb and so B has the automorphic

inverse property. Suppose that B satisfies the bi-gyration inversion law and let
a,b € B. Asin (7), we have

(Igyr[a, b] o rgyr[a, b]) (b ®p a) = Sp(Spa Sp b) = a Dy b.

Hence, B is bi-gyrocommutative. o

3. Bi-Transversal Decomposition

In this section we study the bi-decomposition I' = H; BHg of a group I into a sub-
set B and subgroups Hy, and Hg of I'. The bi-decomposition I' = H; BHR leads
to a bi-gyrogroupoid B, and under certain conditions, a group-like structure for B,
called a bi-gyrogroup. Further, in the special case when H7p, is the trivial subgroup
of I', the bi-decomposition I' = Hy, BHp descends to the decomposition studied
in [14]. Tt turns out that the bi-gyrogroup B induced by the bi-decomposition of
I" forms a gyrogroup, a rich algebraic structure extensively studied, for instance,
in [7,9-11,18,22-25,28-31].

Definition 3.1 (Bi-transversal). A subset B of a group I is said to be a bi-
transversal of subgroups Hy, and Hpg of I if every element g of I' can be written
uniquely as g = h¢bh,., where hy € Hy, b € B, and h, € Hp.

Let B be a bi-transversal of subgroups Hy, and Hg in a group I'. For each pair
of elements b and by in B, the product byby gives unique elements hy(b1,b2) € Hy,
by ®by € B, and hr(bl,bg) € Hp such that

biba = he(b1,b2)(b1 © ba)h, (b1, b2). (8)

Hence, any bi-transversal B of Hy, and Hpr gives rise to
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1. a binary operation ® in B, called the bi-transversal operation;
2. amap hy: B x B — Hy, called the left transversal map;
3. amap h,: B x B — Hpg, called the right transversal map.

The pair (B, ®) is called the bi-transversal groupoid of Hy, and Hp.

We will see shortly that the left and right transversal maps of the bi-transversal
groupoid (B, ®) generate automorphisms of (B, ®), called left and right gyrations
or, collectively, bi-gyrations. Accordingly, left and right gyrations are also called
left and right gyroautomorphisms.

Definition 3.2 (Bi-gyration). Let B be a bi-transversal of subgroups Hj, and
Hpg in agroup I'. Let hy and h,. be the left and right transversal maps, respectively.
The left gyration 1gyr[by, ba] of B generated by by,bs € B is defined by

lgyr[b1, ba]b = hy. (b1, b2)bh,.(by,ba)~!, b€ B. (9)
The right gyration rgyr[by,bs] of B generated by b1, by € B is defined by
rgyr[by, ba]b = he(b1,b2) 'bhe(b1,b2), b€ B. (10)

Remark 1. In Definition 3.2, left gyrations are associated with the right transversal
map h,-, and right gyrations are associated with the left transversal map hy.

We use the convenient notation 2" = hah~! and denote conjugation by h by
ap. That is, ap(x) = 2" = heh~!. With this notation, the left and right gyrations
in Definition 3.2 read

lgyr[a,b] = Qh,(ap) and rgyria,b] = Qhy(a,p) -1 (11)

for all a,b € B. Let B be a non-empty subset of a group I'. We say that a subgroup
H of T normalizes B if hRBh~' C B for all h € H.

Definition 3.3 (Bi-gyrotransversal). A bi-transversal B of subgroups Hy, and
Hpg in a group I is a bi-gyrotransversal if

1. H; and Hy normalize B, and
2. hgh, = h.hy for all hy € Hy,, h, € Hg.

Proposition 3.4. If B is a bi-gyrotransversal of subgroups Hy, and Hg in a group
I, then Hp Hg is a subgroup of T with normal subgroups Hy, and Hg. If B contains
the identity 1 of T, then H, N Hp = {1}. In this case, H, Hp is isomorphic to the
direct product Hy, x Hg as groups.

Proof. Since HLHgr = HrH, H; Hgr forms a subgroup of I' by Proposition 14
of [5, Chapter 3]. If g € H, Hr, then g = hyh,. for some hy € Hy, and h,. € Hg. For
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any h € Hy, hyh = hh, implies ghg~ = hehh; ' € Hy. Hence, gHrg~' C Hy.
This proves Hy, < Hp, Hg. Similarly, Hr < H;, Hg.

Suppose that 1 € B and let h € Hy N Hg. The unique decomposition of 1,
1 = hh™' = h1h7!, implies h = 1. Hence, H;, N Hr = {1}. It follows from
Theorem 9 of [5, Chapter 5| that H, Hr & H;, x Hp as groups. O

Theorem 3.5. Let B be a bi-gyrotransversal of subgroups Hy, and Hg in a group
T. If h € HLHpg, then conjugation by h is an automorphism of (B, ®).

Proof. Note first that Hy, Hr normalizes B. In fact, if h = hgh, with hy in Hp,
and h, in Hp, then hBh~™! = hg(hTBhT_l)he_l C B for Hg and Hy, normalize B.

Let h € H,Hg. Since Hy Hr normalizes B, a4, is a bijection from B to itself.
Next, we will show that (z ® y)"* = 2" © y" for all z,y € B. Employing (8), we
have

(@y)" = (he(w,y) (@ © Y)he(z,9)" = he(a,y)" (@ © y)"he (2, )"
Since z", y"* € B, we also have
2yt = (2", y") (2" © y")he (2", y").

Note that h¢(z,y)" € Hy, and h,(z,y)" € Hr because Hy, and Hp are normal in
HpHg. Thus, (xy)" = z"y" implies

he(z,y)" = he(a® "), (oY) =2"0y", and h(z,y)" = h (" y"),
which completes the proof. o

Corollary 3.6. Let B be a bi-gyrotransversal of subgroups Hy, and Hg in a group
T. Then lgyr[a,b] and rgyr[a,b] are automorphisms of (B,®) for all a,b € B.

Proof. This is because lgyr[a, b] = ay, (a,p) and rgyrfa, b] = ap,(q,5)-1- O

The next theorem provides us with commuting relations between conjugation
automorphisms of the bi-transversal groupoid (B, ®) and its bi-gyrations.

Theorem 3.7. Let B be a bi-gyrotransversal of subgroups Hy, and Hg in a group
I'. The following commuting relations hold.

1. lgyr[a, b] o rgyr|e, d] = rgyr[c, d] o lgyr[a, b] for all a,b,c,d € B.
2. ay olgyrla,b] = lgyr[an(a), an(b)] o ap for all h € HLHp and a,b € B.

3. ap orgyrla,b] = rgyrlap(a), an(b)] o ap, for all h € HLHi and a,b € B.
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Proof. Ttem (1) follows from the fact that heh, = h,hy for all hy € Hy, and h, € Hg
and that ag, = agoap for all g,h €T

Let h € HLHp and let a,b € B. As in the proof of Theorem 3.5, h,(a,b)" =
h,(a",b"). Hence, apolgyr(a,bloa; t = lgyr[a®, b"] and Item (2) follows. Similarly,
he(a,b)" = hy(a® b") implies Ttem (3). O

As a consequence of Theorem 3.7, left gyrations are invariant under right
gyrations, and vice versa. In fact, we have the following two theorems.

Theorem 3.8. Let B be a bi-gyrotransversal of subgroups Hy, and Hg in a group
. If p is a finite composition of right gyrations of B, then

lgyrla, b] = lgyr[p(a), p(b)] (12)
for all a,b € B. If X is a finite composition of left gyrations of B, then

rgyrla, b] = rgyr[A(a), A()] (13)
for all a,b € B.

Proof. By assumption, p = rgyr[ay,bi1] o rgyr[az, bo] o - - - o rgyr[ay, b,] for some
a;,b; € B. Since rgyrla;, bi| = ap,(q,,)-1 for all 4, it follows that p = ay,, where
h = he(ay,b1) " the(az, b2) ™t~ he(an,by) L. As p = ay, and h € Hp,, Theorem 3.7
(2) implies p o lgyr[a, b] = lgyr[p(a), p(b)] o p. Since p and lgyr[a, b] commute, we
have (12). One obtains similarly that A = ay, for some h € Hp, which implies (13)
by Theorem 3.7 (3). O

Theorem 3.9. Let B be a bi-gyrotransversal of subgroups Hy, and Hg in a group
. If p is a finite composition of right gyrations of B, then

p o rgyrla, b] = rgyr[p(a), p(b)] o p (14)
for all a,b € B. If X is a finite composition of left gyrations of B, then

Aolgyr[a,b] = lgyr[A(a), A(b)] o A (15)
for all a,b € B.

Proof. As in the proof of Theorem 3.8, p = ay, for some h € Hy. Hence, (14) is
an application of Theorem 3.7 (3). Similarly, (15) is an application of Theorem
3.7 (2). O

The associativity of I' is reflected in its bi-gyrotransversal decomposition I" =
H; BHpR, as shown in the following theorem.

Theorem 3.10. Let B be a bi-gyrotransversal of subgroups Hy, and Hg in a group
I'. For all a,b,c € B,

(a ®b) ®lgyr[a,blc =rgyr[b,cJa ® (b ® ¢).
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Proof. Let a,b,c € B. Set a, = rgyr[b, cJa and ¢; = lgyr[a,blc. Then a, € B and
¢; € B. By employing (8),

a(be) = a(he(b, ¢)(b® ¢)h,(b,c))
= hy(b, c)(he(b, ¢) " tahg(b, ¢))(b ® c)h(b, c)
= hy(b, c)a, (b ® ¢)h,(b,c)
= [he(b, e)he(ar, b © )][ar © (b O ¢)][hr(ar,b® ), (b, )]

and, similarly, (ab)c = [he(a,b)he(a ® b, ¢;)][(a ©b) ® ¢][h(a @b, ¢;)h.(a,b)]. Since
a(be) = (ab)c, it follows that (a®b) ®¢; = a, ® (bO¢), which was to be proved. O

Proposition 3.11. Let B be a bi-gyrotransversal of subgroups Hy, and Hg in a
group I'. For all a,b,c € B,

L. rgyr[rgyr[b, cla,b © c] o rgyr([b, ] = rgyrla © b, lgyr(a, b]c] o rgyr(a,b], and
2. lgyrla ® b,1gyr|a, blc] o lgyr[a, b] = lgyr[rgyr[b, cla,b ® ] o Igyr[b, ].
Proof. As we have computed in the proof of Theorem 3.10,
he(b, e)he(ar, b ® ¢) = he(a,b)he(a @ b, ¢p),
where a, = rgyr[b, cla and ¢; = lgyr[a, ble. Thus, Item (1) is obtained. Similarly,

hy(ar, b ® c)hy(b,¢) = h.(a ® b, ¢;)h,(a,b) gives Item (2). O

Twisted Subgroups

Twisted subgroups abound in group theory, gyrogroup theory, and loop theory,
as evidenced, for instance, from [1-3,6,13,14,18]. Here, we demonstrate that a
bi-gyrotransversal decomposition I' = Hy BHp in which B is a twisted subgroup
gives rise to a highly structured type of bi-gyrogroupoids and, eventually, a bi-
gyrogroup. We follow Aschbacher for the definition of a twisted subgroup.

Definition 3.12 (Twisted subgroup). A subset B of a group I' is a twisted
subgroup of I if the following conditions hold:

1. 1 € B, 1 being the identity of T';
2. if b€ B, then b~! € B;
3. if a,b € B, then aba € B.

Theorem 3.13. Let B be a bi-gyrotransversal of subgroups Hy, and Hg in a group
I'. If B is a twisted subgroup of I', then the following properties are true for all
a,be B.
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1.10b=b01=b.
2.b'cBandb tob=b0b"t=1.

3. lgyr[1,b] = lgyr[b, 1] = rgyr[1,b] = rgyr[b, 1] = idp.

4. lgyr[b=", 0] = lgyr[b,07"] = rgyr[b~", b] = rgyr(b,b~'] = idp.
5. lgyr~'a,b] = lgyr[b~!,a™"] and rgyr~'[a,b] = rgyr[b~,a”'].
6. (a ®b)~! = (Igyr[a, b] o rgyrla,b]) (b= ®a™1).

Proof. (1) As b= 1b= h(1,b)(1 ® b)h,(1,b), we have hs(1,b) =1, 1©b=0b, and
hr(1,b) = 1. Similarly, b = b1 implies b® 1 = b.
(2) Let b € B. Since B is a twisted subgroup, b~* € B. Further,

1=b"b=h(d1, ) (b~ ©b)he (b1, b)

implies hy(b=1,0) = 1,671 ©b =1, and h,(b~1,b) = 1. Similarly, bb~! = 1 implies
bob™ =1

(3) We have hy(1,b) = he(b,1) = h.(1,b) = h-(b,1) = 1, as computed in Item
(1). Hence, Item (3) follows.

(4) We have hy(b=1,b) = he(b,b™ 1) = h,.(b71,b) = hy-(b,b~1) = 1, as computed
in Ttem (2). Hence, Item (4) follows.

(5) Let a,b € B. Then a=!,b~! € B. On the one hand, we have

(ab)™! = (he(a,b)(a ® b)h,(a,b)) ™" = hy(a,b) " (a ® b)"*he(a,b)~?,

and on the other hand we have b=ta=! = hy(b= 1, a"H(b~! ® a=Hh,. (b~ a™1).
Since (ab)~! =b"ta™!, it follows that

(
=he(0™ " a ) (a,0) (07 @ aHhe(a, b)h,. (b a™t) (16)
b

where b = lgyr[a, b)(rgyr[a, b](b~' ® a~1)). Because (a ® b)~! and b belong to B,
we have from the extreme sides of (16) that

he(a,b)h. (b7 a™) =1 and he(b™t,a Hhe(a,b) = 1.

Hence, h,-(a,b)~ = h,(b=%,a~1), which implies Igyr~![a, b] = lgyr[b~1,a"!]. Like-
wise, he(a,b) = he(b~*,a!)~" implies rgyr~'[a,b] = rgyr[b~*, a™1].
(6) As in Item (5), (e ® b)~! = b = Igyr[a, b](rgyr[a, b] (b~ ® a™1)). O

Remark 2. Note that we do not invoke the third defining property of a twisted
subgroup in proving Theorem 3.13.
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At this point, we have shown that any bi-gyrotransversal decomposition I' =
HpBHpg in which B is a twisted subgroup of I" gives the bi-transversal groupoid
B that satisfies all the axioms of a bi-gyrogroupoid except for (BG4). In order
to complete this, we have to impose additional conditions on the left and right
transversal maps, as the following lemma indicates.

Lemma 3.14. If B is a bi-transversal of subgroups Hy, and Hg in a group " such
that he(a,b)™t = he(b,a) and h(a,b)~* = h,(b,a) for all a,b € B, then

lgyr~'[a,b] = lgyr[b,a] and rgyr~'[a,b] = rgyr[b, a]
for all a,b € B.

Proof. Note first that a; ' = a1 for all h € T'. From this we have lgyr[b, a] =
Oh, (ba) = Qh(ab)~1 = a,;l(%b) = lgyr~![a, b]. One can prove in a similar way that
rgyr—1[a, b] = rgyr[b, al. O

Theorem 3.15. Let B be a bi-gyrotransversal of subgroups Hy and Hg in a
group T. If B is a twisted subgroup of T' such that h¢(a,b)™' = he(b,a) and
he(a, b)Y = hy.(b,a) for all a,b € B, then the following relations hold for all
a,be B:

1. rgyrla,b] = rgyrligyrla, bla, a © B];
2. lgyr|a, b] = lgyr[lgyr[a, bla,a © b];
3. rgyra, b] = rgyrfrgyr(b, ala, b © af;
4. lgyrla, b] = lgyr[rgyr[b, ala, b © a].
Proof. Let a,b € B. Set a; = lgyr[a, bja. Employing (8), we obtain

(ab)a = (he(a,b)(a ® b)h.(a,b))a
= hy(a,b)(a ® b)ajh,(a,b) (17)
= [he(a,b)he(a © b, ar)][(a ©b) © ai][hr(a @ b, a;)hy(a,b)].

Since (ab)a € B, the extreme sides of (17) imply
he(a,b)he(a ©@b,a;) =1 and h,.(a®b,a;)h-(a,b) = 1. (18)
The first equation of (18) implies h¢(a ® b, lgyr[a, bla) = he(a,b) 1. Hence,
rgyr”'[a © b, lgyr[a, bla] = rgyr|a, b].

From Lemma 3.14, we have rgyr[a, b] = rgyr[lgyr|a, bla, a ©® b]. The second equation
of (18) implies h,.(a,b) = h,(a ® b,1gyr[a, bla)~!. Hence,

Igyr(a, b] = lgyr[lgyr[a, bla, a © b].

This proves Items (1) and (2). Items (3) and (4) can be proved in a similar way
by computing the product a(ba). O



Bi-Gyrogroup: The Group-Like Structure 123
[ R e e R e e

Theorem 3.16. Let B be a bi-gyrotransversal of subgroups Hy and Hg in a
group T. If B is a twisted subgroup of T such that he(a,b)™' = he(b,a) and
hy(a,b)~t = h,.(b,a) for all a,b € B, then left and right gyrations of B are even
in the sense that

lgyrfa™' b~ = lgyrla.b] and rgyrla=',b7"] = rgyrla, 8
for all a,b € B.
Proof. This theorem follows directly from Theorem 3.13 (5) and Lemma 3.14. [

4. Bi-Gyrodecomposition and Bi-Gyrogroups

Taking the key features of bi-gyrotransversal decomposition of a group given in
Section 3, we formulate the definition of bi-gyrodecomposition and show that any
bi-gyrodecomposition leads to a bi-gyrogroup, which in turn is a gyrogroup. Most
of the results in Section 3 are directly translated into results in this section with
appropriate modifications.

Definition 4.1 (Bi-gyrodecomposition). Let I be a group, let B be a subset
of I, and let H;, and Hg be subgroups of I'. A decomposition I' = H;, BHR is a
bi-gyrodecomposition if

1. B is a bi-gyrotransversal of H;, and Hg in T

2. B is a twisted subgroup of I'; and

3. he(a,b)™! = hy(b,a) and h,.(a,b)~* = h,(b,a) for all a,b € B,
where hy and h, are the bi-transversal maps given below Definition 3.1.

Theorem 4.2. If ' = H,BHR is a bi-gyrodecomposition, then B equipped with
the bi-transversal operation forms a bi-gyrogroupoid.

Proof. Axiom (BG1) holds by Theorem 3.13 (1), where the identity 1 of I" acts as
the identity of B. Axiom (BG2) holds by Theorem 3.13 (2), where b~! acts as a
left inverse of b € B with respect to the bi-transversal operation. Axiom (BG3)
holds by Corollary 3.6 and Theorem 3.10. Axiom (BG4) holds by Theorem 3.15.
Axiom (BG5) holds by Theorem 3.13 (3). O

It is shown in Section 3 that any bi-transversal decomposition I' = H; BHg
gives rise to a bi-transversal groupoid (B,®). Theorem 4.2 asserts that in the
special case when the decomposition is a bi-gyrodecomposition, the bi-transversal
groupoid (B, ®) becomes the bi-gyrogroupoid (B, @) described in Definition 2.1.
Hence, in particular, the binary operations &, and ® share the same algebraic
properties. Further, the identity of the bi-gyrogroupoid B coincides with the
group identity of I" and &b = b~! for all b € B.
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Theorem 4.3 (Bi-gyration invariant relation). Let ' = HyBHp be a bi-
gyrodecomposition. If p is a finite composition of right gyrations of B, then

Igyrla, b] = lgyr[p(a), p(b)] (19)
for all a,b € B. If X is a finite composition of left gyrations of B, then

rgyrla, b] = rgyr[A(a), A(b)] (20)
for all a,b € B.

Proof. The theorem follows immediately from Theorem 3.8. O

Theorem 4.4 (Bi-gyration commuting relation). Let I' = H BHp be a
bi-gyrodecomposition. If p is a finite composition of right gyrations of B, then

porgyra,b] = rgyr[p(a), p(b)] o p (21)
for all a,b € B. If \ is a finite composition of left gyrations of B, then
Aolgyrfa, b] = Igyr[A(a), A(b)] o A (22)
for all a,b € B.
Proof. The theorem follows immediately from Theorem 3.9. O

Theorem 4.5 (Trivial bi-gyration). IfT' = H,BHFg is a bi-gyrodecomposition,
then for all a € B,

lgyr[0, a] = lgyr|a, 0] =1idp
lgyr[a, ©pal = lgyr[Spa,a] =idp

rgyr[0,a] = rgyr[a 0] =idp (23)
rgyrla, Opal = rgyr[Gpa,a] =idp

lgyrla, a] = rgyr|a, a =1idp.

Proof. The theorem follows from Theorem 2.4 (2) and Theorem 3.13 (3)-(4). O

Theorem 4.6 (Bi-gyration inversion law). IfT' = H,BHR is a
bi-gyrodecomposition, then

lgyr~'[a,b] = lgyr[b,a] and rgyr~'[a,b] = rgyr[b, a]
for all a,b € B.

Proof. The theorem follows immediately from Lemma 3.14. O
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Theorem 4.7 (Even bi-gyration). If I' = H,BHpg is a bi-gyrodecomposition,
then left and right gyrations of B are even:

lgyr[©pa, Opb] = lgyr[a,b] and rgyr[Spa, Opb] = rgyr|a, b]
for all a,b € B.
Proof. The theorem follows immediately from Theorem 3.16. O

Theorem 4.8 (Left and right cancellation laws). If I' = H,BHp is a bi-
gyrodecomposition, then B satisfies the left cancellation law

eprgyrla, bla &y (a ®pb) = b (24)
and the right cancellation law
(a @y b) S lgyrfa, b]b = a (25)
for all a,b € B.
Proof. The theorem follows immediately from Theorem 2.7. O

Theorem 4.9 (Left and right bi-gyroassociative laws). IfI' = H,BHp is
a bi-gyrodecomposition, then B satisfies the left bi-gyroassociative law

a @y (b ®y ¢) = (rgyrlc, bla @y b) @y Igyr[rgyr(c, bla, blc (26)
and the right bi-gyroassociative law

(a @y b) p ¢ = rgyr(b, lgyr[b, alcla @y (b p 1gyr(b, alc) (27)
for all a,b,c € B.
Proof. The theorem follows from Theorems 2.2 and 4.6. O

Theorem 4.10 (Left gyration reduction property). If I' = H BHpg is a
bi-gyrodecomposition, then

lgyr[a, b] = lgyr[rgyr[b, ala, b Dy a) (28)

and
lgyr[a, b] = lgyr]a @) b, regyra, b)b] (29)

for all a,b € B.

Proof. Identity (28) follows from Theorem 3.15 (4). Identity (29) is obtained
from (28) by applying the bi-gyration inversion law (Theorem 4.6) followed by
interchanging a and b. O
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Theorem 4.11 (Right gyration reduction property). If I' = H,BHpg is a
bi-gyrodecomposition, then

rgyra, b] = rgyr[lgyr(a, bla, a By b] (30)
and

rgyrfa, b] = rgyr[b ®s a,1gyr(b, a]b] (31)
for all a,b € B.

Proof. Identity (30) follows from Theorem 3.15 (1). Identity (31) is obtained from
(30) by applying the bi-gyration inversion law followed by interchanging a and
b. O

Theorem 4.12 (Bi-gyration reduction property). IfI' = H,BHp is a bi-
gyrodecomposition, then

lgyr[a, b] = lgyr([lgyr|a, bla, a &y b] (32)
and

rgyrla, b] = rgyr(a & b, rgyrla, b]b] (33)
for all a,b € B.

Proof. Identity (32) follows from Theorem 3.15 (2). Identity (33) is obtained
from Theorem 3.15 (3) by applying the bi-gyration inversion law followed by
interchanging a and b. O

Theorem 4.13 (Left and right gyration reduction properties). If ' =
HpBHg is a bi-gyrodecomposition, then

ryrla, ] = xeyr(elgyilo, O, a &0 -
lgyr(a, b] = lgyr[©ylgyr|a, blb, a ®y b]

and

reifa, 0] = revila @ b, Syrayrla, o )
lgyr[a, b] = lgyr[a @y b, Opreyr|a, bla)

for all a,b € B.
Proof. Setting ¢ = ©pb in Proposition 3.11 (1)—(2) followed by using the bi-

gyration inversion law gives (34). Setting a = ©pb in the same proposition followed
by using the bi-gyration inversion law gives

rgyr[b, c] = rgyr[b ®p ¢, Oprgyr(d, c|b]

lgyr(b, ¢ = lgyr[b &y ¢, Sprgyr(b, cb].

Replacing b by a and ¢ by b, we obtain (35). o
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Theorem 4.14 (Left and right gyration reduction properties). If I' =
HpBHpR s a bi-gyrodecomposition, then

lgyr(a, b] = lgyr[rgyr(b, al(a &y b), Spal (36)
rgyr(a, b] = rgyr[rgyr(b, a](a @ b), Opa]
for all a,b € B.
Proof. From the second equation of (35), we have
lgyrla, b] = lgyr[a @ b, Syrgyr(a, bla].
Applying Theorem 4.3 to the previous equation with p = rgyr[b, a] gives

lgyr[a, b] = lgyr[a @y b, Opreyra, bla)
= lgyr[rgyr(b, a](a @s b), rgyr(b, a](Sergyrla, bla)]
= lgyr[rgyr[b, a](a &y b), Spal.

We obtain the last equation since rgyr[b,a] = rgyr~'[a,b]. Similarly, the first
equation of (35) and Identity (21) together imply

idg = rgyr‘l[a, b] o rgyr]a®y, Opreyra, bla)
= 1gyr[b, a] o rgyrla ©p b, Spreyria, bla]

37
— reyriveyrl.al(a €, b), reyelb ol (Sorevela, o)) o reyriba] 7
= rgyr[rgyr[b, a](a ®p b), Spal o rgyr[d, a.
The extreme sides of (37) imply rgyr[a, b] = rgyr[rgyr(b, a](a @ b), Spal. O

Bi-Gyrogroups
We are now in a position to present the formal definition of a bi-gyrogroup.

Definition 4.15 (Bi-gyrogroup). Let I' = H;, BHp be a bi-gyrodecomposition.
The bi-gyrogroup operation @ in B is defined by

a®b=rgyr[b,al(a ®pb), a,be B. (38)

Here, @&y is the bi-transversal operation induced by the decomposition I' = Hy BHR.
The groupoid (B, ®) consisting of the set B and the bi-gyrogroup operation & is
called a bi-gyrogroup.

Throughout the remaining of this section, we assume that I' = Hy BHpR is a
bi-gyrodecomposition and let (B, @) be the corresponding bi-gyrogroup.

Proposition 4.16. The unique two-sided identity element of (B,®) is 0. For
each a € B, ©pa is the unique two-sided inverse of a in (B, ®).
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Proof. Let a € B. Since rgyr[a, 0] = rgyr[0, a] = idp, we have
a® 0 =rgyr[0,a](a & 0) = a = rgyr|a, 0](0 &y a) = (0® a).

Hence, 0 is a two-sided identity of (B, ®). The uniqueness of 0 follows, as in the
proof of Lemma 2.3. Since rgyr[a, Spa] = rgyr[Spa, a] = idp, we have

a ® (Spa) = rgyr[Spa, al(a Sp a) = 0 = rgyrfa, Spal(Spa By a) = (Spa) ® a.

Hence, ©ya acts as a two-sided inverse of a with respect to @. Suppose that b is
a two-sided inverse of a with respect to @. Then 0 = a ® b = rgyr[b, al(a & b),
which implies a @, b = 0. Similarly, b & a = 0 implies b &, a = 0. This proves
that b is a two-sided inverse of a with respect to @;. Hence, b = ©pa by Theorem
2.5. O

Following Proposition 4.16, if a is an element of B, then the unique two-sided
inverse of a with respect to @ will be denoted by ©a. Further,

©a = Spa

for all « € B. We also write a © b instead of a & (&b). The following theorem
asserts that left and right gyrations of the bi-transversal groupoid (B, @) ascend
to automorphisms of the bi-gyrogroup (B, @).

Theorem 4.17. If X is a finite composition of left gyrations of (B, ®y), then
Aa @ b) = Aa) & A\(b) (39)
for all a,b € B. If p is a finite composition of right gyrations of (B, ®y), then
pla®b) = p(a) ® p(b) (40)
for all a,b € B.

Proof. Let a,b € B. By Theorem 3.7 (1), A and rgyr[b, a] commute. Hence,

=

Ma @ b) = (X orgyr[b,a])(a Dy b)
= (rgyr[b,a] o A)(a @ b)
= 1gyr[b, a(A(a) &b A(b))
= rgyr[A(b), A(a)](A(a) ©b A(D))
= Aa) ® A(b).

b
b

<o

We have the third equation since A is a finite composition of left gyrations; the
forth equation from (20); and the last equation from Definition 4.15. Similarly,
(40) is obtained from (21). O
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Lemma 4.18. In the bi-gyrogroup B,
rgyr[e,a @ b] o rgyr[b, a] = rgyr[b @ ¢, a] o rgyr]c, ]
for all a,b,c € B.
Proof. By Theorem 4.6 and Proposition 3.11 (1),
rgyr(b, a] o rgyr[lgyr(a, ble, a By b]
= (rgyrla @y b, Igyr[a, b]c] o rgyrla, b))~
= (rgyrlrgyr[b, da, by c] o rgyr(b, )~
= rgyr|e, b] o rgyr[b @y ¢, rgyr(b, cla).
By Identity (21) and Theorem 4.6, the extreme sides of (41) imply
rgyr(c, rgyr(b, a](a @y b)] o rgyr[b, a] = rgyr[rgyr(c, b](b By ¢), a] o rgyr]c, b].
According to Definition 4.15, the previous equation reads
rgyr[c,a ® b] o rgyr[b, a] = rgyr[b @ ¢, a] o rgyr]c, ],
which completes the proof. O

Theorem 4.19 (Bi-gyroassociative law in bi-gyrogroups). The bi-gyrogroup
B satisfies the left bi-gyroassociative law

a® (b®c)=(a®b)® (lgyr[a,b] o rgyr[b, a])(c) (42)
and the right bi-gyroassociative law
(a®b)®c=ad(be (gyr[b,a] o rgyr(a, b])(c)) (43)
for all a,b,c € B.
Proof. From Theorem 3.10, we have
(a ®p b) @y lgyr[a, blc = rgyr(b, cla By (b By c).
Applying rgyr|e, b] followed by applying rgyr[b @ ¢, a] to the previous equation gives
(rgyr[b & c, a] o rgyr(c, b])((a & b) ®s Igyra, blc) = a & (b & c). (44)
On the other hand, we compute
(a ®b) & (Igyrla, b] o rgyr([b, a])(c)
= (a ®b) ® (rgyr[b, a] o lgyra, b])(c)
= [rgyr[b, a](a &y b)] @ [rgyr(b, a] (gyr[a, b]c)]
= rgyr[b, a]((a & b) & lgyra, bc)
= (rgyr[b, a] o rgyr(lgyr|a, blc, a @y b])((a ©p b) @b lgyr(a, bc)
= (rgyr|c, rgyr[b, a(a p )] o rgyr(b, a])((a @y b) @y Igyrla, blc)
= (rgyr[e,

rgyr(c, a @ b] orgyr[b, al)((a @y b) @ 1gyr|a, b]c). (45)
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We obtain the first equation from Theorem 3.7 (1); the third equation from (40);
the fifth equation from Identity (21) and Theorem 4.6.

By the lemma, rgyr[b @ ¢, a] o rgyr[c, b] = rgyr[c, a ® b] o rgyr[b, a]. Hence, (44)
and (45) together imply a® (b® ¢) = (a®b) @ (Igyr[a, b] orgyr[b, a])(c). Replacing
¢ by (1gyr[b, a] orgyr[a, b])(c) in (42) followed by commuting lgyr[b, a] and rgyr[a, b]
gives (43). O

Theorem 4.20 (Left gyration reduction property of bi-gyrogroups). The
bi-gyrogroup B has the left gyration left reduction property

lgyr[a, b] = lgyr[a @ b, b] (46)
and the left gyration right reduction property

lgyr[a, b] = lgyr[a, b & d] (47)
for all a,b € B.

Proof. From (29), (19) with p = rgyr[b, a], and Theorem 4.6, we have the following
series of equations

lgyr[a, b] = lgyr]a @y b, rgyr]a, b)b]
= lgyr[rgyr[b, a](a & b), xgyr[b, a](rgyr|a, b]b)]
— 1gyrfa @ b,b),
thus proving (46). One obtains similarly that
lgyr[a, b] = lgyr[rgyr[b, ala, b &y a]
— lgyrlreyrla, B(reyrlb, ala), reyrla, (b @ a)]
= lgyr[a,b @ a). O

Theorem 4.21 (Right gyration reduction property of bi-gyrogroups).
The bi-gyrogroup B satisfies the right gyration left reduction property

rgyr[a, b] = rgyr[a @ b, b] (48)
and the right gyration right reduction property

rgyrla, b] = rgyr[a, b @ aj (49)
for all a,b € B.
Proof. From (33), (21) with p = rgyr[b, a], and Theorem 4.6, we have the following
series of equations

idg = rgyr[b, a] o rgyrfa @y b, rgyr|a, b]b]

rgyr[rgyr(b, a](a @y b), rgyr(b, a] (rgyr(a, b]b)] o rgyr(b, a] (50)
rgyrfa @ b, b] o rgyr(b, al.

Hence, the extreme sides of (50) imply rgyr[a,b] = rgyr[a @ b,b]. Applying the
bi-gyration inversion law to (48) followed by interchanging a and b gives (49). O
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Let (B, ®) be the corresponding bi-gyrogroup of a bi-gyrodecomposition I' =
H;BHgp. By Theorem 4.17, left and right gyrations of (B,®;) preserve the
bi-gyrogroup operation. This result and Theorem 4.19 motivate the following
definition.

Definition 4.22 (Gyration of bi-gyrogroups). Let I' = H;,BHp be a bi-
gyrodecomposition and let (B, @) be the corresponding bi-gyrogroup. The gyrator
is the map

gyr: B x B — Aut (B, ®)

defined by
gyrla, b] = lgyr[a, b] o rgyr(b, a] (51)
for all a,b € B.

Theorem 4.23. For all a,b € B, gyr[a,b] is an automorphism of the bi-gyrogroup
B.

Proof. The theorem follows from Theorem 4.17. O

Theorem 4.24 (Gyroassociative law in bi-gyrogroups). The bi-gyrogroup
B satisfies the left gyroassociative law

a® (bdc) = (adb) P gyrfa,blc (52)
and the right gyroassociative law

(a®b)®c=ad (bsgyrb,alc) (53)
for all a,b,c € B.
Proof. The theorem follows directly from Theorem 4.19 and Definition 4.22. O

Theorem 4.25 (Gyration reduction property in bi-gyrogroups). The bi-
gyrogroup B has the left reduction property

gyrla, b] = gyrla & b, b] (54)
and the right reduction property
gyrla, b] = gyrla, b & a] (55)
for all a,b € B.
Proof. From (46) and (49), we have the following series of equations
gyrla @ b,b] = lgyrja & b,b] o rgyr[b, a & b]
= lgyr[a, b] o rgyr(b, a]
= gyrla, b,
thus proving (54). Similarly, (47) and (48) together imply (55). O
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Theorems 4.24 and 4.25 indicate that any bi-gyrogroup is indeed a gyrogroup.
Therefore, we recall the following definition of a gyrogroup.

Definition 4.26 (Gyrogroup, [29]). A groupoid (G,®) is a gyrogroup if its
binary operation satisfies the following axioms.

(G1) There is an element 0 € G such that 0@ a = a for all a € G.
(G2) For each a € G, there is an element b € G such that b® a = 0.
(G3) For all a,b in G, there is an automorphism gyr[a,b] € Aut (G, ®) such that
a®(b®c)=(a®b)®gyrfa,blc
for all c € G.
(G4) For all a,b in G, gyr[a,b] = gyrja @ b, b].

Definition 4.27 (Gyrocommutative gyrogroup, [29]). A gyrogroup (G, ®)
is gyrocommutative if it satisfies the gyrocommutative law

0 ®b = gyrfa, b)(b @ a)
forall a,b € G .

Theorem 4.28. Let I' = H BHp, be a bi-gyrodecomposition and let (B, ®) be the
corresponding bi-gyrogroup. Then B equipped with the bi-gyrogroup operation is a
gyrogroup.

Proof. Axioms (G1) and (G2) are validated in Proposition 4.16. Axiom (G3) is
validated in Theorems 4.23 and 4.24. Axiom (G4) is validated in Theorem 4.25. [

Definition 4.29. A bi-gyrodecomposition I' = Hp BHp is bi-gyrocommutative if
its bi-transversal groupoid is bi-gyrocommutative in the sense of Definition 2.8.

Theorem 4.30. If ' = H; BHR is a bi-gyrocommutative bi-gyrodecomposition,
then B equipped with the bi-gyrogroup operation is a gyrocommutative gyrogroup.

Proof. Let a,b € B. We compute
a®b=rgyr[b,a](a Dp b)
= rgyr[b, a](Igyr[a, b] o rgyr[a, b](b By a))
= (lgyr[a, b] o rgyr(b, a)) (rgyrla, (b &, )
= gyr[a, b](b @ a),
thus proving that B satisfies the gyrocommutative law. O

We close this section by proving that having a bi-gyrodecomposition is an
invariant property of groups.
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Theorem 4.31. Let I'y and I's be isomorphic groups via an isomorphism ¢. If
I'y = HL,BHp is a bi-gyrodecomposition, then so is T'a = ¢(HL)p(B)o(H,).

Proof. The proof of this theorem is straightforward, using the fact that ¢ is a
group isomorphism from I'; to I's. O

Theorem 4.32. Let I'y and I's be isomorphic groups via an isomorphism ¢. If
I'y = HLBHp is a bi-gyrocommutative bi-gyrodecomposition, then so is I'y =

O(HL)p(B)¢(H.).
Proof. This theorem follows from the fact that

rgyr(¢(b1), ¢(b2)](b) = P(rgyr(bi, b2]b)
lgyr[¢(b1), ¢(b2)]é(b) = d(lgyr[bi, b2]b)

for all by, by € B. O

Theorem 4.33. Let I'1 and I's be isomorphic groups via an isomorphism ¢ and
let T'y = HL,BHp be a bi-gyrodecomposition. Then the bi-gyrogroups B and ¢(B)
are isomorphic as gyrogroups via @.

Proof. By Theorem 4.28, B forms a gyrogroup whose gyrogroup operation is given
by a ® b = rgyr[b, a](a ®1 b) for all a,b € B, and ¢(B) forms a gyrogroup whose
gyrogroup operation is given by ¢ ® d = rgyr[d, c|(c ©®2 d) for all ¢,d € ¢(B). Let
a,b € B. We compute

P(a ©b) = ¢(rgyr(b,al(a ©1 b))
= 1gyr[p(b), ¢(a)]p(a ©1 D)
*rgyr[ (b), p(a)](p(a) ©2 ¢(b))
¢(a) @ B(b).

Hence, the restriction of ¢ to B acts as a gyrogroup isomorphism from B to
#(B). O

5. Special Pseudo-Orthogonal Groups

In this section, we provide a concrete realization of a bi-gyrocommutative bi-
gyrodecomposition.

A pseudo-Euclidean space R™™ of signature (m,n),m,n € N, is an (m + n)-
dimensional linear space with the pseudo-Euclidean inner product of signature
(m,n). The special pseudo-orthogonal group, denoted by SO(m,n), consists of
all the Lorentz transformations of order (m,n) that leave the pseudo-Euclidean
inner product invariant and that can be reached continuously from the identity
transformation in R™". Denote by SO(m) the group of m x m special orthogonal
matrices and by SO(n) the group of n x n special orthogonal matrices.
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Following [34], SO(m) and SO(n) can be embedded into SO(m, n) as subgroups
by defining

pon o (7m0 %) o esom) (56)
AOp = (Im Omn) o e s0(m) (57)
: Oy Onm  On ) n n).
Let 8 be the map defined on the space R™*™ of all n x m real matrices by
) VI, + PtP Pt nxm
B.P»—)( b —pp) PERV™ (58)
It is easy to see that j is a bijection from R™*™ to S(R™*™).
Note that
p(SO(m)) = {(Oonﬂ; 0;;”) . 0,, € SO(m)}
ASOm)) = 4 [ Im Omn) L0, e s0(n)
n)) = Onm O ) On n
VI, + PtP Pt
nxmy __ m . nxm
AR ){< P Tppe) P ER .

It follows from Examples 22 and 23 of [34] that A(SO(n)) and p(SO(m)) are
subgroups of SO(m,n). Further, SO(m) and p(SO(m)) are isomorphic as groups
via p, and SO(n) and A(SO(n)) are isomorphic as groups via .

We will see shortly that

SO(m,n) = p(SO(m))BR"*™)A(SO(n))

is a bi-gyrocommutative bi-gyrodecomposition.

By Theorem 8 of [34], S(R™*™) is a bi-transversal of subgroups p(SO(m)) and
A(SO(n)) in the pseudo-orthogonal group SO(m,n). From Lemma 6 of [34], we
have

P(OW)B(P)P(OW)_l = ﬁ(PO;zl)
)‘(On)ﬂ(P)A(On)_l = ﬂ(OnP)

for all O,,, € SO(m), O,, € SO(n), and P € R"*™. Hence, p(SO(m)) and A(SO(n))
normalize S(R™*™). Setting P = 0y, , in the third identity of (77) of [34], we have

AOn)p(Om) = p(Om)A(On)

for all O,, € SO(m),0,, € SO(n) because S(P) = B(0nm) = Imsn. Thus,
B(R™™) is a bi-gyrotransversal of p(SO(m)) and A(SO(n)) in SO(m,n).
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In Theorem 13 of [34], the bi-gyroaddition, @y, and bi-gyrations in the parameter
bi-gyrogroupoid R™*™ are given by

Py @y Py = Pi\/I,, + PiPy + \/T, + P,PiP;
-1
leyr[Py, P] = \/T + PioPt, {Plpg I + PP, + ngg}
—1
veyi[Py, Po] = { PLP + VT + PEPLV T + P3Pa [T + Pl P

for all Pl,PQ € R™ ™ and PLQ =P &y Ps.

From (74) of [34], we have L, 4, = B(0p,m) € S(R™*™). From Theorem 10
of [34], we have 3(P)~! = B(—P) € B(R™*™) for all P € R"*™. From Equations
(179) and (184) of [34], we have

B(P)B(P2)B(P1) = B((P v P) ®u lgyr[Pr, Pa]Pr).

Hence, B(P1)B(P2)B(P1) € B(R™ ™) for all P, P, € R™™. This proves that
B(R™ ™) is a twisted subgroup of SO(m,n).
By (104) of [34],

B(P1)B(P) = p(rgyr[P1, P2])B(P1 ©u P2)A(lgyr[Pr, Po]) (59)

for all P, P, € R"*™. Hence, the left and right transversal maps induced by the
decomposition SO(m,n) = p(SO(m))B(R™**)A(SO(n)) are given by

he(B(P1), B(P2)) = p(rgyr[Pi, P]) (60)

and
he(B(P1), B(P2)) = Algyr[P1, P2)) (61)
for all Py, P, € R**™,
By (162b) of [34], rgyr—1[P1, Ps] = rgyr[Ps, P1]. Hence,
he(B(P1), B(P2)) ™" = p(rgyr '[Py, Po]) = plrgyr[Pa, Pi]) = he(B(P2), B(P)).

Similarly, (162a) of [34] implies h,.(8(Py), B(P2)) ™! = h,(3(P), B(P1)). Combining
these results gives

Theorem 5.1. The decomposition
SO(m,n) = p(SO(m))BR"*™)A(SO(n)) (62)
s a bi-gyrodecomposition.

By (59), the bi-transversal operation induced by the decomposition (62) is
given by
B(P1) &y B(P2) = B(Pr ©u P) (63)
for all Py, P, € R**™,
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Note that rgyr[Py, P2] is an m X m matrix and lgyr[Py, P] is an n X n matrix,
while rgyr[8(P1), 5(P2)] and lgyr[5(P1), B(P:)] are maps. By (11), the action of
left and right gyrations on S(R™*") is given by

lgyr[B(P1), B(P)|B(P) = B(lgyr[Pr, P2|P) (64)

and
rgyr[B(P1), B(P2)|B(P) = B(Prgyr[P1, P2]) (65)

for all Py, Py, P € R™*™. Using (64) and (65), together with Theorem 25 of [34],
we have

Theorem 5.2. The bi-gyrodecomposition
SO(m,n) = p(SO(m))BR"*™)A(SO(n))
is bi-gyrocommutative.

By Theorem 52 of [34], the space R™*™ of all n x m real matrices forms a
gyrocommutative gyrogroup under the operation &y, given by

P @/U P, = (Pl Du PQ)I“gyI‘[PQ, Pl], P, P e R, (66)

Theorem 5.3. The set

nxmy _ ) (VIm + PP Pt _ nxm

together with the bi-gyrogroup operation @& given by
B(P1) ® B(P2) = B((Pr ©u Pa)rgyr[Ps, 1)
is a gyrocommutative gyrogroup isomorphic to (R™*™, @Y;).

Proof. The theorem follows from Theorems 5.1, 5.2, 4.28, and 4.30. Further, the
bi-gyrogroup operation & is given by

B(P1) © B(P2) = rgyr[B(Pe), B(P1)](B(P1) @b B(F2))
rgyr[3(P), B(P1)]B(PL ©u Pz)
B((Pr ©u Po)rgyr[Pz, P1]).

From (66), we have 5(P1) @ B(P2) = S(P1 @ P»). Hence, § acts as a gyrogroup
isomorphism from R”*™ to S(R™*™). O
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6. Spin Groups

We establish that the spin group of the Clifford algebra of pseudo-Euclidean space
R™™ of signature (m,n) has a bi-gyrocommutative bi-gyrodecomposition. For
basic knowledge of Clifford algebras, the reader is referred to [15,16,19,21].

Let (V,B) be a real quadratic space. That is, V is a linear space over R,
together with a non-degenerate symmetric bilinear form B. Let ) be the associated
quadratic form given by Q(v) = B(v,v) for v € V. Denote by C¢(V, Q) the Clifford
algebra of (V, B). Set

I(V,Q)={g € CL*(V,Q): Yo eV, gug—" € V}. (67)

Here, * stands for the unique involutive automorphism of C¢(V, Q) such that o =
—v for all v € V, known as the grade involution. If V is finite dimensional,
then T'(V, Q) is indeed a subgroup of the group of units of C¢(V,Q), called the
Clifford group of C£(V,Q). In this case, any element g of T'(V, Q) induces the
linear automorphism 7; of V' given by

T,(v) = gug™*, wveV. (68)

Since Ty o Ty, = Ty, for all g,h € T'(V,Q), the map 7: g — T, defines a
group homomorphism from I'(V, Q) to the general linear group GL (V'), known
as the twisted adjoint representation of T'(V, Q). The kernel of 7 equals R*1 :=
{Al: A € R, A # 0}. By the Cartan-Dieudonné theorem, = maps I'(V, Q) onto the
orthogonal group O(V, Q).

Recall that, in the Clifford algebra C¢(V, Q), we have v? = Q(v) for all v € V.
Hence, if v € V and Q(v) # 0, then v is invertible whose inverse is v/Q(v). Further,
we have an important identity uv + vu = 2B(u,v)1 for all u,v € V. Using this
identity, we obtain

—ouv~t = u— (ww + vu)o~t = u — (2B(u, v)1) ( ) _ o 2By)

Q) Q)

which implies duv~! = —vuv=! € V for all u € V. Hence, if v € V and Q(v) # 0,
then v € T'(V, Q). In fact, T, is the reflection about the hyperplane orthogonal to v.
We also have the following important subgroup of the Clifford group of C¢(V, Q):

Spin (V, Q) = {vivz - - v,: 7 is even, v; € V, and Q(v;) = £1}, (69)

known as the spin group of CL(V, Q).
The following theorem is well known in the literature. Its proof can be found,
for instance, in Theorem 2.9 of [19].

Theorem 6.1. The restriction of the twisted adjoint representation to the spin
group of CL(V,Q) is a surjective group homomorphism from Spin (V,Q) to the
special orthogonal group SO(V,Q) of V. Its kernel is {1,—1}.
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Corollary 6.2. The quotient group Spin (V,Q)/{1,—1} and the special orthogonal
group SO(V, Q) are isomorphic.

As V is a linear space over R, we can choose an ordered basis for V' so that
_ .2 2 2 2 2 2
Q(’U)*’Ul +U2+"'+’Um7vm+1 “Um+2 = T Uy

for all v = (V1,.-, Vm,Vmils-->Umin) € R™T" [16, Theorem 4.5]. Hence,
SO(V, Q) = SO(m,n) and Spin (V, Q) = Spin (m, n). Corollary 6.2 implies that

Spin (m,n)/{1,—1} = SO(m,n). (70)
Hence, we have the following theorem.

Theorem 6.3. The quotient group

Spin (m7 n)/{la 71}
has a bi-gyrocommutative bi-gyrodecomposition.

Proof. This theorem follows directly from (70) and Theorems 4.32 and 5.2. O

7. Conclusion

A gyrogroup is a non-associative group-like structure in which the non-associativity
is controlled by a special family of automorphisms called gyrations. Gyrations, in
turn, result from the extension by abstraction of the relativistic effect known as
Thomas precession. In this paper we generalize the notion of gyrogroups, which
involves a single family of gyrations, to that of bi-gyrogroups, which involves two
distinct families of gyrations, collectively called bi-gyrations.

The bi-transversal decomposition I' = Hy, BHp, studied in Section 3, naturally
leads to a groupoid (B,®) that comes with two families of automorphisms, left
and right ones. This groupoid is related to the bi-gyrogroupoid (B, @), studied
earlier in Section 2. Bi-gyrogroupoids (B, ®;) form an intermediate structure that
suggestively leads to the desired bi-gyrogroup structure (B, ®). The bi-transversal
operation @ arises naturally from the bi-transversal decomposition (8). Under the
natural conditions of Definition 4.1, the bi-transversal operation ® becomes the bi-
gyrogroupoid operation @p. The latter operation leads to the desired bi-gyrogroup
operation @ by means of (38).

As we have shown in Section 4, any bi-gyrodecomposition I' = Hy BHpR of a
group I' induces the bi-gyrogroup structure on B, giving rise to a bi-gyrogroup
(B, ®) along with left gyrations lgyr[a, b] and right gyrations rgyr[a,b], a,b € B.
Further, in the case where H, is the trivial subgroup of I, the bi-gyrodecomposition
reduces to the decomposition I' = BH studied in [14]. The bi-gyrogroup (B, ®)
induced by a bi-gyrodecomposition of a group is indeed an abstract version of the
bi-gyrogroup R™*™ of all n x m real matrices studied in [34].
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Bi-gyrogroups are group-like structures. For instance, they satisfy the bi-
gyroassociative law (Theorem 4.19), which descends to the associative law if their
left and right gyrations are the identity automorphism. A concrete realization of
a bi-gyrogroup is found in the special pseudo-orthogonal group SO(m,n) of the
pseudo-Euclidean space R™™ of signature (m,n), as shown in [34] and in Section
5. Moreover, bi-gyrogroups arise in the group counterpart of Clifford algebras as
we establish in Section 6 that the quotient group Spin (m,n)/{1,—1} of the spin
group possesses a bi-gyrodecomposition.

By Theorem 4.28, any bi-gyrogroup is a gyrogroup. Yet, in general, the bi-
gyrostructure of a bi-gyrogroup is richer than the gyrostructure of a gyrogroup.
To see this clearly, we note that gyrations gyr[a, b] of a gyrogroup (B, ®), a,b € B,
are completely determined by the gyrogroup operation according to the gyrator
identity in Theorem 2.10 (10) of [29]:

gyrla, bz = S(a®b) © (a @ (b x)) (71)

for all a, b, z in the gyrogroup (B, ®). In contrast, the bi-gyrator identity analogous
to (71) is
(Igyr(a, b] o rgyr(b, a])(z) = S(a & b) & (a & (b & z)) (72)

for all a, b, z in a bi-gyrogroup (B, @). Here, the bi-gyrogroup operation completely
determines the composite automorphism lgyr[a, b] orgyr[b, a]. However, it does not
determine straightforwardly each of the two automorphisms lgyr[a, b] and rgyr[a, b].
Thus, the presence of two families of gyrations in a bi-gyrogroup, as opposed to
the presence of a single family of gyrations in a gyrogroup, significantly enriches
the bi-gyrostructure of bi-gyrogroups.
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1. Introduction

A magma (59, 0) is a set S with a binary operation o : S x S — S, (a,b) — aob for
any a,b € S. An automorphism ¢ of a magma (S, o) is a bijection ¢ : S — S which
preserves the magma operation, that is ¢(a o b) = ¢(a) o ¢(b) for any a,b € S.
The set of all automorphisms of (S,0) is denoted by Aut(S, o). If there exists an
element e € (S,0) such that eoca = aoe = a for any a € S, then e is called the
identity of (S,0). For a € (S,0), if there exists an element o’ € (S,0) such that
aoa =a' oa=e, then a’ is called the inverse of a.

A magma (G, @) is called a gyrogroup if it satisfies the following (G1) to (G5).

(G1) (G, ®) has the identity e.
(G2) For any a € (G,®), a has the inverse Sa.

(G3) For any a, b, c € G, there exists a unique element gyr[a, bjc such that

a® (bdc)=(adb) P gyrla,be.
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(G4) For any a,b € G, the map gyr[a,b] : G — G defined by ¢ — gyr[a, b]c for any
¢ is an automorphism of the magma (G, ®), that is gyr[a,b] € Aut(G,®).
The map gyrla, b] is called a gyroautomorphism of (G, ®) generated by a and
b.

(Gb) For any a,b € G, gyrja & b, b] = gyra, b].
A gyrogroup (G, @) is gyrocommutative if the following (G6) is satisfied.
(G6) For any a,b € G, a ® b = gyr[a,b](b® a).

A concrete example of a gyrocommutative gyrogroup is provided by the ad-
dition of relativistically admissible velocities in Einstein’s special relativity, and
another concrete example is provided by the Poincaré disk model of hyperbolic ge-
ometry. Certain gyrocommutative gyrogroups admit scalar multiplication, giving
rise to gyrovector spaces. The gyrovector spaces are a generalization of the real
inner product spaces, where addition is not necessarily a commutative group but
a gyrocommutative gyrogroup. Ungar studied gyrogroups and gyrovector spaces
in several books [4, 5, 6, 7, 8, 9, 10]).

The author and O. Hatori define in [1] the generalized gyrovector spaces and
give a Mazur-Ulam type theorem for generalized gyrovector spaces. The general-
ized gyrovector spaces is a common generalization of the gyrovector spaces and of
the real normed spaces. A typical example of a generalized gyrovector space is the
positive cone of a unital C*-algebra. The definition of the generalized gyrovector
spaces is as follows.

Definition 1.1. [1] Let (G,®) be a gyrocommutative gyrogroup with the map
® :R x G — G. Let ¢ be an injection from G into a real normed space (V, || - [|).
We say that (G, ®,®,¢) (or (G,®,®) just for a simple notation) is a generalized
gyrovector space or a GGV in short if the following conditions (GGVO0) to (GGVS)
are fulfilled:

[o(gyrlu, v]a)|| = [|¢(a)| for any u,v,a € G;

1® a = a for every a € G,

( )

( )

(GGV2) (rM+mrm)®a=(r®a)®(rs®a) forany a € G, ri,r2 €R;
( ) (rmr)®a=r®(re®a) for any a € G, r1,r2 € R;

( )

(o(Ir @ a))/lo(r @ a)|| = ¢(a)/l¢(a)| for any a € G\ {e},r € R\ {0},
where e denotes the identity element of the gyrogroup (G, ®);

(GGV5)  gyr[u,v](r ® a) =r @ gyr[u,v]a for any u,v,a € G, r € R;
(GGV6) gyr[r1 ® v, ® v] = idg for any v € G, r1,r2 € R;

(GGVV)  [16(@)] = {xll¢(a)]| € R: a € G} is a real one-dimensional vector
space with vector addition @’ and scalar multiplication ®';
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(GGVT)  lo(r @ a)|| = [r| @ [[¢(a)]| for any @ € G, r € R;
(GGV8)  l¢(a@ b)|| < [lp(a)] & [[H(b)|| for any a,b € G.

One may feel that this definition is complicated. In this paper, we give a
definition of a generalization of the real normed spaces, which is simpler and more
general than the generalized gyrovector spaces. Also, we give some examples of
such a space.

2. Definitions and Examples

In the following definition 2.1 we extract the algebraic structures from a gyrovec-
tor space (or a generalized gyrovector space). For consistency, we use the term
"gyrolinear space" in this paper.

Definition 2.1. Let (X, ®) be a gyrocommutative gyrogroup. Let ® be a map
®:RxX, (r,x) » r@x. Wesay that (X, ®,®) is a gyrolinear space if it satisfies
the following conditions:

GL1 lx=x;

GL2) (rm+m)@zx=(rmez)d(roee);
GL4)  gyrfu, v](r @ z) =7 @ gyr[u, v]x ;

(GL1)
(GL2)
(GL3) (mm)®@z =118 (r2 ®x);
(GL4)
(GL5)

gyr[r1 ® v,m2 @ v] = idx;
for any r,r1,72 € R and ,u,v € X.

We consider a generalization of normed spaces in Definition 2.2. For conve-
nience, we use the term "normed gyrolinear space" in this paper.

Definition 2.2. Let (X, ®, ®) be a gyrolinear space. Let ||-|| beamap ||-]| : X —
R>o, « — ||z||. Let f be a strictly monotone increasing bijection f : || X|| — Rxo,
where || X| = {|lz|| € R>o;x € X}. We say that (X,®,®,] -, f) is a normed
gyrolinear space if it satisfies the following conditions:

(NG1) Jz||=0 <= z=c¢;
fllz eyl < Fllzlh) + flylD;
flr @) = [r[fl=]);

| gyr[u, v](2) = |||

)
(NG2)
(NG3)
(NG4)

for any r € R and x,y,u,v € X.
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Lemma 2.3. Let (X, ®,®) be a gyrolinear space. Let |-|| be a map ||| : X — Rxo,
x = |zl Put || X]| = {l|lz] € Rzo;@ € X} and £[|X][| = {£[|l=| € R;z € X}.
Then the following three properties are equivalent.

(al) There is a strictly monotone increasing bijection f : || X| — Rxo which
satisfies the conditions (NG1) to (NG4) for any r € R and z,y,u,v € X.

(a2) There is a strictly monotone increasing bijection f : +||X|| — R with f(0) =
0, which satisfies the conditions (NG1) to (NG4) for anyr € R and x,y,u,v
e X.

(a3) There is a one dimensional real linear space (£||X||, ®', ®") with addition &'
and scalar multiplication ®', which satisfies the following conditions:

(R1) 2] =0 < z=e;
(R2) |z &y < || & |yl;
(R3) Ir@ | = Ir| & ||z ;
(RY) |l gyriu,v)(@)]| = |l2];

foranyr € R and x,y,u,v € X.

Proof. (al) = (a2) : Let f be a strictly monotone increasing bijection f : || X|| —
R>( which satisfies the conditions (NG1) to (NG4) for any » € R and z,y,u,v €
X. Note that f(0) = 0. Define the map f : £||X|| — R by

; {f@) (a € [IX])
—f(~a) (~ae|X])

then f is a strictly monotone increasing bijection f : [ X| — R with £(0) = 0.
It is trivial that f satisfies the conditions (NG1) to (NG4) for any r € R and
T, y,u,v € X. ~ ~

(a2) = (a3) : Let f be a strictly monotone increasing bijection f : || X|| — R
with f(0) = 0, which satisfies the conditions (NG1) to (NG4) for any r € R and
z,y,u,v € X. Define the two operations &’ : x[|X| x £|| X[ — £[X] and
®% R x £[| X|| = £[| X|| by

a®pb = f7(f(a)+ f(D)),
rera = f7(rf(a))

for any a,b € £||X|| and r € R. Then (£||X]|,®’,®’) is a one dimensional real
linear space. It is easy to check (£|X|,®’,®’) satisfies the conditions (R1) to
(R4).

(a3) = (al) : Let (|| X||,®’,®") be a one dimensional real linear space which
satisfies the conditions (R1) to (R4). Note that 0 is the origin of the linear space
+|| X ||, since 0’ ||z|| = 0@ x|| = |le]| = 0. Since (L] X]||,®’, ®") is isomorphic to
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R, usual real line, there is an isomorphism g : £[|X|| — R. Since 0 is the origin of
+|| X, we have g(0) = 0. Note that —g is also an isomorphism from +[| X to R.
Let ¢y € X \ {e}. We can assume that ag = g(||xo]|) > 0.

First, we prove that g(||y||) > 0 for any y € X \ {e}. Assume that there is
y € X such that ¢g(||ly||) < 0. Put A = {||r@xol|;r € R} and B = {||roy|;r € R}.
Clearly, AU B C || X]. Since g(||r @ @ol|) = g(|r| @ [20ol) = [rlg([|20])), we have
9(A) = Rso. Similarly, since g(|r ® yll) = g(r| & Jyl}) = rlg(lly]), we have
g(B) = R<g. Thus we have ¢g(||X||) D g(AU B) = R. However, g is a bijection
from +|| X to R, and || X|| is a proper subset of || X||. It is a contradiction. So,
we have g(||ly||) > 0 for any y € X \ {e}.

Since g is a bijecton, g({||r ® xol|;7 € R}) = R>¢ and g(y) € Rxg for any
y € X, we have || X[ = {[lr ® zo;7 € R}. Put f = g|;x| then f is a bijection
from || X to Rx>o.

Next, we prove that f is a strictly monotone increasing function. For & € X
and 0 < a < 3, we have

a®lz| = la®z|

- (555 o]
(557 eee (-557) oe
(252 o lall o (252) o ol
(B2 + 252 'l

2 2
B & [|l].

Therefore, we have
0<a<f <= 0<a |z| <& |z (1)

for any € X'\ {e}. Let a,b € || X[ and let o = f(a)/f([|loll), B = f(b)/f(l|lzol])-
Then we have

a®@ |zl = af(lzoll)) = a.
Similarly, we have 8 ®' ||@o|| = b. Clearly, a, 8 > 0 and hence

O<a<f < 0<a<bd

as (1). By the definition of o and 3, it is trivial that 0 < f(a) < f(b) <= 0<
a < . Thus we have,

0<a<b <= 0< f(a) < f(b),

f is a strictly monotone increasing function.
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Recall that
flizl & lyll) = fdll) + £yl
and
frelel) =rf(lzl)
for any x,y € X and r € R as f is a restriction of g. Since f is a strictly monotone

increasing function, (|| X||, @', ®’) satisfies the conditions (R1) to (R4), it is clear
that f satisfies the conditions (NG1) to (NG4). O

In the sequel, for a normed gyrolinear space (X,®,®, || - ||, f), f denotes the
function f : £||X|| — R which is defined by
2oy ) fla) (ae X))
—f(=a) (—a€|X])

Moreover, ([ X|[, &', ®') denotes the one dimensional real vector space which is
defined by

“H(f(a) + F(0)),

~H(rf(a))

for any a,b € £||X|| and r € R. The following proposition 2.4 is an immediate
consequence of Lemma 2.3. The proposition is followed by examples 2.5, 2.6, 2.7
and 2.8.

a®hb = f
r®}a = f

Proposition 2.4. Let (G,®,®,¢) be a GGV with ¢ : G — (V, || - ||). Then there
is a bijection f : [|¢(G)|| — R which satisfies © = @' and ®'; = @' as Proposition
2.3. We have (G,®,®, |||, f) is a normed gyrolinear space, where || - ||" = ||¢(-)]|-
Note that, if (G,®,®) is a gyrovector space, then G is a subset of V and ¢ is the
identity map. Hence |- ||' =1 - ||-

Example 2.5. A normed vector space (V,| -||) is a normed gyrolinear space
(V, 4+, %, ||-]],id), where + is the vector addition of V, X is the scalar multiplication
of V and id is the identity map id : R>o = R>o.

The admissible velocities in special relativity is a gyrovector space (cf. [6]).
Following Proposition 2.4, it is an example of a normed gyrolinear space.

Example 2.6. The Einstein gyrovector space is a normed gyrolinear space (R?, @,
®p, |||, tanh ™! ). Note that c is a speed of light in vacuum, ||-[| is the Euclidean
norm of R3 and ]R3 = {u € R?;|Jul| < ¢}. The Einstein gyrogroup addition @& is
given by

1
21+,

1 1
UDEV = ————~ {u+v+
1+ {u.v) Yu

c2

(u, v)u} ., Yu,veR?
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where (-, -,) is the Euclidean inner product of R3 and #, is a Lorenz factor of u,

Yo = (1= Jlul?/c) 7.

The Einstein scalar multiplication ® g is given by

S ctanh(rtanh " ) 2 (u € R2\ {0})
"EEY 0 (u=0)

for any r € R.

The Poincaré disk model is an example of a gyrovector space, and it is called
the Mobius gyrovector space (cf. [6]). Following Proposition 2.4, it is an example
of a normed gyrolinear space.

Example 2.7. The Mdbius gyrovector space is a normed gyrolinear space (D, ®y,
®ar, |-, tanh ™). Note that I is the open unit disc of complex plane C. The Mdbius
gyrogroup addition is given by

a+b

adprb = Toap Ya, be D.

The Mobius scalar multiplication ®ps is given by

o — tanh(r tanh ™! lal)rar (@€ D\ {0})
wE _{0 (a = 0)

for any r € R.

The positive cone of a unital C*-algebra is a exapmle of a generalized gyrovector
space (cf [1]). As Proposition 2.4, it is an example of a normed gyrolinear space.

Example 2.8. Let </ be a unital C*-algebra with the norm || - || and 7, ' be the
positive cone of /. Define the binary operation 4 on ,szfgl by

aPab= a%ba%, a,be .;%:1.
Define the scalar multiplication ® 4 : R X ﬂgl — %{1 by
reasa=a", rER,aE&/_ﬁl

and the norm || || = || log-||. Then (&, ®4,®a4, || |’,id) is a normed gyrolinear
space, where id is the identity map id : R>g — R>q.

The density matrices is an example of a gyrolinear space.
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Example 2.9. A qubit density matrix is a 2 x 2 positive semidefinite Hermitian
matrix with trace 1. Let D be the set of all invertible qubit density matrices.
Define a binary operation on D by

A2 BA:
AeB= 5
Tr(Az2 BA?)
then (D, ®) is a gyrocommutative gyrogroup ([2]). The identity of (D,®) is
1 Al
§E, where F is the identity matrix. The inverse of A € D is ©A = TrA-T The
T
. - XCcx*
gyroautomorphism gyr[A, B] is given by gyr[A, B|C = W for any C € D,

where X = X(A, B) is a unitary matrix given by X = (A2 BA2)~2 A2 B2. Define
the map ®R x D — D by r
TrA"
then (D, ®,®) is a gyrolinear space. Actually, (D, ®,®) satisfies the conditions
(GL1) to (GL5) as follows.
(GL1): 1® A= A = A, since TrA = 1.
(GL2): We have

roA=

red)e(s®A) =

(i) () ()
r L B L
Tr(( e ) ? (e ) (i) ?)
Ar+s

(GL3): We have

_ TrAs _ _
re(s®A) = To( ) A (rs)® A
(GL4): Put X = (A2 BA2) 2 A2 Bz, then
XX+
gyr[4, B](r & C) e
Tr(X £ X*)
_ XCrX¥
T TrXCTX*
Since X is unitary, we have XC"X* = (XCX™*)" and hence
XCrX* XCX*)
ayt{A, Bl(r ® C) = = EOX) L p a4, BIC.

T TeXCTX* T Tr(XCOX*)
(GL5): Put X = (r® A)2 (s ® A)(r ® A)2)"2(r ® A)2(s ® A)2. Then

AT % As AT‘ % _% Ar 2 As %
X = {(TrAT) (TrAS) (TrAT> } (TrAT> (TrAS) = b

Nl
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ECFE*

h A BIC=—r ——
and hence gyr[A, B]C T(ECE")

= (C for any C € D.

3. Constructing Normed Gyrolinear Spaces

In this section we construct new normed gyrolinear spaces from given normed
gyrolinear spaces.
Proofs of the following Lemma 3.1 and 3.2 are elementary, easy and omitted.

Lemma 3.1. Let (G1,®1) and (Ga, B2) be (gyrocommutative) gyrogroups. Define
the binary operation & on G = G X G2 by

(71,72) @ (y1,92) = (1 D1 Y1, T2 D2 Y2)

for any (z1,22), (y1,y2) € G1XGa. Then (G, ®) is a (gyrocommutative) gyrogroup.
The identity of (G, ®) is (e1,e2), where e; is the identity of (G;,®;) (i = 1,2).
The inverse of x = (x1,22) € G is Ox = (©121,O2x2). The gyroautomorphisms
are

gyr[(z1,22), (y1,92)] (a1, az) = (gyr[r1, yi]a1, gyr[re, y2laz)
for any (x1,22), (y1,¥2), (a1,a2) € G.
Lemma 3.2. Let (X1,P1,®1) and (Xa, B2, ®2) be gyrolinear spaces. Define the
binary operation @ on X = X7 x Xs by
(z1,22) & (Y1, 92) = (21 B1 Y1, 22 D2 Y2)
for any (x1,22), (y1,y2) € G. Define the scalar multiplication ® on G by
@ (r1,72) = (1 @1 21,7 @2 T2)
for any r € R and (z1,22), (y1,y2) € G. Then (G,®,®) is a gyrolinear space.

Proposition 3.3. Let (X1, ®1,®1, | - |1, f) and (X2, D2, @2, - |2, f) be normed
gyrolinear spaces. Then X = X7 X X5 is a gyrolinear space with & and ® as in
Lemma 3.2. Put

(@1, z2)l| = FHF(leall) + F([le2ll2)
for any (z1,22) € X. Then (X,®,®, | - ||, f) is a normed gyrolinear space.

Proof. Since (X1,®1,®1, ]| - |1, f) is a normed gyrolinear space, f is a bijection
from || X7]]; to R. Similarly, f is also a bijection from || X3||2 to R. It means that
||X1H1 = ||X2||2 Since

F7HS @) + £(0) € 1 Xallr = [ Xzl

for any a,b € || X1]|l1 = || Xz2|l2, we have || X|| = || X1]l1 = || Xz2]l2- Thus f is a
monotone increasing bijection from || X || to R>o.
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(NG1): Let e; be the identity of X; for i = 1,2, then e = (e, e2) is the identity

of G. Since f(0) =0,

[[(z1, z2)] =0

S leall) + f(l2]l2)
fllzalln) + fll22ll2)

fUlz1llt) = 0 and f(flz2]2) =0
[21]ly = 0 and [[z2[|s = 0

1reny

1 = €1, To2 = €2.

It follows that ||z|| =0 <= z =e.
(NG2): Let ¢ = (x1,22),y = (y1,y2) € X. We have

fllzeyl) = f(l(z1®1y1,22 S292)])
= flzr @1 y1l1) + f([lr2 ©2 y2ll2)
< flllzll) + fUlyall) + f(lz2ll2) + f([ly2ll2)
=[x, z2)I) + f(l(y1,y2)])
= f(lzl}) + fUyl)-
(NG3): We have
flle® (z1,22)[]) = f([[(a @1 21,0 @2 22)]])

for any (x1,72) € X.

flllee@ra]]) + f(llor @2 )
ladf(llzall1) + el f([le2]l2)

= lef(f([lzall0) + f([lz2]l2))
= laff([(zr, z2)[])

(NG4): Let © = (z1,22),u = (u1,u2),v = (v1,v3) € X. We have

Sl gyr[u, v](z)]) fl(gyr[us, vi](z1), gyrluz, vo] (z2))]])
= flgyr[us, vi](z1)ll1) + f (| gyrluz, v2](x2))]]2)
= fllzall) + Fllz2ll2)
= fl=l).
Thus || gyr[u, v](z)| = ||z N
Proposition 3.4. Let (X,®,®, |||, f) be a normed gyrolinear space. Let h be a

strictly monotone increasing injection (not necessarily bijection) h : ||G|| — Rx

with h(0) = 0. Put || - |/
gyrolinear space.

= h(]|-]). Then (X,®,®,| - |I',fh~t) is a normed
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Proof. Note that h is a bijection from || X|| to h(]| X||) = || X]|’. Since f is a bijection
from || X || to R>o, we have fh~! is a bijection from || X||" to R>¢. Moreover, fh~!
is also a strictly monotone increasing function as f and h are strictly monotone
increasing.

(NG1): ||z =0 <= h(||z|) =0 <= |jz| =0 <= z =e.

(NG2): For any z,y € X, we have

RN (llz @ yll") f(lz @yl
Flzlh) + £yl = fR= A l) + fR7 )

(NG3): fh7t(la @ 2]|) = f(le®z]) = |elf(|=[) = ol f2~*(=])-
(NG4): || gyrlu, v]z||” = h(]| gyr[u, v]z|) = h([|lz]]) = [l=]]"

IN

Example 3.5. The Einstein gyrovector space (R?, ®p, @, || - |, tanh ™" i) is a
c

normed gyrolinear space. Put || - |’ = tanh ™' *—, then (R, ®p,®p,| - |, id) is

also a normed gyrolinear space as Proposition 3.4.

Example 3.6. The Mébius gyrovector space (D, ® s, @z, ||, tanh ™) is a normed
gyrolinear space. Put ||-|| = tanh™"|-|, then (D, ®as, @ar, ||-||', id) is also a normed
gyrolinear space as Proposition 3.4.

Example 3.7. Let 1 < p < oo and L,(X) be the L, space on a measure space X
with a measure p. The Ly-norm || - ||, is given by

1l = ( /. Ifl”du)p .

Since (Ly, || - ||p) is a normed space, (Lp,+, X, || - ||y, id) is a normed gyrolinear
space. By Proposition 3.4, (Ly, +, %, || - [|B, k) is also a normed gyrolinear space,

where k(z) = %

Proposition 3.8. Let (X1,®1,®1,] - |1, f) and (X2, D2, ®2, || - ||2,9) be normed
gyrolinear spaces. Then X = X7 X X5 is a gyrolinear space with & and ® as in
Lemma 3.2. Let k be a strictly monotone increasing injection k : R>g — R>q with
kE(0) = 0. Put

1@, D)l = E(f(llally) + g(l[b]l2))
for any (a,b) € X. Then (X,®,®,] - ||k, k™) is a normed gyrolinear space. In
particular, if k = id, then

1, )l = f(llall) + g([bl2)-

Proof. Put || - |1 = f(|| - [l1) then (X1,®1,®1,]| - [|1,id) is a gyrolinear space as
Proposition 3.4. Similarly, put || - ||5 = g(|| - ||2) then (X2, P2, Ra,| - ||5,id) is
also a gyrolinear space. Put |[(a,b)] = |a|} + ||0]l5 for any (a,b) € X. Then
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(X,®,®,] -, id) is a gyrolinear space as Proposition 3.3. Note that || X]| = Rxo.
Let k be a strictly monotone increasing injection k : R>o — R with £(0) = 0.
Since || X|| = R, k is a strictly monotone increasing bijection from || X]|| to

E(|X]). Put || -] = k(]| - ||) then (X,®,®,] - |lx k") is a gyrolinear space as
Proposition 3.4. Note that

(@, D)l = f(llall) + g(llbll2)

and
1(a, b)l[x = E(f(llall1) + g(l[bll2))
for any (a,b) € X. O

The following Lemma 3.9 is trivial.

Lemma 3.9. Let (X,®,®) be a gyrolinear space. Let Y be a set and ¢ be a
injection ¢ : X — Y. Define the binary operation G4 on ¢(X) by

¢(a) @y ¢(b) = d(a ® b)

and the map ®4 : R x ¢(X) — ¢(X) by

r @ d(a) = o(r @ a)

foranyr € R and a,b € X. Then (¢(X), Dy, ®g) is a gyrolinear space. Moreover,
if (X,®,, ||, f) is a normed gyrolinear space, then ($(X),Be, @4, || - ||, f) is a
normed gyrolinear space, where

le(a)ll" = llal

for any a € X. Note that the identity of (p(X), Dy) is ¢(e), where e is the identity
of (X, ®)

Proposition 3.10. Let (X,®,®, |- ||, f) be a normed gyrolinear space. Let o be
a nonzero real number. Define the binary operation &, on G by

1
a@ab:a®(a®a®a®b)

for any a,b € G. Then (X,®4,®,| - |I', f) is a normed gyrolinear space, where
111" = fed @% 11 1I-

Proof. Let (X, ®,®, |||, f) be a normed gyrolinear space. Let o be a nonzero real

1
number and ¢ be amap ¢ : X — X which is defined by ¢(x) = —®z for any z € X.
@

1
Note that ¢ is a bijection. Actually, ¢71(z) =a®@zasa® (- ®z)=1Qz==x
e
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since the conditions (GL3) and (GL1). By Lemma 3.9, (X, ®a, Ra, | - ||, f) is a
normed gyrolinear space, where

(- ©) @ (> BY) = = ® (DY), )
r8a(>®2)=>8(re) 3)
I @al =l (1)

1 1
for any z,y € X and r € R. Puta = — ® 2 and b = — ® y then = o ® a and
@ @

y = a ®b. Hence we have

1
a@ab:E@@(a@a@a@b)

1 1
for any a,b € X as (2). Note that —® (r®z) =r® (— ® x) for any r € R
e o

1
and © € X as the condition (GL3). It follows that r ®, a = r ®, (— ® z) =
a

1

r®(—®zx) =r®asince (3). So, we have &, = ®. The equation (4) follows that
a

lall" = e @ al| = |a] @F [lal|. B

Proposition 3.11. Let (X,®,®, |- ||, f) be a normed gyrolinear space. Let « be
a nonzero real number. Define the binary operation ®, on G by

1
a@ab:a@@(a@a@a@b)

for any a,b € G. Then (X, ®q4,®, |- |, f) is a normed gyrolinear space.
Proof. By Proposition 3.10, (X, @4, ®, ||-|/', f) is a normed gyrolinear space, where
1 1

1" = laf &% I - |I. Note that f(I - ) = f(= @} II-II) = IZIf(l - II)- Put
1

h(a) = f~(|=|f(a)), then h is a strictly monotone increasing bijection from || X||
a

to || X|. Since || - || = h(]| - "), (X, ®a,®,] -, f) is a normed gyrolinear space as

Proposition 3.4. O

4. Structures on a Normed Gyrolinear Space and a Mazur-Ulam Theorem

Definition 4.1. Let (X,®,®,] - ||, f) be a normed gyrolinear space. The gyro-
metric p on X is defined by
o(a,b) = [la S b]|

for any a,b € X.



156 T. Abe

Note that the gyrometric ¢ on (X,®,®,| - ||, f) is not necessarily a metric on
X, but d = fo is a metric on X.

Definition 4.2. Let (X, ®,®,| - |, f) be a gyrolinear space. Put
Lia,bl(s) =a®s® (Gadb)

for any a,b € X and s € R. We call L[a,b](R) the unique gyroline that passes
through @ and b. We call L[a,b](]0,1]) the gyrosegment ab. We call p(a,b) =
1
Lla, b)( 5) the gyromidpoint of a and b.
The gyromidpoint p(a,b) can be rewritten by $®(afb), where H is a coaddition
of (X,®).

Example 4.3. Let (V,+, x, |- ||, id) be a normed space. The gyrometric o(a,b) =
|la — b]| is the usual metric induced by its norm. L[a,b](s) = a + s(—a + b) and

hence the gyroline is the line, the gyrosegment is the segment, the gyromidpoint
a+b

is the arithmetic mean

Example 4.4. Let (J%r_l, DA, ®a, | - |I',id) be a normed gyrolinear space of the
positive cone. The gyrometric

o(a,b) = la & b| = |[logazb~"a? |
is the Thompson metric.
Lla,b](s) = a?(a>

and hence the gyrosegment is the geodesic. The gyromidpoint

1

p(a,b) = a%(a%b_lcﬂ)
is the geometric mean.

The celebrated Mazur-Ulam theorem asserts that surjective isometry between
two normed vector spaces is a real linear isomorphism followed by a translation.
In [1], author and Hatori give a generalization of the Mazur-Ulam theorem for
generalized gyrovector spaces. This theorem holds for normed gyrolinear space as
the following Theorem 4.5 and Corollary 4.6. There are no gaps between proofs
for normed gyrolinear spaces and for generalized gyrovector spaces in [1]. Refer to
[1] for the proofs.

Theorem 4.5. Let (X;, @i, R4, | - |li, fi) be a normed gyrolinear space and o; be
the gyrometric for i = 1,2. Let T : X1 — X5 be a surjection. If T preserves the
gyrometric,

02(Ta, Tb) = 01(a,b)
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for any a,b € Xy, then T preserves the gyromidpoint,
T'p(a,b) = p(T'a,Th)
for any a,b € X;.

Corollary 4.6. Let (X;,®;,®;, ] - |, fi) be a normed gyrolinear space and o; be
the gyrometric for i = 1,2. Let T : X1 — X5 be a surjection. Suppose that T
preserves the gyrometric,

02(Ta,Th) = p1(a,b)

for any a,b € Xy. Then T is of the form T(-) = T(e1) ® T(-), where ey is the
identity of X1 and Ty is an isometrical isomorphism in the sense that the equalities

To(a @1 b) = To(a) ®2 To(b); (5)
To(a ®1 a) = a ®; Ty(a); (6)
02(Toa, Tyb) = 01(a, b). (7)

for every a,b € G; and o € R hold.

5. A Normed Gyrolinear Space Induced by a Metric Space

5.1 A Gyrocommutative Gyrogroup Induced by a Metric
Space

A dyadic symset is a magma (X, o) satisfying for all a,b,¢c € X the following
axioms (d1) to (d4):

(dl) aca=a;

(d2) ao(aob)=b;

(d3) ao(boc)=(aob)o(aoc)
(d4)

d4) the equation x o a = b has a unique solution x € X, called the midpoint of

a and b, and denoted afb.

In the paper [3], Lawson and Lim show a strong equivalence between pointed
dyadic symsets and uniquely 2-divisible gyrocommutative gyrogroups in the fol-
lowing sense.

Let (X, 0) be a dyadic symset and e € X. Define a new binary operation & on
X by x@y = (effx) o (eoy) then (X, ®) is a uniquely 2-divisible gyrocommutative
gyrogroup with the identity e. Conversely, let (X, ®) be a uniquely 2-divisible
gyrocommutative gyrogroup. Define a new binary operation o on X by z oy =
2® xSy, then (X, o) is a dyadic symset.

As the consequence of the fact, we have a uniquely 2-divisible gyrocommutative
gyrogroup which is induced by a metric space as following Lemma 5.3.
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Definition 5.1. Let (X,d) be a metric space. We say that (X, d) satisfies the
condition K if the following conditions (K1) to (K3) are hold.

(K1) For any pair x,y € X, there exists a unique element ¢ € X such that

1
d(z,c) =d(c,y) = id(x,y).
We call ¢ the metric midpoint of = and y and write

¢ = mid(z, y).

(K2) For any elements x,y € X, there exists a unique element z € X such that
x = mid(y, z). We write
2= ¢a(y)

and we call the map ¢, : X — X the metric reflection in the point x.
(K3) The metric reflection ¢, : X — X is an isometry for any x € X.

Note that mid(z,y) = mid(y, «). Moreover, z = ¢, (y) <= z =mid(y, z) <
y = . (2) and hence p; ! = @,.

Definition 5.2. Let (X, d) be a metric space that satisfies the condition K. For
fixed e € X, we define the binary operation @, on X by

TBey = @i‘Pe(@/),

where & = mid(e, z) for any z,y € X. We call &, the binary operation induced
by the metric d on X at e € X.

Theorem 5.3. Let (X,d) be a metric space that satisfies the condition K and let
e € X. Let @, is the binary operation on X induced by the metric d at e. Then
(X, ®.) is a uniquely 2-divisible gyrocommutative gyrogroup.

Proof. Let (X,d) be a metric space that satisfies the condition K and let e € X.
Define a binary operation o by x oy = ¢, (y).

First, we prove that (X, o) is a dyadic symset.

(d1): aoa=p.(a) =a.

(d2): ao(aob) = @apa(b) =0.

(d3): Since ¢, is an isometry,

() = dlb,y) = 5d(z,v)

implies

A(pa(2), 2 (0)) = d(2a(8), 2a(®)) = 5d((Pa(x). 2a®)))
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Therefore, b = mid(z,y) implies that ¢, (b) = mid(p,(x), pa(y)). It follows that
O v)(Pa(®)) = 0aly). Since y = @y(x), we have
(@aob)o(aox) =y, w(palt)) = palps(r)) =ao(box)

(d4): zoa=b <= ¢,(a) =b <= 2z = mid(a,b). The midpoint of a and b
is atb = mid(a, b).

Since (X, o) is a dyadic symset, we have (X, ®) is a uniquely 2-divisible gy-
rocommutative gyrogroup, where the binary operation & is defined by x &y =
(efiz) o (eoy). Note that z © y = (efix) o (e 0 y) = Py, (2) (Pe(y))- 0

Let (X,®) be a gyrogroup. For a € X, the left translation A, : X — X is
defined by A, (z) = a @ x for any x € X. It is well known that

gyr[a, b] = /\e(a@b))\a/\b (8)
for any a,b € X.

Proposition 5.4. Let (X,d) be a metric space which satisfies the condition K
and let e € X. Let @ is the binary operation on X induced by the metric d at e.
Then

dla @e z,a @ y) = d(x,y) (9)

and
d(gyr[a, blz, gyr[a, bly) = d(x,y) (10)

for any a,b,x,y € X.

Proof. Let a € X and put @ = mid(e,a). Since the condition (K3), we have ¢;
and ¢, are isometries. Hence

d(a ®e x,a Be y) = d(paper, papey) = d(z,y)
for z,y € X. It follows that
d(gyr[a7 b]l’, gyr[aa b}y) = d(Ae(a®b)AaAb(x)7 )‘e(a@b) Aa)\b(y)) = d($, y)

for any a,b,x,y € X. O
5.2 Preparations

Let (X, d) be a metric space. A geodesic path joining x € X and y € X is a map
0 from [0,!] to X such that 6(0) = x, 6(I) =y and d(d(¢1),(t2)) = |t1 — t2| for all
t1,t2 € [0,1]. In particular, I = d(z,y). (X,d) is called a uniquely geodesic space
if any pairs x,y € X has exactly one geodesic path joining z and y.



160 T. Abe

In this subsection, (X,d) is a uniquely geodesic space with condition K and
Y,y 18 a map from [0, 1] to X defined by

Va,y (t) = Ozy (td(,y))

for any ¢ € [0,1], where d,, denotes the geodesic path joining x and y. It is easy
to show that v, ,(0) = z, 72,,(1) = y and

d(Va,y(t1), Yoy (t2) = [t1 — t2]d(z, y)
for any ¢1,t5 € [0, 1].
Note that 7, ,(s) is a unique point ¢ in X which satisfies d(z, ¢) = sd(z, y) and
d(c,y) = (1 — s)d(z,y) for any 0 < s < 1.
For x € X, define the map ¢, on X by the equation

P2 (y) = py(2)
for any y € X. Then we have
02:(y) =c <= ¢y(r) =c <= mid(z,c) =y.
It implies that ¢, is a bijection on X for any x € X.

Lemma 5.5. Let x,y,z,c € X. Then the following holds.
(y1) For any s € R\ {0},

d(x,z) = [s]d(z,y) d(z,y) = |5ld(z, 2)
{d(z7y): |1—8‘d(1‘,y) = {d(y7z): \1—%|d(m,z)

(y2) For any 0 < s <1,

d(z,c) = sd(z,y)

c= %73,(5) — {d(c, y) = (1 = s)d(x,y).

(y3)
c= d)z(y) <~ {

(y4) For any natural number n,

d(x,c) =2"d(x,y)

c=p(y) = {d(Q y) = (2" — 1)d(z,y).
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(y5) For any s > 1,

¢ = 3 (myr)) = {d(“) ~ ey

2 d(c,y) = (s — 1)d(z,y),

where n € N which satisfies 21 < s < 27,
(y6) For any s > 0,

d(l’, C) = Sd(:c,y) d(xa C/) - Sd(l’,y)
{d<c, y)=ls—ldzy) {d(d,y) = (1+ s)d(z,y).

where ¢ = . (c).

In particular, for any real number s, there exists a unique point ¢ in X such
that d(e,c) = |s|d(e,z) and d(c,x) = |1 — s|d(e, z).

Proof. (yl) and (y2) are obvious.
(y3): We have

¢c=¢z(y) < mid(z,c)=y

= dzy) = de,y) = yd,0

<~ d(z,c) =2d(z,y) and d(c,y) =d(x,y).

(y4): We will prove by induction. When n = 1, the argument is true by (y2).
Let k be a natural number and suppose that ¢¥(y) is a unique point ¢, € X which
satisfies

d(z,c) = 2%d(z,y) and d(cp,y) = (28 — Dd(z, y).

Note that

c= ¢, (y) ¢ = ¢gu(ck)

mid(z,c) = ¢,

d(x,c) =d(e,cx) = %d(m,c)

d(z,c) = 2d(z,c) and d(c,cr) = d(z, c)
d(z,c) = 2" d(x,y) and d(c,c) = 28d(z,y).

111

(=): Let ¢ = ¢F*1(y). We have
d(z,c) = 2" d(x, y)

and
d(y7 C) < d(ya ck) + d(Ck, C) = (2k+1 - l)d(xay)v
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d(yvc) 2 d(JU, C) - d(a:,y) = (2k+1 - l)d(sc,y)

Therefore
d(y,c) = (2" = 1)d(z,y).

(«<): Let ¢ be a point of X which satisfies
d(w,c) = 21 d(z,y) and d(e,y) = (2 — 1)d(,y).

Then 1 1
d(z,y) = Qkﬁd(fﬂac) and d(y,c) = (1 — W)d(lﬂc)

as (y1). It implies that y = v,.c(5). Put ¢ = mid(z, ¢), then we have

d(z,d) = %d(w,c) =2%d(z,y)

and
) 1 1
d(y,C) - d(’}/m,c(m)a’yr,c(i))
= (5 grd(,0) = (2~ ().

By the inductive assumption, we have ¢/ = ¢%(y) and hence ¢ = X1 (y).
By the principle of induction, the proof of (y4) is complete.

(y5): Let s > 1. Then there exist n € N such that 27! < s <2". Put s’ = 2%,
then % <s <1
(=): Let ¢o be a point in X that satisfies
d(z,co) = s'd(xz,y) and d(co,y) = (1 — s )d(z,y).
Following (y1) we have ¢y = 7,4 (s"). Let ¢ be a point in X that satisfies
d(z,c) =2"d(x,co) and d(c,co) = (2" — 1)d(z, o).

Since (y3), we have ¢ = ¢”(¢p). Put b = mid(z,y), then

e, 8) = A (), 70 () = (' = 3)d(e,) = (1= )z, o)

2
and
1 1 1 1
d(z,b) = §d(ﬂ?,y) = @d(%co) = Wd(x,c) = %d(%c)

Thus,

1
d(b,c) < d(b,co) +d(co,c) = (2" — g)d(:p, 0)

1 1
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d(b,c) > d(z,c) —d(z,b) = (1 x,¢) = (11— =—)d(z,c)

1
B 2”“5’)d( 2s

and hence

d(b,c) = (1 - 2—18)d(;v,c).

Therefore, we have b = %70(2—15). Since b = mid(z,y), we have y = v, (1), that is,

S

d(z,y) = éd(m,c) and d(y,c) =(1— é)d(xm).

By (y1) we have

d(z,c) = sd(z,y) and d(c,y) = (s — 1)d(z,y).
(«<): Let ¢ be a point in X which satisfies

d(z,c) = sd(z,y) and d(c,y) = (s — 1)d(z,y).

By (y1) and (y2) we have y = v,.(1). Let ¢; = mid(z,¢) and cgy1 = mid(z, cx)

for any k € N. Then ¢, = vz,c(5r) and ¢%(c) = ¢ for any k € N. Thus we have

Ay, 0) = (- — 5)d(r,0) = (1= o)d(zy)
and 1
d(z,c,) = z—nd(x,c) = %d(z,y).

It implies that ¢, = 7,4 (5%) and hence ¢ = ¢} (Ve y(57))-
(y6): Let s > 0.
(=): Let ¢ € X be a point in X such that

d(z,c) = sd(z,y) and d(c,y) = |1 — s|d(z,y).
Since ¢, is an isometry and ¢, (x) = x, we have
d(xa QD,T(C)) = d(xa C) = Sd(xvy)
and
By the definition of ¢,, we have d(a, ¢, (a)) = 2d(x,a) for any @ € X and hence
d(ex(y),y) = 2d(z,y),
d(pz(c), ¢) = 2d(z, c) = 2sd(z,y).
We first assume that 0 < s < 1. Then

d(pz(c),y) < d(pz(c),z) +d(z,y) = (1 + s)d(z,y)
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and
d(pz(c),y) > d(pz(y),y) — d(pz(y), pz(c)) = (1 + s)d(z,y).
It follows that
d(pz(c),y) = (1 + s)d(z,y).
Next, we assume that 1 < s. Then

d(pz(c),y) < d(pa(c), x) +d(z,y) = (1 + s)d(z,y)
and
d(¢z()y) = d(pz(c), ¢) = d(c,y) = (1 + s)d(z,y).
It follows that
d(pu(c),y) = (1 + s)d(z, y).
(«<): Since (y2) to (y5), there exists a point ¢ in X such that
d(z,c) = sd(z,y) and d(c,y) = |s — 1|d(z,y).

We have
d(x, z(c)) = sd(z,y) and d(pz(c),y) = (1 + s)d(z,y)
as opposite direction. Let ¢/ € X be a point such that
d(z,c') = sd(z,y) and d(c,y) = (1+ s)d(z,y).
Put ¢t =1+ s thent > 1 and
d(yv Cl) = td(yv“):) and d(Clvl') = (t - ].)d(y,l’)
Since (y4), such a point ¢ is unique in X. Thus ¢’ = ¢, (c). O

By Lemma 5.5, for any z,y € X and any s € R, there exists a unique point
¢ € X such that d(z,c) = |s|d(x,y) and d(c,y) = |1 — s|d(z,y). We will denote
the such point ¢ by v, 4(s).

Lemma 5.6. For any x,y € X and s,t € R, the equation
A(Vo,y(5): Yoy (t)) = |s — tld(z,y)
holds.

Proof. Put a, = v;,(r) for any » € R. We can assume that s < ¢.
(the case: 0 < s <t < 1): trivial.
(the case: 0 < s <1 <t): By the definition of a,, we have

d(z,as) = |sld(z,y) = sd(z,y),
dlas,y) = [1—=sld(z,y) = (1= s)d(z,y)
d(z,ar) = |tld(z,y) = td(z,y),
d(at,y) 11— tld(z,y) = (t = Dd(z,y).
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and hence

(the case: 1 < s < t): Since (y1), we have y = 74.4,(1). Let ¢ = 73.4,(%), then,

since 0 < %,f <1, we have
da,c) = d(a,a) = sd(z,y),
1 s
d(yac) = |;_¥|d(xaat): |1—S|d(.’1},y)

It implies that ¢ = as. Thus
S
das, o) = |5 — 1ld(z, @) = |s — tld(z, )
As the above part of the proof, we have

0<s,t=d(Vay(s)Vayt)) =|s —t|d(z,y).

(the case: s <0 <1 <t): By the definition of a; we have

d(‘ra at) = td(ﬂf, y)7
dla,y) = (t—1)d(z,y).
It follows that
dar,a) = ——d(ar,y)
at, T - t—1 at,Y),
t
d(m,y) = (1 — m)d(ah y)
It implies that 2 = 74, ,(755). Let ¢ = 74,,4(2=2). Since 0 < 1, I=2, we have
t—s
d(yvc) = |1 - m'd(yaat) = (1 - S)d(l’,y),
t—s t
d(c,z) = |t 1 t_—l|d(y,at) = |s[d(z,y).
Hence ¢ = a,. Thus
t—s
d(atvas) = d(atac) = 7d(atay) = (t - 8)d(.’177y)

t—1
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(the case: s < 0 <t < 1): By the definition of a, and triangle inequality, we
have

d(as,at) d(as,z) + d(z,a)
= —sd(z,y) +td(z,y) = (t — s)d(z,y),
das,ar) > d(y,as)+d(y,a)

(1 =s)d(z,y) + (1 = t)d(z,y) = (t = s)d(z,y)

V

and hence
d(as,at) = (t — s)d(z,y).
(the case: s <t <0): For any r € R, we have

7w,y(r) = ’Yy,w(l - T)

by the definition. Since 0 <1 —s,1 — ¢, we have

A(Va,y(8), 12,y () = d(Yy,e (1 = 8), 7y 2 (1 = 1)) = (¢ = s)d(y, ).

Lemma 5.7. Let x,y € X. The equation

P () Yy (1) = Yary (25 — 1)

holds for any s,t € R.

Proof. Since Lemma 5.6, we have

d(%,y(zs - t)7 VI,y(S)) = |S - t|d(.%‘, y)7
d(Va,y(8):V2y(t) = [s—tld(z,y)

and

A(Va,y (25 — 1), Ya,y (1)) = |25 — 2t|d(z, y).
Thus

1
A(Va,y (28 = 1), Yoy (5) = d(Vay (8): Y2,y (1)) = 5A(Vay (28 — 1), Yoy (1))
and hence
’790,2;(8) = mid(’)/ac,y(t)v 7x,y(25 - t))

Therefore,

P,y (s) (’h,y(t)) = ’Ya;,y(Qs - t)'
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5.3 A Normed Gyrolinear Space Induced by a Metric Space

In this subsection, let (X,d) be a uniquely geodesic space which satisifies the
condition K. For z,y € X and s € R, 7, ,(s) denote the unique point ¢ € X that
satisfies d(z, ¢) = |s|d(z,y) and d(c,y) = |1 — s|d(z, y).

Definition 5.8. Let (X, d) be a uniquely geodesic space that satisfies the condition
K. For fixed e € X, we define the scalar multiplication ®, on X by

5 ®e & =Ye,z(5)
for any x € X and s € R. We call ®, the scalar multiplication induced by the
metric d on X at e.

In the following part of this subsection e is a point in X. . is the binary
operation induced by the metric d on X at e, and ®,. is the scalar multiplication
induced by the metric d on X at e.

Proposition 5.9. Let (X, d) be a uniquely geodesic space which satisfies the con-
dition K. Let e € X and put ||z||e = d(e,x) for any x € X. Assume that (X,d)
satisfies the following condition:

(K4) © — y implies pz(a) = @y(a) for any z,y,a € X.

Then (X, @e, e, || - e, id) is a normed gyrolinear space with gyrometric d.

Proof. Recall that (X, ®,) is a gyrocommutative gyrogroup by Lemma 5.3.
(GL1): It is an immediate consequence of v, (1) = .

(GL2): By Lemma 5.7, we have

(’I" Re J,‘) De (8 e Z‘) = @mid(em@em)@e(s Re J,‘)
= @mid(e,'ye,m(r))((_s) ®e .1‘)

SD'Y@,T,(%) (’ye,m(_s))
2r

= '76,1:(? —(—9))
= Yeulr+s)
= (r+s)Qex

(GL3): Put z =7 ®. (s ®c x), then z = v, sg,4(r). Since (y1), z = ’yeys&z(%).
We have z = (rs) ®, « as

d(e,z) =d(e,r ®¢ (8 ®c x)) = |r|d(e, s ® ) = |rs|d(e, x)

and
1
d(x,z) = d('Ye,s@eac(g)v'Ye,s@em(r))

1
|r — =|d(e, s ®c x) = |rs — 1]d(e, x).
s
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(GL4): Since gyr[z,y] is an automorphism, gyr[x, yle = e. By equation (10) of
Proposition 5.4, gyr[x,y] is a isometry. Hence we have

e, c |r|d(e, a)

9

) =
= e <~
€T e {d c,a) =1 —r|d(e,a)

(
(
PN {dégyr[z syle, gyr[z, yle) = [rld(gyr[z, yle, gyr[z, y]a)
(
(
[z
yr(z

d(gyr[z, yle, gyr[z, yla) = |1 — r|d(gyr[z, yle, gyr[z, yla)
d(e, gyr[z, ylc) = |r|d(e, gyr[z, yla)

= {d gyr[z, yle, gyr[z,yla) = [1 — r|d(e, gyr[z, y]a)

— yI|T,y } Ve,gyr[z,yla (7“)

< x,y ] =7 Qe ’7[$ y]

(GL5): For any x € X, since (X, ®.) satisfies the condition (G5), we have

gyr[n Qe T, I] = gyr[((n - 1) Be I) De , JZ]
= gyr[(n—1) @ z, x]

for any integer n. It follows that
gyr[n ®. z, z] = gyr[0 @, z, x] = gyrle, z] = idx
for any integer n. Also, we have
gyr[z, m @, 2] = gyrHm @ x, 2] = idx
for any integer m. Since gyrocommutative gyrogroup satisfies the equation
eytla, bl gyilb, clgyrle, a] = id
for any a, b, ¢ (|6]Theorem 3.31), we have
gyr[n ®. ,m ®, x| = gyr[n Q. z, x| gyr[z, m Q. x| gyrm Q¢ x,n Q. x] = idx

for any integers n, m. It follows that
1 1 .
gvr[ D y,y] = gyrin O (— e y), m Oe (— e y)] = idx (11)

for any y € X and rational number ﬁ.
m
Let {k,} be a sequence of rational numbers such that k, — «. Then we have
kn ®e @ = Ye x(kn) = Yex(a) = @ ®. x by Lemma 5.6. By the condition (K4) we
have

AMp®e2 (@) = Php@ozPe(@) = Pag.ePe(@) = Aag.z(a)
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for any z,a € X. Thus we have

gyr[kn Qe , x}(a) = )‘e(kn®cr®ex))‘kn®ez)‘z (a)
= ANekn-D)@eaM,oaA(@)
- )‘(—a—l)®ea:)‘a®ex>‘x(a)

= )‘e(a®e:v€Bex)/\a®ew/\w (a)

= gyrla®. z,z](a)

for any real number « and a,x € X, where {k, } is a sequence of rational numbers
such that k,, — «. Following (11) we have gyr[a ®, x, z] = idx for any € X and
a € R. Thus we have

r .
gyr[r Qe T, S Qe SC} = gyr[g e (5 Qe f)a S Qe x} =idx

for any x € X and r,s € R.
(NG1): ||z|le =0 <= d(e,2) =0 <= z=¢
(NG2): Following Proposition 5.4, we have

[z @eylle = dle,zDcy)

d(e, x) +d(z,z G y)
d(e, x) +d(e,y) = [[zlle + [lylle

IN

for any z,y € X.
(NG3): For any = € X and r € R, we have

Ir @czlle = dle,r®cx)

= d(’ye’I(O),’Ve’x(T))
0 —r|d(e, z) = |rll]|

by Lemma 5.6.
(NG4): Since any gyroautomorphism preserves the identity e and Proposition
5.4, we have

| gyrlz,ylalle = d(e, gyr[z,yla)
= d(gyr[z,yle, gyr[z,yla)
= d(e,a) = |al.

for any a,z,y € X.
Finally, since Proposition 5.4, we have

d(z,y) =d(e,x S y) = ||z O y]|-
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The following Corollary 5.10 is a immediately consequence of Proposition 5.9
and Proposition 3.4.

Corollary 5.10. Let X be a set and o be a function o : X x X — X that satisfies
o(z,y) =0 if and only if x =y. Let e € X and put ||z||, = o(e,x) for any x € X.
Let f be a monotone increasing bijection f : || X||. — R>o, where || X||L = {||=]], :
x € X}. Putd= fo. Suppose that (X,d) is a uniquely geodesic space that satisfies
the condition K and the condition (K4). Then (X, ®e, e, || - |IL, ) is a normed
gyrolinear space with gyrometric o.

Proof. Put ||z|. = d(e,x). By Proposition 5.9, (X, D¢, ®e, || - le, id) is a normed
gyrolinear space. Since f is a monotone increasing bijection f : || X[, — Rxo, we

have
1Xle = {llzlle : x € X} = {fllz[l : € X} =Rxo

and hence f~! is a monotone increasing bijection f~! : || X| — || X]|.. Note
that 0 € || X|" as |le]/ = 0. Since f~! is strictly monotone increasing, we have
f71(0) = 0. By Proposition 3.4, we have (X, @, ®e, || - ||', f). Finally, we have

o(z,y) = fd(z,y) = fHlz eyl = lzSe yll'-

5.4 Examples

Example 5.11. Let || - || be the Euclidean norm and d be the Euclidean metric
on R™. Then the Euclidean space (R™,d) is a uniquely geodesic metric space that
satisfies the condition K with

mid(z,y) = Ty
2
and
eu(y) =22 —y

for any x,y € R. In this case, (R", @¢) = (R”,+) as

TO0Y = Pmid(0,2)Po(y)

= ¢z(-y)

= x4y
for any z,y € X. Moreover, ®q coincides with the usual scalar multiplication on
R™ as

d(0,rz) = [lrz| = [r|||z|| = rd(0, z)
and
d(z,rz) = ||z —ra|| = |1 = rl]lzf| = [1 - r[d(0, z)

for any x € R™ and r € R.
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Example 5.12. Let D = {z € C: |z| < 1}. The Mdbius addition @ in D is given
by the equation

for any a,b € D. (D,®) is a gyrocommutative gyrogroup (see [6]) and is called
the Mébius gyrogroup. The identity of (D, ®) is the origin of C and ©a = —a for
every a € . Moreover, the Méebius multiplication is given by

7 ® a = tanh(r tanh ™! \a|)‘£|
a

for any a € D and r € R. The Mé&bius gyrometric g is given by the equation

olent) = (o) 0] (= | T2

1—ab

for every a,b € D. (D, o) is a metiric space in itself, and (]D),taunh_1 0) is a met-
ric space again. (I, o) doesn’t satisfy the condition K. However, (ID,tanh™" o)
satisfies the condition K with

mid(a, b) = % ® (aBY)
and
Pa(b) = (2©a) @ (-b)

for any a,b € D. Let @ be the binary operation on I induced by tanh ™' o at 0
then @y = @. Moreover, (I, tanh™" p) is a uniquely geodesic metric space. Let
®o be the scalar multiplication on D induced by tanh ™ p at 0 then ®( = ®.
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Gyrovector Spaces on the Open Convex Cone of

Positive Definite Matrices
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Abstract

In this article we review an algebraic definition of the gyrogroup and a
simplified version of the gyrovector space with two fundamental examples on
the open ball of finite-dimensional Euclidean spaces, which are the Einstein
and Mobius gyrovector spaces. We introduce the structure of gyrovector
space and the gyroline on the open convex cone of positive definite matrices
and explore its interesting applications on the set of invertible density ma-
trices. Finally we give an example of the gyrovector space on the unit ball
of Hermitian matrices.
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1. Introduction

In the theory of special relativity founded by Albert Einstein, the velocities are
3-dimensional vectors with speed bounded by the speed of light s ~ 3 x 108 m/s,
called the admissible vectors. The relativistic sum of two admissible vectors u and
v, called the Finstein vector addition is given by

1 1 1T 7 T
_ = — 1
udp v T {u+%v+821+%(u V)u}, (1)
1
where v, = ﬁ is the well-known Lorentz factor. We denote as u’v the
1 L

usual inner product in matrix form. To study abstractly the Einstein vector addi-
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tion in special relativity, A. Ungar [16] has introduced a group-like structure that
he called a gyrogroup or gyrocommutative gyrogroup. Gyrogroups and gyrocom-
mutative gyrogroups are equivalent to Bol-loops and K-loops (Bruck loops) [6,14],
respectively.

As a vector space is used in Euclidean geometry, a gyrovector space is a math-
ematical concept introduced by A. Ungar for studying hyperbolic geometry. We
review in Section 2 the definitions of gyrogroup and gyrovector space with two
important examples, the Einstein gyrovector space and Mébius gyrovector space.
The axioms of gyrovector space in this article are more loose than those proposed
by A. Ungar, but they also give a plenty of applications [4,6]. For instance, the
Einstein gyrovector space and Mobius gyrovector space provide the algebraic tool
to study the Beltrami-Klein ball model and the Poincaré ball model of hyper-
bolic geometry, respectively. It has been proved that the Einstein and M&bius
gyrovector spaces are isomorphic. See [7,16] for more details.

In Section 3 we see examples of gyrovector space on the open convex cone
of all positive definite matrices and on the set of all invertible density matrices.
Furthermore, we show the isomorphism between the gyrovector space of all qubit
invertible density matrices and the Einstein gyrovector space on the Bloch sphere,
the open unit ball of R?. It generalizes the result in Theorem 3.4 of [3].

A gyroline uniquely determined by given two points on the gyrovector space
plays an important role in the concepts of gyrocentroid and gyroparallelogram
law. In Section 4 we discuss a gyroline on the open convex cone of all positive
definite matrices and on the set of all invertible density matrices. Finally we give
a different example of a gyrovector space on the open unit ball of all Hermitian
matrices constructed by the exponential and logarithmic maps.

2. Gyrovector Spaces

We review in this section the algebraic structure of a gyrogroup as a natural exten-
sion of a group into the regime of the nonassociative algebra. We then introduce
a gyrovector space providing the setting for hyperbolic geometry just as a vector
space provides the setting for Euclidean geometry. A. A. Ungar has introduced
and intensely studied them in a series of papers and books; see [16] and its bibli-
ography.

The binary operation in a gyrogroup is not associative, in general. The break-
down of associativity for gyrogroup operations is salvaged in a modified form,
called gyroassociativity. The axioms for a (gyrocommutative) gyrogroup G are
reminiscent of those for a (commutative) group.

Definition 2.1. A binary system (G, ®) is a gyrogroup if it satisfies the following
for all a,b,c € G:

(Gl) e®@a=a®e=a (existence of identity);
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(G2) a® (Sa) = (©a) ®a=-e (existence of inverses);
(G3) There is an automorphism gyr[a,b] : G — G for each a,b € G such that

a® (bdc)=(adb) D gyr[a,blc (gyroassociativity);

(G4) gyr[a @ b,b] = gyr[a,b] (loop property).
A gyrogroup (G, ®) is gyrocommutative if it satisfies
a®b=gyr[a,b](bPa) (gyrocommutativity).

A gyrogroup is uniquely 2-divisible if for every b € G, there exists a unique element
a € G such that a ® a = 0.

In (G3) the automorphism gyr[a,b] for each a,b € G is called the Thomas
gyration or the gyroautomorphism, or simply, the gyration generated by a and b.
From (G2) and (G3) we have

gyrfa,ble =S(a@b) @ [a® (0@ c)]

for all a,b,c € G. In Euclidean space it plays a role of rotation in the plane
spanned by {a, b} leaving the orthogonal complement fixed.

It has been shown in [14] that gyrocommutative gyrogroups are equivalent to
Bruck loops with respect to the same operation. It follows that uniquely 2-divisible
gyrocommutative gyrogroups are equivalent to B-loops. The two approaches have
remained quite distinctive in the literature, but we primarily use a notion of gy-
rogroups rather than a notion of loops.

For arbitrary fixed positive constant s, we let

B,={veR":|v|<s}

be the open s-ball in the n-dimensional vector space R™. We consider elements in
R™ naturally as column vectors, so that u”v is the usual inner product written in
matrix form. We here see two important examples of gyrogroups [16].

Example 2.2. We define the binary operation @ in B, by

1 T

52

Yu =

The equation (2) is called the Finstein addition of relativistically admissible ve-
locities, introduced by Einstein in his 1905 paper. The binary system (Bs, ©g)
forms a gyrocommutative gyrogroup, called the standard real relativistic gyrogroup
or the Einstein gyrogroup.
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Example 2.3. In the open s-ball B, we define the binary operation &), by

1 2u’v HVI|2> < IIUHZ) }
udyv= 1+ + u+|l———)v 3
U T et Ve {(oe 2 1 2 @

for any u,v € B;. The equation (3) is called the Mdbius addition, known as
Mébius translation on the open s-ball (see formula (4.5.5) of [13]). The binary
system (B, @) forms also a gyrocommutative gyrogroup, called the nonstandard
real relativistic gyrogroup or Mdbius gyrogroup.

Suksumran and Wiboonton [15] have recently shown by using the Clifford
algebra that the open ball B, equipped with binary operations &g and ®ys,
respectively, is a uniquely 2-divisible gyrocommutative gyrogroup.

In the same way that vector spaces are commutative groups of vectors that
admit scalar multiplication, gyrovector spaces are gyrocommutative gyrogroups
of gyrovectors that admit properly scalar multiplication. We give a definition of
gyrovector spaces slightly different from Definition 6.2 in [16].

Definition 2.4. A gyrocommutative gyrogroup (G,®) equipped with a scalar
multiplication

(tzx)—»tx:RxG—G

is called a gyrovector space if it satisfies the following for s,z € R and a,b,c € G.
(V1) 1®a=a,0@a=t®e=c¢, and (—1) ® a = Sa.

(V2) (s+t)@a=s5R@adt®a.

(V3) (st) ®a=s® (t®a).

(V4) gyr(a,b](t ® c) =t ® gyrla, blc.

Definition 2.5. A topological gyrovector space is a gyrovector space (G,®,®)
equipped with Hausdorff topology such that both & : GXxG — Gand ® : RxG —
G are continuous.

Remark 2.6. In a topological gyrovector space (G,®,®), it has been proved
from [4] that

gyrls @ a,t ® a] = idg
for any s,t € R and a € G, where id denotes the identity map on G.

We have seen two distinctive examples of gyrocommutative gyrogroups in the
open s-ball By of the n-dimensional vector space R™. Via defining a scalar mul-
tiplication we see two common examples of inner product gyrovector spaces, also
corresponding to two models of hyperbolic geometry.
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Example 2.7. Let B, be the Einstein gyrogroup with Einstein addition &g, or
the Mobius gyrogroup with Mdbius addition &y, respectively. We define a map

®:R x Bs; — B by
(o))
tR®v=s- —

T 3
(1+H%H> n (1_ H:H) vl (1)
= stanh (ttanh_1 ”V) v

s ) IIvIl

for t € R and v(# 0) € By, and define t ® 0 := 0. We call (B;,®g,®) and
(Bs, ®ar, ®) the Finstein gyrovector space and the Mébius gyrovector space, re-
spectively.

The Beltrami-Klein ball model of hyperbolic geometry is algebraically regulated
by Einstein gyrovector spaces. The geodesics of this model, called gyrolines, are
Euclidean straight lines in the open s-ball. On the other hand, the Poincaré
ball model of hyperbolic geometry is algebraically regulated by Mdbius gyrovector
spaces. The geodesics of this model are Euclidean circular arcs in the open s-ball
that intersect the boundary of the ball orthogonally.

3. On the Cone of Positive Definite Matrices

We have seen two fundamental examples of a gyrovector space, Einstein gyrovector
space and Md&bius gyrovector space, on the open s-ball Bs. In this section we give
an example of a gyrovector space on the open convex cone P of all n X n positive
definite matrices.

Example 3.1. [4, Example 2.2, Example 3.2] Let P be an open convex cone of
positive definite Hermitian matrices. Define the binary operation & and a scalar
multiplication o by

®:PxP—P, A® B= AY?BA'?,
0o:RXxP—P, tod=A

for any A, B € P and t € R. Then the system (P, ®, o) forms a gyrovector space,
and the gyroautomorphism generated by A and B is given by

gyr[A, B]C = U(A, B)CU(A,B)™!, (5)

where U(A, B) = (AY/2BA'/?)=1/2A/2B'/2 is a unitary part of the polar decom-
position for AY/2B'/2 such that

AY2BY? = (A® B)Y?U(A, B).
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Indeed, let us check (V4). For any A, B, X € P
gyr[A, B](to X) = U(A, B)X'U(A, B)™*
=U(A, B) exp(tlog X)U(A, B)™*
=exp[tlogU(A, B)XU(A, B)™]
= [U(A,B)XU(A,B)"'" = togyr[A, B]X.

One can easily see that the binary operation @ and the scalar multiplication o
are both continuous. Thus, the system (P, @, o) is a topological gyrovector space.

Remark 3.2. The inner product on M,,(C), the vector space of all n x n matrices
with complex entries, is naturally defined as (A, B) = tr(AB*), where X* is a
complex conjugate transpose of a matrix X. The gyroautomorphism on P preserves
the inner product, and so the norm induced by inner product. Indeed, for any
AB, X, YeP

(gyr[A, B] X, gyr[A, B]Y) = tr[U(A, B)XU (A, B) Y (U(A, B)YU(A, B)")*]
= tr[U(A, B)XY*U (A, B)*]
= tr[XY*] = (X,Y).

A. Ungar has explained a gyrogroup structure for qubit density matrices in
Chapter 9, [16]. We now see an example of gyrovector space for arbitrary dimen-
sional density matrices.

Example 3.3. [3] Let D,, be a set of all n x n invertible density matrices, which
are positive definite Hermitian matrices of trace 1. We define a binary operation
® and a scalar multiplication * given by

1

piop:  p&o
tr(po)  tr(p® o)
pt top
tr(pt) — tr(top)

for any p,o € D,, and ¢ € R. Then (D,,®,*) is a gyrovector space. Note that the

©:D, xDy, = D,, pOGo=

*:RxD, =-D,, txp=

1
identity element in (D,,, ®, %) is —I,, and the inverse of p is (—1)xp = e
n r(p
where I,, denotes the n x n identity matrix.
In [3, Theorem 3.4] it has been shown the relationship between the Einstein gy-
rogroup (Bs—1, @ g) and the gyrogroup (Ds, ®) of 2 x 2 invertible density matrices.
In other words, the map

U1 .
. _ o 1 1+U3 V1 — 109
p i (Bo=t, @) = (D2, 0), v = z2 ThvT g ( vy +ive 1 —ws
3

is a gyrogroup isomorphism. We give an extension of the isomorphism between
gyrovector spaces.
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Theorem 3.4. The Einstein gyrovector space (Bs=1,®g,®) and the gyrovector
space (Dg, ®,%) of 2 x 2 invertible density matrices are isomorphic.

Proof. It remains to show that

t

Prov =T x py = Pv

tr(pl,)
for any t € R. Set
1
T={teR: v=—pt § B.—
{te Pte tr(pf,)p" orany v € Bo_1}

Our goal is to show that the set T contains all dyadic rational numbers, since this
implies by the density of dyadic rational numbers that T'= R.

1
Easily 0,1 € T. Moreover, 3 € T. Indeed,

1 v
Loy 2
2 Y+ 1

V.

So we obtain from [3, Lemma 3.3] that

. 1 ( 1+ 7‘711113 #(Ul —ivg) )

Plev = D) 731;_1 (v1 + iv9) 1-— 73111}3
7} Vv ].—f—?)g-l—,y% Ul—ivz
T 24y +1 vy + vy 1—v3+$v
L
Y2
tr(pv/?) "

This gives us that % € T whenever t € T

From pugv = pu © pv we have

1
tr(pv?)
That is, 2t € T and —t € T whenever t € T. Then for s,t € T

P2@v = T oy
tr(p3)

v

p3 and p_1)gy = Pyt

P(2s—t)@v = P(2s)@va(—t)®v
= pPe2s)ev O P(—t)ev
— (25) 0 pu © (—1) 0 py
= (25 —t) 0 py.

In other words, 2s — t € T whenever s,t € T. So the set T contains all dyadic
rational numbers in R. O

It is still an open question whether or not the Einstein gyrovector space (Bg=1,
@, ®) and the gyrovector space (D, ®,*) are isomorphic for n > 2.
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4. Gyrolines and Gyromidpoints

The gyroline passing through the points a and b in the gyrovector space (G, ®, ®)
is defined in Definition 6.19, [16], by

L:RxGxG—G, Lt;a,b) =adt® (Sadb). (6)

The gyroline is uniquely determined by given points, and a left gyrotranslation of
a gyroline is again a gyroline by Theorem 6.21 in [16]. In other words,

x® L(t;a,b) = L(t;z ®a,z®Db)
for any = € G.

Example 4.1. From Example 3.1 we obtain the gyroline on (P, ®,0) passing
through A and B such that

L(t;A,B)=A®to((-1)c A® B) = Al/Q(A*1/23A71/2)tA1/2 (7)

for t € [0,1]. This is usually called the weighted geometric mean of A and B,
and denoted by L(t; A, B) = A#.B. Moreover, it is known in [1, Chapter 6] as
a unique geodesic connecting from A to B on P with respect to the Riemannian
trace metric §:

8(A, B) = || log(A™2BAT2)| p,

where || X || denotes the Frobenius norm of X. Note that for any A, B,C,D € P
and ¢ € [0,1]
0(A#,B,C#,D) < (1 —1)6(A,C) +t6(B, D).

It is also satisfied that for any invertible matrix M,
M(A#B)M* = (MAM™)#,(MBM™).
This implies that a left gyrotranslation of a gyroline is again a gyroline.

Since the map t € [0,1] — A#;B for any A, B € P is introduced by two-variable
geometric mean, a variety of approaches to extend it to multivariable geometric
means have been recently developed. Among them we introduce a least squares
mean as a hot topic of matrix means.

Remark 4.2. It is known in [1, Chapter 6] that (P,d) is a Bruhat-Tits space (a
Hadamard space or a non-positive curvature space), which is a complete metric
space satisfying the semi-parallelogram law. For an n-dimensional positive prob-
ability vector w = (wy,...,w,) and positive definite matrices Aq,..., A,, there
exists a unique minimizer of the weighted sum of squares of Riemannian distances
to each point.

argmin Y w;62(Z, A;). (8
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This is called the least squares mean (the Karcher mean or Riemannian barycen-
ter), and denoted by A(w;Ay,...,A,). Vanishing the gradient of the objective
n

function f(Z) = Z w;6%(Z, A;), we obtain that the least squares mean coincides
i=1
with the unique positive solution of the Karcher equation

n
> wilog(2'/2 A1 Z1?) = 0. (9)
i=1
Many interesting properties for the least squares mean including the monotonicity
have been studied; see [2,8-11].
A. Ungar has introduced in [16] a gyrocentroid as a barycenter of points on the

gyrovector space. It would be interesting to find a connection between the least
squares mean and the gyrocentroid.

We finally give a formula of the gyroline on the gyrovector space (D, ®,*).
Theorem 4.3. For any p,o € (D,,®,%) and t € [0,1]

1
L(t;p,0) = mp#w-

Proof. Let p,o € (D,,®,*) and t € [0,1]. From Example 3.3 we have

(“1)%pGo = (fliop@a

tr((=1)op® o)’
and
tol(~1)opao]

e T S YL

Thus, we obtain

o ol Nopeo] _ _phw
Hpo) =p @t D2 p 00 = G S ro o p@ o) (o)’

O

Remark 4.4. Tt has been shown in Proposition 3.8 of [5] that the map L(¢; p, o)
is a minimal geodesic on ,, with respect to the Hilbert projective metric. In
Theorem 4.2 and Remark 4.3 of [5], moreover,

1 . _ Put Py _ Yuu T+ WV
L{Z;puspyv )= =
tr(pu#tov)  Yutw

2

for any u,v € Bs—;. This is known as the Finstein gyromidpoint in Theorem
6.92, [16].
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5. Applications and Remarks

We have seen in Example 3.1 that (P, ®,0) is a gyrovector space. Let us denote
H as the real vector space of all Hermitian matrices. The exponential map from
H to P given by
1
_ n
exp A = Z EA
n=0

is a diffeomorphism, and its inverse is the logarithm map denoted by log.
We define a map f: H — B(H) :={A € H: ||A]| <1} by

X
F(X) := tanh | X |

v X 7£ Oa
X

and f(O) := O, where || - || denotes the Frobenius or Hilbert-Schmidt norm. Since

tanh
the function g(z) = ann e for x > 0 is bijective, so is f. Then the composition
defined as
log A
g=folog:P— B(H), g(A) := tanh||logAHm, A#T (10)

and g(I) = O, is also a bijection. It means that every element in B(H) can be
uniquely written as g(A) for some A € P.
Furthermore, defining a binary operation ¢ on B(H) by

g(A)og(B):=g(A® B)

gives us an isomorphism ¢ from (P,®) onto (B(H),©). So the binary system
(B(H), ¢) is a gyrocommutative gyrogroup. Also, setting

txg(A):=g(toA)=g(A")

for all t € R and A € P gives us a gyrovector space (B(H),o,*). Indeed, the
following are satisfied for any s,t € R and A, B, X € P.

(V1) 1xg(A) =g(A) and 0% g(A) = g(I) =O.

(V2) Using an isomorphism g we have

(Aert) _ g(As/2AtAs/2)

(A% @ A") = g(A%) 0 g(A") = s % g(A) ot x g(A).

(V3) (st) x g(A) = g(A*") = g((A°)") =t * (s * g(A)).
(V4) We note by the gyroassociativity and an isomorphism g that

gyr[g(A), 9(B)]g(X) = g(gyr[A, B]X). (11)
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Then

gyr[g(A), g(B)I(t * 9(X)) = gyr[g(A), g(B)lg(t x X)
= g(gyr[A, B](t » X)) = g(t » gyr[A, B]X)

=t x g(gyr[A, B]X) = t x gyr[g(A), 9(B)]g(X).

Remark 5.1. Since gyr[s o A,t o A] = idp on the gyrovector space (P, ®,o) for
any s,t € R, we also have

gyr[s * g(A), t x g(A)]g(X) = gyr[g(s o A), g(t o A)]g(X)
= g(gyr[so A,t o A]X) = g(X).

The second equality follows from the equation (11). This means that
gyr[s x g(A),t x g(A)] = idpm) -

The following gives us a formula of the gyroline on the gyrovector space (B(H),
o, %).

Proposition 5.2. For given A, B € P, the gyroline connecting from g(A) to g(B)
on the gyrovector space (B(H), o, x) is g(A#:B).

Proof. By the general equation (6) of gyroline on the gyrovector space,

L(t; 9(A), g(B)) = g(A) ot * ((—1) * g(A) 0 g(B))
=g(A) ot (9(A™1) o g(B))
=g(A)otxg(A™/2BA/?)
= g(A)og((A™2BA/2))

(

— g(AV2(A"V/2BATY/2)t AL/2),

O
Remark 5.3. On the gyrovector space (B(H),o,*), it would be interesting to
investigate any geometric aspect such as metric relations and gyrocentroids.
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Geometry with Gyrovector Space Approach
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Abstract

The aim of this paper is to show the importance of analytic hyperbolic
geometry introduced in [9]. In [1], Ungar and Chen showed that the alge-
bra of the group SL(2,C) naturally leads to the notion of gyrogroups and
gyrovector spaces for dealing with the Lorentz group and its underlying hy-
perbolic geometry. They defined the Chen addition and then Chen model of
hyperbolic geometry. In this paper, we directly use the isomorphism prop-
erties of gyrovector spaces to recover the Chen’s addition and then Chen
model of hyperbolic geometry. We show that this model is an extension of
the Poincaré model of hyperbolic geometry. For our purpose we consider
the Poincaré plane model of hyperbolic geometry inside the complex open
unit disc . Also we prove that this model is isomorphic to the Poincaré
model and then to other models of hyperbolic geometry. Finally, by gyrovec-
tor space approach we verify some properties of this model in details in full
analogue with Euclidean geometry.

Keywords: Hyperbolic geometry, gyrogroup, gyrovector space, Poincaré model,
analytic hyperbolic geometry.
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1. Introduction

Gyrogroups are noncommutative and nonassociative algebraic structures and this
noncommutativity-nonassociativity turns out to be generated by the Thomas pre-
cession, well-known in the special theory of relativity. Gyrogroups also revealed
themselves to be specially fitting in order to deal with formerly unsolved problems
in special relativity (e.g. the problem of determining the Lorentz transformation
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that links given initial and final time-like 4-vectors). Gyrogroups are split up into
gyrocommutative gyrogroups and nongyrocommutative. It turns out that intro-
ducing (gyrocommutative) gyrogroups, Ungar gave a concrete physical realization
to formerly well-known algebraic systems called K-loops discovered by Helmut
Karzel(e. g. see [2,3]) in his study of neardomains. Since his 1988 pioneering pa-
per [7] Ungar has studied gyrogroups and gyrovector spaces in several books [8-14]
and many papers.

Some gyrocommutative gyrogroups admit a multiplication which turn them to
a gyrovector space. Gyrovector spaces, in turn, provide the setting for hyperbolic
geometry in the same way that vector spaces provide the setting for Euclidean ge-
ometry, thus enabling the two geometries to be unified. Armed with a gyrovector
space structure, hyperbolic geometry is perfect for use in relativity physics. Abra-
ham A. Ungar introduced the analytic hyperbolic geometry in [9]. The nonas-
sociative algebra of gyrovector spaces is the framework for analytic hyperbolic
geometry just as the associative algebra of vector spaces is the framework for an-
alytic Euclidean geometry. Moreover, gyrovector spaces include vector spaces as
a special, degenerate case corresponding to trivial gyroautomorphisms. Hence,
Ungar gyrovector space approach forms the theoretical framework for uniting Eu-
clidean and hyperbolic geometry.

In this paper, our aim is to use the gyrovector space approach of Ungar to
investigate the analytical hyperbolic geometry. For our purpose we consider the
Poincaré model of hyperbolic geometry defined inside the complex open unit disc
D = {a € C | |a| = Vaa < 1} where a is the conjugate of a. Using the gyrovector
spaces isomorphism, we extend the Poincaré model of hyperbolic geometry to the
whole plane C which is called in [1] Chen model of hyperbolic geometry. We recover
Chen gyrogroup and Chen gyrovector space of [1]. But our approach is different
from [1]. We directly use the isomorphism properties of gyrovector spaces. As an
application of gyrovector spaces as the algebraic settings of analytical hyperbolic
geometry, we obtain some concepts of the new model by using gyrovector space
properties.

2. Preliminaries and Well-Known Results

Definition 2.1. (Gyrogroups). A groupoid (G, +) is a gyrogroup if its binary
operation satisfies the following axioms.

G1. In G there is at least one element, 0, called a left identity, satisfying 0+a = a
for all a € G.

G5. There is an element 0 € G satisfying axiom G; such that for each a € G
there is an element —a € G, called a left inverse of a, satisfying —a + a = 0.
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G3. For any a, b, c € G there exists a unique element gyr[a, blc € G such that the
binary operation obeys the left gyroassociative law a + (b4 ¢) = (a + b) +
gyrla, blc.

G4. The map gyrla,b] : G — G given by ¢ — gyr[a, b]c is an automorphism of the
groupoid (G, +), i.e. gyr[a,b] € Aut(G,+) and the automorphism gyr|a, b] of
G is called the gyroautomorphism of G generated by a,b € G. The operator
gyr: G X G — Aut(G,+) is called the gyrator of G.

Gs5. Finally, the gyroautomorphism gyr|a, b] generated by any a,b € G possesses
the left loop property gyr[a, b] = gyr[a, b+ al.

Definition 2.2. A gyrogroup (G, +) is a gyrocommutative gyrogroup if its binary
operation obeys the gyrocommutative law a + b = gyr|[a, b](b + a)

Remark 1. Another equivalent definition of gyrocommutative gyrogroup, which
also are called K-loops, comes from H. Karzel(ct., [2,3]) as follows:

A loop (P, +) is said to be a K-loop if the following properties hold:

For all a,b € P,

Ki : gyrla,b] € Aut(P,+)
Ko : gyr[a,b] = gyr[a,b+ a]
Ks: —(a+0)=(-a) +(-b)

Example 2.3. Let D := {z € C | |z| < 1} be the complex open unit disc and ®p
be the Einstein’s velocity addition in Beltrami-Klein model of hyperbolic geometry,
hence for a,b € D,

<a,b> a—la*b
1+ <a,b>

a+b N Ya
I+ <a,b> 147,

a®pb= ( )

where vy, = \/1i|—a|2 It is proved that (D, @) is a gyrocommutative gyrogroup(e.g

see [4] and [1,9]).

Example 2.4. Let D := {z € C | |2|] < 1} be the complex open unit disc of

Poincaré hyperbolic plane. By the Mobius transformation z — ew% we define
a+b

@Gy on D as a @y b = irab- Then (D, ®)) is a gyrocommutative gyrogroup,
which is called Mdbius gyrogroup(e.g. see [1,9]).

2.1 Gyrovector Space

Gyrovector spaces provide the setting for hyperbolic geometry just as vector spaces
provide the setting for Euclidean geometry. The elements of a gyrovector space
are called points. Any two points of a gyrovector space give rise to a gyrovector.
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Definition 2.5. (Real Inner Product Gyrovector Spaces). A real inner product
gyrovector space (G, ®,®) (gyrovector space, in short) is a gyrocommutative gy-
rogroup (G, ®) that obeys the following axioms:

(1) G is a subset of a real inner product vector space V called the carrier of
G,G C V, from which it inherits its inner product, < .,. >, and norm, |-|, which are
invariant under gyroautomorphisms, that is, < gyr[u, v]a, gyru, v]b >=< a,b > for
all points a, b, u,v € G.

(2) G admits a scalar multiplication, ®, possessing the following properties. For
all real numbers r, 71,72 € R and all points a € G:

Vil®a=a.

Vo Scalar Distributive Law: (11 +72) ®a =71 ®a®ra ® a.

V3 Scalar Associative Law: 1 ® (12 ® a) = (r1r2) ® a.

[rl®a _ a

[r®al ~ |al”

Vs Gyroautomorphism Property: gyr[u,v](r ® a) = r ® gyr[u, v]a.

Vs Identity Automorphism: gyr[r; ® v,r9 ® v] = 1.

(3) Real vector space structure (|G|, @, ®) for the set |G| of one dimensional "vec-
tors" |G| = {£]a| | @ € G} C R with vector addition & and scalar multiplication
®, such that for all r € R and a,b € G,

Vz Homogeneity Property: |r ® a| = |r| ® |a].

Vs Gyrotriangle Inequality: |a @ b| < |a| @ |b].

V4 Scaling Property:

Definition 2.6. (Gyrovector Space Isomorphisms). Let (G, @, ®¢) and (H, B,
®pr) be two gyrovector spaces. A bijective map ¢ : G — H is an isomorphism
from G to H if for all u,v € G and r € R,

(1) ¢(u e v) = d(u) Bu é(v),

(2) ¢(r ®g u) =r®@p ¢(u) and

w v o o) ¢
(3) < > 71 >=< 1o T8 >

Example 2.7. We can form by

®:RxD — D;(r,a) — r®a:=tanh(r-tanh™*(|a]))- —, if r # 0 and r®0 := 0

a
|al
a multiplication of scalars with elements of D. Then ® turns gyrogroups (D, ®g)
and (D, @ys) into gyrovector spaces (D, ®r, ®g) and (D, ®pr, ®pr). The gyrovec-
tor space (D, ®p,®g) provide algebraic settings for the Beltrami-Klein model
of hyperbolic geometry and (D, @, ®s) provide algebraic settings for Poincaré
model of hyperbolic geometry. Since a®p;b = %@ (2®@a®p2®b), Einstein gyrovec-
tor space (D, &g, ® ) and Mdbius gyrovector space (D, @ s, ®p7) are isomorphic.
It means Beltrami-Klein model and Poincaré model are isomorphic. The coinci-
dence g = ®)r = ® stems from the fact that for parallel vectors in D, M&bius
addition and Einstein addition coincide (cf., [11]).
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3. Results

3.1 An Extension of Md6bius Gyrovector Space to the Whole
Space C

In this section we give a gyrovector space isomorphic to the Mobius gyrovector
space (D, ®pr, ®ar). Actually we extend the gyrovector space (D, @, ®ar) to the
whole gyrovector space (C, ®, ®) as follows. Let for a € D,

1 1
V1—laf? V1+lal?

Define ¢ : D — C by @ — ay,. Therefore ¢~! : C — D is given by a — a8,. Now
we extend the Mobius addition @& to @ on C by the bijection map ¢ as follows:

Ya,be C, a®b:= (¢ ' (a) Dar ¢ (b))

aﬁa:

|a|2 =aa, Yo =

Therefore we have

aﬁa + bﬁb

@ b = )\a o . —1A A
¢ YT+ abBaBe

= )\a,b(aﬁa DM bﬁb)

where A\ p = \/,62 > + 2;: 5> 4 |a|2|b|2, or equivalently
1+ az’ﬂaﬂb a i
|1 + aEﬂaﬂb| Bb ﬁa

It is not difficult to show that (C, @) is a gyrocommutative gyrogroup with identity
0 and

a®b= )

1 4 abBafs
1+ abBa B

We only prove Gs. Firstly, note that S,qp = % = Bv@a- Therefore

gyrla,b] =

1+ a(m)ﬁaﬁbeéa
1+ a’(b ) a’)ﬂaﬂb@a

1+abBa a b
1t+a |1+ZbgagZ\(a Ba ) PaBvea
— 14abf,
l+a |1+Zbgag:\(i 7 )Babraa

gyrla,b®a] =

1+ a1+abﬂ 517 Baﬁaﬁb

= ﬁa
1+a mﬂaﬂaﬂb

1+ abB.0 + aaﬂ o+ al;ﬂaﬂb o 1+ aEﬂaﬂb
1+ abBafy + aafB?, + abBafy = 1+ abBufy
= gyrfa,b]
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The addition @ for parallel velocities reduces to

aEBb—i—i—i
ﬂb ﬂa

Now we define the scalar multiplication as follows:
r@vi=¢(r @y ¢ (v)
So we have
v

r® v = sinh(rsinh ™' (|v])) o
v

or equivalently,

1 - U
r@v=c{(V1I+ 2 +[o))" = (V14 v —Jv]) }m
if v #0 and r ® 0 := 0. In particular,

’ 1 VBa 2a

a=-®a= ca and 2®@a= —.
2 V1+lalBa+ /1~ lalBa Ba

(C,®, ®) inherits its inner product from C such that its gyroautomorphism pre-
serves the inner product < -,- >, hence

1
< gyrla, blu, gyrla, bjv >= 5 (gyrla, bJu - gyrla, bJv + gyr|a, b]u - gyr[a, bJv)

. . 1+abB.8s 1+abB,
Since gyr[a, b]gyr[a, b] = 1+§bgagi 1+Zzgagi

=1, so we have

1
< gyrla, blu, gyr[a,blv >= §(m_) + uv) =< u,v > .

V1 is trivial.

Let r1,T9 € R and a € C. Since ﬂm@a = Wh’l(\a\)) SO

Ary@a,ra@a = cosh((r1 + r2) sinh_1(|a|)).
Therefore we have

r K®adro®a
tanh(r; sinh ™" (|a|)) + tanh(ry sinh ™ (|a|)) a
1 + tanh(ry sinh™*(|a])) tanh(ry sinh ™! (|a|)) |al

= cosh((ry + ) sinh™*(|a|)) tanh((r; + r2) sinh_1(|a|))ﬁ

- )\7'1 Ra,r2®a

= sinh((ry +72) sinh71(|a|))ﬁ

= (rm+mrn)®a
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Thus V5 is valid.
For r1,70 € R and a € C we have:

r ®(rs ®a) =ry @ (sinh(rs sinh*1(|a|))ﬁ)
a|)|)

|
= sinh(ry sinh ™! (| sinh(ry sinh ™ (|a])))|) —

a
lal

o X a

a
T2 @ al

= sinh(r sinh71(| sinh(rq sinh71(|a|))

_ smh<<m>smh*<|a|>>ﬁ

= (rmr)®a

Therefore V3 is also valid.
V4 comes from definition.
Now since | gyr[a, b]| = 1, then for r € R and a, b, u € C we have:

gyrfa, blu

| gyrla, b]ul
- gyr[a,b]sinh(rsinh_1(|u|))ﬁ
u

r® gyrla,blu = sinh(rsinh™(| gyr[a, blul))

= gyrfa,b](r ®u)

Hence V5 holds. Straightforward computations shows that Vg and V7 are valid.
Since @y, satisfies in triangle inequality, we can write

la@bl = |Nap(aBae ®ar Bod)]
= Aapl(afa ©ar bP)| < Aap(|aBal S [6Ps]) = |al & [b]

So @ satisfies in Vz. Thus we have proved that (C, @, ®) is a gyrovector space.

In the following, we show that (C,®, ®) and (D, ® s, ®)s) are gyroisomorphic.
Consider the map ¢ : (D, ®ar, @) — (C, @, ®) given by a — av,.

(i) For a, b€ D, ¢(a®um b) = ¢( 1a:abb) = 1a:§bb'7a7b|1 + ab|.

On the other hand, since 844, = 7% and Agy, by, = Va1 + @b|,

af)/aﬂa'ya + b’Ybﬂbeb
1+ a’)/aﬁa'ya b'Ybﬁb%
a+b
1+ab

¢(a) S d)(b) = 0%a S7] ayy, = )\a'ya,b'yb

YaYb|1 + @b|

Hence ¢(a @ b) = ¢(a) © ¢(b).
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(ii) ¢(r @um a) =7 Qpm aYrgya = sinh(r ’czatrlh71(|cz|))|%|7 on the other hand,
lal 1 a

Jr

(\/1 —la?  1- |a|2))

= sinh(r tanh71(|a|))ﬁ
a

r®¢(a) =r®ay, = sinh(rln

lal

So ¢(r @m a) =1 ® ¢(a).
nyo_ Pl o) @y b _a b
W < @ 6] ™= Taha Bl ™~ Tal T~

From (i),(ii) and (iii) we conclude that ¢ is a gyrovector space isomorphism.
Thus we have proved the following theorem:

Theorem 3.1. (C, ®, ®) is a gyrovector space isomorphic to the Mobius gyrovector
space (D, ®rr, Qnr)-

Note that by example 2.7, (C, ®, ®) is isomorphic to the Einstein’s gyrovector
space (D, &g, ®p) and Ungar gyrovector space (R?, &y, @p) described in [1]. Also
note that (C,®,®) is exactly the Chen gyrovector space introduced in [1] by
specifying the function f : Rt — R* given by f(r) = sinh(}) in definition of
general addition of the group SL(2,C).

3.2 Extension of Poincaré Model of Hyperbolic Geometry

Since (D, ®s, ®pr) provides the algebraic setting for the Poincaré model of hyper-
bolic geometry, and the gyrovector space (C,®,®) is an extension of it to C, so
(C,®, ®) provides the algebraic settings for a new model of hyperbolic geometry
just as vector spaces provide the algebraic setting for Euclidean geometry. Also
our model is an extension of the hyperbolic geometry of the Poincaré model to the
whole plane C in which the unique geodesic through two given points a and b in the
gyrovector space (C, ®, ®) is given by a® (©a®b)®t with 0 < ¢t < 1. This geodesic
(or, gyroline), its segment from a to b, and the midpoint mq, = a ® (Ga B b) ® %,
of the segment are shown in Figure 1. These are Euclidean semi-hyperbolas with
asymptotes which intersect at the origin.

> o

AS)
,

Figure 1. gyroline passing through two points a and b and their midpoint m.
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3.3 Trigonometry

One can employ the gyrogroup operation and its gyrovector space to describe the
trigonometry of hyperbolic geometry which is called now gyrotrigonometry (e. g.
see [6,11]). In the following by using the gyrovector space (C, @, ®) we verify and
obtain some trigonometry relations of our model.

Let a,b € C and a L b. Then

Blaswyvaz = Pavabyya (%)

la|?  [b]?

(i) By using (+), Bragy)vala ® b2 = B, aByya( G + ).
(ii) 6aﬁ|a|2@ﬁb\/§|b|2 _ Payslal + By 30| - (**)

ﬁﬁbﬁ\bﬂ ﬁﬂbﬁ‘“‘Q
=1l = i jaf?  Jof?
But 85, a2 = T P so (xx) is equal to ﬁaﬂﬁb\/ﬁ(g_g + ﬁ)

1+2(a?

From (i) and (ii) we get the hyperbolic Pythagorean theorem
Blaswyvala ® 0> = B, slal* @ B, 5(bl”

Thus we have proved the following theorem:

Theorem 3.2. Let a,b € C and a L b. Then the hyperbolic Pythagorean theorem
in (C,®,®) is of the form

B, slcl® = B, slal> & B, b

Note that in general, for any a,b € C we have the following relations:
BaBila®bf* = B2lal* + Bi[bI* + 265 < a,b >,
ﬂ @b = ﬂaﬂb
¢ |1+ @bf. 5|

Hyperbolic Distance. Define d : C x C — R2%; (a,b) + |a © b|. Equivalently
we can write

b
d(a,b) = 5= = o1,

It is easy to show that d is a metric on C which is the hyperbolic distance of any
two points a and b in our model.

3.3.1 Hyperbolic Angle

For three points a, b and ¢ in gyrovector space (C, &, ®) the cosine of the hyperbolic
angle « between two geodesic rays a® (©a®b)®t and a® (Sa® ) ®t with common
point a and respectively containing b and c is given by the equation

eadb Cadc
|oa®b |©a®d]

cosax =
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This hyperbolic angle « is independent of the choice of the points b and ¢ on the
geodesic rays, and it remains invariant under left gyrotranslations and rotations.

Theorem 3.3. Let A(a,b,c) be any triangle in hyperbolic plane C with angles
a, B and 7y in a, b and c respectively and denote the opposite sides of a, b and ¢
respectively with a, b and c. Then

(i) If v = % then

2
COS(Oé) _ |b|6b(2 B 63) _ Mﬁbﬁﬁc

82— 52) ~ Il B2 P

and d

. alB.

sin(«) = PR
(i) cos(y) = Z=s2ibalesn g g,
(i)

sin(a) B, _ sin(8) B _ sin(7y)fe
|a| d ||

(iv) 5(2\/5 = Cos(gi)nc(is)(fizl'f;;)s(V) or equivalently,

o2 = cos(a + fB) + cos(v)
2 sin(a) sin ()

3.4 Defect and Area

Let A(a,b,c) be a triangle in (C,®), without loss of generality we can assume

that ¢ = o. It is shown in Proposition 3.3 of [3] that the defect of A(o,a,b),
. . —abBa

hence ¢, is the measure of gyr[a, —b]. Since gyr[a, —b] = LTgag: and cos(d) =

1( gyrla, —b] + gyr[a, —b]), so we obtain

_1-2<a,b> Bup +[(ab)® + (ab)*] 3257
S0) = T b > Bubs + [P B

Thus if we set bt := ib where i = v/—1, we have

tan(ly = @b > Baby
27 1—-2<a,b> B

In particular if a L b, then

tan(3) = lalll6a
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We define area equal to defect, so the area of A(a, b, ¢) with defect § is

< a,bt > B.Bp

S :=2tan"!
(T b s o

)

By similar arguments described in [5] we have the following result about circles
in this model:

Theorem 3.4. Let C, be any circle of radius r in hyperbolic plane C with cir-
cumference P and area S. Then

_Amr

Br’
Theorem 3.5. Let A(A, B,C) be any triangle and C,. be its circumscribed circle
with radius r in hyperbolic plane C. If § be its defect then

P S = dmr?

5. _ lallblle

sin(3) = 55,5~ PabBe(2 = Br)-
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The Principle of Relativity:
From Ungar’s Gyrolanguage for Physics

to Weaving Computation in Mathematics

Francoise Chatelin*

Abstract

This paper extends the scope of algebraic computation based on a non
standard x to the more basic case of a non standard +, where standard
means associative and commutative. Two physically meaningful examples
of a non standard + are provided by the observation of motion in Special
Relativity, from either outside (3D) or inside (2D or more), We revisit the
“gyro”-theory of Ungar to present the multifaceted information processing
which is created by a metric cloth W a relating computational construct
framed in a normed vector space V', and based on a non standard addition
denoted 4 whose commutativity and associativity are ruled (woven) by a
relator, that is a map which assigns to each pair of admissible vectors in V'
an automorphism in Aut W. Special attention is given to the case where the
relator is directional.

Keywords: Relator, noncommutativity, nonassociativity, induced addition,
organ, metric cloth, weaving information processing, cloth geometry, hyper-
bolic geometry, special relativity, liaison, geodesic, organic line, action at a
distance.
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1. About Relating Computation

1.1 Introduction

Hypercomputation, that is nonlinear computation in real multiplicative Dickson
algebras A; = R2?", is developed in (Chatelin 2012 a). For k > 2 (resp. k >
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3) multiplication is not commutative (resp. not associative). However addition
remains both associative and commutative.

The situation changes in an essential way when computation is merely additive
and there exists a relator which rules the way any two multidimensional numbers
in R™ (i.e vectors) are to be added. This kind of relating computation will be
defined in precise terms in Section 2. It includes the special case of an explicit
metric reference consisting of a positive finite number A\, 0 < A < co. The classi-
cal structure of an abelian additive group is weakened by considering an addition
whose commutativity and associativity are controlled by the relator. A physically
meaningful example was provided a century ago by 3D-Special Relativity (Ein-
stein) where the role of \ as a metric reference is played by ¢, the speed of light
in vacuum, and the relator is a plane rotation.

1.2 Special Relativity in the Early Days

It was soon recognised that hyperbolic geometry underlies Einstein’s law of addi-
tion for admissible velocities (Vari¢ak 1910, Borel 1914) creating the relativistic
effect known today as Thomas precession (Silberstein 1914, Thomas 1926). But,
despite Maxwell’s valiant efforts (Maxwell 1871), Hamilton’s noncommutative x of
4-vectors was still unacceptable for most scientists at the dawn of the 20th century.
Therefore Einstein’s noncommutative + of 3-vectors (representing relativistically
admissible velocities) was fully inconceivable: Einstein’s geometric vision was far
too much ahead of its time! An analytic version of Special Relativity with more
appeal to physicists was conceived by Minkowski in 1907, by dressing up as physi-
cal concepts the Lorentz transformations which had been introduced by (Poincaré
1905) as the correction of Lorentz preliminary version (1904), see (Walter 1999,
Auffray 2005, Damour 2008). This version was quickly grasped by leading physic-
its (Von Laue, Sommerfeld); it is the version adopted until today in most physics
textbooks for students, which carefully avoids any reference to the underlying non
commutative quaternionic field H invented by Hamilton (1843).

1.3 A Mathematical Revival in 1988

Einstein’s intuition was left dormant for some 80 years until it was brought back
to a new mathematical life in the seminal paper (Ungar 1988). During almost
30 years, Ungar has crafted an algebraic language for hyperbolic geometry lucidly
presented in (Ungar, 2008). The book sheds a natural light on the physical the-
ories of Special Relativity and Quantum Computation. It dissipates some of the
mystery that has shrouded earlier expositions. At the same time, it provides new
insight on hyperbolic geometry. Ungar’s geometry, which is expressed in “gyrolan-
guage”, is based on the key concepts of gyrator and gyrovector space. They are
mathematical concepts abstracted from Thomas precession, a kinematic effect in
3D-special relativity. The physical effect was anticipated in (Borel 1913, 1914).
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As we shall see, these concepts find an equally natural use beyond physics, in the
realm of computation ruled by a relator.

1.4 Geometric Information Processing in Relating Compu-
tation

The gyrolanguage is geared towards Hyperbolic Geometry and Physics. In this
paper, we export some of Ungar’s tools developed for mathematical physics into
mathematical computation in a relating context (Definition 2.1 below). The re-
ward of the shift of focus from physics to computation is to gain insight about the
geometric ways by which information can be organically processed in the mind of
a computing agent when relation prevails. This processing exemplifies the com-
putational thesis posited in (Chatelin 2012 a,b) by revealing geometric aspects of
organic intelligence.

The change of focus entails some necessary changes in the vocabulary which
are signalled by a reference to the original gyroterm defined in (Ungar 2008). The
reader can find all the necessary theoretical background for the presentation to
follow in Ungar’s work, conveniently put together in his 2008 book which is an
algebraic goldmine. Unless otherwise stated, all cited gyroresults are taken from
this book.

1.5 Organisation of the Paper

Sections 2 to 6 export parts of Ungar’s gyrotheory for physics into relating com-
putation: an organ is a gyrocommutative gyrogroup (Section 2), a metric cloth is
a gyrovector space (Section 3). The associated cloth geometry is studied by means
of three basic organic lines, the first two corresponding to gyrolines and cogyrolines
(Sections 4 to 6)). The rest of the paper (Sections 7 to 9) is original. In Section
7 we restrict our attention to those relators which are directional because they
do not depend on the norm of the vectors. This restriction enables us to show
that the third organic line enjoys a twofold interpretation in terms of each of two
geodesics (Section 7). Section 8 develops the consequences for Weaving Informa-
tion Processing based on cloth geometry. Finally, epistemological considerations
are presented in Section 9.

2. Additive Relating Computation

2.1 Preliminaries

A groupoid (S, 4 ) is a set S of elements on which a binary operation called addition
and denoted ¢ is defined : (a,b) € S x S +— a¢b € S. An element 0 such that
04 a = a (resp. a4 0= a) is called a left (resp. right) neutral. An automorphism
for (S, 4 ) is a bijective endomorphism ¢ which preserves 4 : p(a4b) = ¢(a)4 o(b)
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for all a,b € S. The set of automorphisms forms a group (relative to 4 ) denoted
Aut (S, ) with the identity map I as unit element. The subtraction is denoted
e :aeb=a4 (eb). In particular e a, the left opposite of a, satisfies e a4 a = 0.

2.2 Relators

We suppose that we are given a map:

rel : SxS— Aut (S, 4)
(a,b) — rel(a,b)

such that rel(a4b,b) = rel(a,b). (A1)

A map rel satisfying the reduction axiom (Al) is called a relator. We set R =
rel(S, S) for the range of the relator in Aut (S, ¢ ).

2.3 Organs Underlie Additive Relating Computation

We suppose that 4 satisfies the additional axioms:
a4b=rel(a,b)(b¢a), (A2)
a4 (b4 c) = (a4 b)4rel(a,b)c, (A3)
which express by means of rel(a,b) a weak form of commutativity (A2) and asso-
ciativity (A3). Then (a4 b)4 ¢ = a4 (b4 rel(b,a)c) by Theorem 2.35.
The algebraic structure (G, rel) consisting of the additive groupoid G = (S, 4 )
and the relator rel is called an organ.

Definition 2.1. An additive relating computation refers to any algebraic compu-
tation taking place in an organ defined by the data {4 ,rel} satisfying the three
axioms (Al), (A2), (A3).

Remark 1. In (Definition 2.7, Ungar 2008), the relator is called gyrator with
(Al)<= (G5) (=left loop property in multiplicative algebra vocabulary). Next
(A3)<= (G3) is gyroassociativity and (A2)<= (G6) is gyrocommutativity which
is optional in a gyrogroup. An organ is a gyrocommutative gyrogroup (Definition
2.8). And 4 is denoted either + or @ therein.

2.4 Some Properties of the Relator

The neutral 0 and the opposite © a are unique: (left=right), and aea = ¢ aea =
0.
The relator satisfies:

o o(a¢d) = rel(a,b)(ebea), (Theorem 2.11)
= eaeb (Theorem 3.2)
rel"'(a,b) = rel(eb,oa) (Theorem 2.32)
rel(b,a) = rel™1(a,b) (Theorem 2.34)

= rel(a, e rel(a,b)d) (Lemma 2.33)
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More identities are found in Table 2.2 (Ungar 2008, p.50). In particular:
rel(e a,a) =rel(a, e a) =rel(0,a) = rel(a,0) = rel(0,0) = I (2.1)

The identities in (2.1) follow from the reduction axiom (Al). Because e a4 a =
040 =0, rel(e a,a) and rel(0,0) could be arbitrarily chosen in Aut (S, 4 ). In
full generality, 0 is a singularity with an indeterminate character for the relator.
The indeterminacy disappears under the reduction axiom (Al).

The following additional hypotheses are useful:

e g4 g=0= g=0 holds for any g € G (Hy)

e for any 0 # g € GG, there exists at least one half-vector h
such that h4 h = g. (Hz)

(Hy) is satisfied in the Examples 2.1 to 2.3 that will be given in Section 2.6. It
is the additive analogue of the multiplicative notion of 2-torsion free algebra, see
Definition 3.32 on p. 72.

Under the 2 assumptions (H;) and (Hs) for 4, the following statements hold:

e the half-vector h is unique (Theorem 3.34),

e rel(a,b) # oI (Theorem 3.36), that is anticommutativity is ruled out:
a4b # o (bea),

e rel(a,b)b = 4¢b=—b=0 (Theorem 3.37).

2.5 The Two Basic Equations Associated with ¢ and rel

Because 4 is not commutative we are led to consider £ = {L, = a4 -;a € G} and
R ={R, = -4 a;a € G} Left— (resp. right-) addition 4 is abbreviated L+ (resp.
R4 ). We consider the left and right linear equations associated with a,b in G.

Ly = a$x=0, (2.2)
R,y = y4a=0b, (2.3)
Each of them has the unique solution
x = -ea$b, by Eq.(2.30), (2.4)
y = berel(b,a)a. by Eq.(2.32), (2.5)

The equality (2.5) suggests to consider the composite map 4 rel(-, e ) as an in-
duced addition 4 defined by

(a,b) € G x G+ a+b=asrel(a,eb)b (Theorem 2.14). (2.6)

The corresponding subtraction, denoted — , is such that (2.5) can be rewritten as
y = b—a (Theorem 2.22). Definition (2.6) is equivalent to a4 b = a+rel(a, b)b.

Three properties about ¢ and +, are noteworthy:
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e Aut (S, 4 )= Aut (S, +) (Theorem 2.28),
e -+ is classically commutative (Theorems 2.38 and 3.4).

e ca= —a (Theorem 2.21).

The concept of an organ is determined by two data: the addition 4 and the associ-
ated relator (as a map into the automorphisms for 4 ). In the relating perspective,
the source notion is the pair (4, rel) where the relator rules its associated addition
4. This addition precedes the secondary addition -+, which is induced by R4 and
the relator combined together. This novel concept reduces to the classical concept
of an abelian additive group when the primitive operation is associative and com-
mutative (hence ¢ = ), that is when the range R reduces to {I}. By expanding
its range to the larger subset R C Aut (S, 4 ), the relator controls the weak (or
relative) commutativity and associativity of 4, thus introducing anisotropy in the
organic structure. This has the additional benefit to induce the existence of +,
another addition which is classically commutative.

In other words, the expansion {I} — R loosens the rigid structure of an abelian
group and provides the more flexible, relating, structure of an organ which lies at
the foundation of relating computation.

When the range R is a proper subset of Aut (S, 4 ), its role is to reduce the
variety of possible automorphisms. The standard group structure appears as a
limit case corresponding to the ultimate reduction R = {I}.

Remark 2. The group structure which underlies classical computation guarantees
the invariance of its logic. From their logical vantage point, many logicians view
the whole mathematical enterprise as a mere giant tautology. It is clear that the
reduction of mathematics to a formal axiomatic system does not do justice to
the creative power of non linear computation which may lead to a non standard
addition ruled by a relator (see Example 2.2 below). We believe that the concept
of an organ is better suited than that of a group to describe some of the organic
logics which are at work in life’s computation and are evolutive by essence

Organic Information Processing (IP) is a dynamical process which reflects the
variability of the relator. Its operations in G consist of ¢, 4+ and their auto-
morphisms. One can view an organ as a new algebraic species, some kind of a
“fieldoid”, based on the groupoid, in which + plays the role attributed to x in
an ordinary field (group-based) structure. The main difference with a field is that
the neutral 0 (identical for ¢ and ) replaces the unit 1 # 0. The analogy is
commented next.

Remark 3. The induction {R<¢ ,rel} — -+ is analogous to the creation of the
product n x a by n repeated additions of the real number a. In this most familiar
case, the multiplication stems from an iterated addition.
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2.6 Three Basic Examples

The following Examples are found in Sections 3.4, 3.8 and 3.10 respectively of
(Ungar 2008) The explicit formula for 24 y entails the determination of rel(z,y).

Example 2.2. The subgroup of all Mébius transformations of the complex open

unit disk D = {z € C; |z| < 1} into itself is defined by: (a, 2) — €’ 2= for a,z €

D and § € R. If we set a¢ z = {2Z, then 24 a = 1‘%. The relator is defined
by rel(a, z) = }Igz € Aut (D, 4 ). Hence clearly a4z = rel(a, z)(24 a). Endowed

with 4 the unit disk becomes an organ. Observe that 4 is expressed by means of
the 3 operations +, x, conjugacy defined on C. It is known in mathematics as a
hyperbolic translation in the plane R2. The relator is a rotation since its modulus is

1. The pseudo-hyperbolic distance in D from a to b is d(a, b) = la:abb = |beal.

The metric used by Poincaré(1882) in his disc-model for hyperbolic geometry in
R? is

_ 1. 1+4d(a,b)

tanh™'d(a,b) = = In ———~
anh " d(a, ) 2 "1 —d(a,b)’

cf. Ungar, Section 6.17, p. 216-217. There exists a real version of this addition
defined in the open unit disk B; = {z € R?, ||z|| < 1} which reads:

L+2<ay>+yl*)z+ (1~ |lz]*)y
1+2 <,y > +lz]ly]?

THyY =

9y

cf.(3.127) in Ungar.

Setting X = ||z||||ly|]| > 0, § = £(x,y) the denominator X? + 2X cosf + 1 has
no real roots unless cosf = —1, then X = ||z|||ly]| = 1 is a double root. The
condition that z,y € By entails ||z|| = ||y|| = 1, x = —y. We observe then that
r¢ (—x) = =7 = 8 is an indeterminate form for x € 9B;.

When z and y are linearly dependent, y = rx, r € R (say) then the addition
becomes associative and commutative for z, y inside By (so that 1+7|z||? = 1+ <

z,y >#0)

Toy = (z+y)

I+ <z,y>
Example 2.3. Let ¢ be the vacuum speed of light. We set B, = {x € R3; ||z|| < ¢}
to represent the ball of relativistically admissible velocities.

Einstein’s law of addition of velocities =,y € B, is

1 v
x+y+021+%

xé}y:w z/\(z/\y)]

c

—1/2

2
where v, = (1 — & ||z[?) is the inverse of Lorentz contraction /1 — <@> .
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Using Grassmann identity in R3:
e A(YNAz)=<uz,2>y— <z, > 2,
(Lamotke 1998, Chapter 7, p. 207), one can also write

1T v
14 == Va 2147,

<xz,Yy>=x

a formula well defined, unless 1 + MCOS@ = 0, where 0 = L(x,y). The
c
2 _

relation cosf = fm for x,y € B. entails that z,y € 0B, and cosf = —1.

Therefore x = —y, and z4 (—z) = 0 is an indeterminate form.

The two velocity components, parallel and orthogonal to the relative velocity
between inertial systems, were given by Einstein in his 1905-epoch-making paper.
The above formula is valid for n > 2.

FEinstein’s addition is ruled by a relator which is the rotation: y4x — x4y
in the plane spanned by = and y (when independent) with axis parallel to z A y
through the angle €, 0 < |¢| < 7 (Borel 1913, Silberstein 1914). The angle ¢ is
related non linearly to 6 = £(x,y) and to %Hx”%”y” in the following way (Ungar
1988,1991): ¢ = 0 for |0 € {0,7} and for |f] €]0,n]  and y are independent,
yielding:

(p+ cosf)? —sin 0
(p+cosf)? +sin® 0’

cose =

(p+ cos @) sinf
(p+ cosh)2 +sin® 6’

sine = —2

with p? = :::—izzi, p>1, and |g| < |6].

When ||z|| and ||y| tend to ¢~, 7, and ~, tend to co and p — 17. Then
cose — cosf and sine — —sinf, that is ¢ — —6.

We recall that for 2,9 in SH=R3, 2 xy = — < 2,y > +xAy € H= R* where
TNy = %[x, yl = %[x xy—yxx] € SH. Therefore Einstein’s addition wraps up the
two distinct operations + and x in SH into a single synthetic addition denoted
4. The synthesis is realised on independent vectors at the expense of classical
commutativity and associativity.

Example 2.4. V = R", n > 2 is the euclidean linear vector space with scalar
product < -,- >. Let be given A\, 0 < A < oo, and define vy = %v forv eV,

By = (1+ ||vAH2)71/2, 0 < By, < 1. We consider

1 u
ufyv:(——l— p

<Upn,Ux > |u+v
Bo "1t M7 )
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defined for u,v € V. For n = 3 and \ = ¢, this additive law governs the relativistic
addition of proper velocities expressed in traveller’s time. The relator is again a
rotation. If v and v are dependent, u¢v = Blu + ﬁlv (Eq. (3.214) on p. 96).

v u

The reader can check that in each example above x4 y is symmetric in x and
y iff  and y are dependent.

2.7 Liaison A between rel, ¢ and +
To the linear equations (2.2), (2.3) for ¢, we add the third equation for +

t=di+a=0b (2.7)

S}
+>

which admits the unique solution
i =-e(ebda)=Dbea. (2.8)
Observe that x = rel(-e a,b)& by (A2)<= 2 = rel(b, e a)x.

Each of the solutions z,y and Z is obtained by a respective call to the three
following cancellation laws for ¢ and +:

e left cancellation for ¢ : a4 (ea<¢b)=0> (2.9)
e right cancellation for ¢ : (b=a)¢a=10> (2.10)
e cancellation for + : (bea)Fa=a+ (bea)="0 (2.11)

Identities (2.10) and (2.11) express a link by means of the relator between R4
and 4 which is not present in (2.9) concerning L+< . If one uses z = e a4 b,y =
berel(a,b)a = b—a and & = be a, the three identities become respectively

a$vxr=> (2.12)
y¢a="> (2.13)
tta=ati=0 (2.14)

This rewriting separates R4 and + in the identities (2.10), (2.11) which ap-
pear now as (2.13) = right cancellation for 4, (2.14)=cancellation for +.

None of the two writings is a faithful description of the complete computational
reality which is, by essence, connected. Whichever writing is chosen, the reader
should keep in mind that a liaison based on rel(a,-) exists between -4 a and
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+a = at- for rel(a,-) # I when the additive cancellation laws are at work. This
liaison reflects the existence of the relator which regulates any relating computation
performed in its organ. The liaison concerns L4 as well. Indeed, the equality (2.8)
T = be a suggests to consider the equation involving Ly:

Lyz=bé¢T =0

whose solution is 7 = e b¢-a = o (bea) = © 7.
We call liaison A(rel, 4, +) the computational consequences of the three fun-
damental cancellation laws (2.9), (2.10) and (2.11).

Definition 2.5. We call liaison A(rel, ¢, +) the computational consequences of
the three fundamental cancellation laws (2.9), (2.10) and (2.11).

The computational dynamics of organic IP results from the shifts L4, R4
and the automorphisms of G. Given a and b, we shall be concerned in Sections 4
and 7 with the evolution of & = bea (resp. y = b—a) when a left (resp. right)
shift by an arbitrary g € G is realised simultaneously on a and b.

Regarding left shift g¢ and e, we have:

(g4 b)e (94 a) =rel(g,b)(bea) (Theorem 3.13). (2.15)
For future reference we mention the following result with right shift:

a~b=(a¢k)= (b¢g) with k=rel(a,b)g (Theorem 2.23). (2.16)

3. Metric Cloths

3.1 The Normed Vector Space Frame

Let V be a linear vector space over R with finite dimension n > 2, endowed with
a scalar product < a,b > for a,b € V and derived norm |ja|| = /< a,a >.

The addition + and scalar multiplication are standard operations in V = R".
Let A be given, 0 < A < oo and set By = {z € V;||z| < A\}. We suppose that
the ball By, or V itself, are endowed with the organic structure G = (S, 4 ) with
relator rel, where S represents By or V as the case may be. The neutral 0 for G
is identified with 0 € V.

The linear vector space V' is the frame of the organ G iff the relator preserves the
scalar product: < rel(u,v)x,rel(u,v)y >=< x,y > for any quadruple (u,v,z,y) €
G*. Tt follows that ||rel(x,y)| = 1 for z,y € G, and G inherits from V its scalar
product < -,- > and norm || - || which are invariant under R C Aut G.

We assume moreover that, if x and y are linearly dependent in G, then for
x =ry, r € R (say), (ry)¢y = y¢ (ry). Hence rel(ry,y) = rel(z,y) = I (=
x4y = x+7y). The formula for ¢ becomes symmetric in = and y when x and y
are colinear. The property is satisfied for the 3 Examples given in Section 2.6.
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3.2 The Scalar Multiplication x

We suppose that G admits a scalar multiplication % : (R X G or G x R — @) such
that

erga=axr,rcR, acd,

e Ilxa=na,

(ri+r)ra=(rixa)4 (roxa),

(riro)ea=rix(rexa), a € G, ri,re € R,

X a
for r and a £ 0 =4
# [l % all lall?

o rel(u,v)(rea) =rx(rel(u,v)a) for u,v,a € G, r € R,

o rel(rmeu,roru)=1,uc G, r,r €R.

|real =|r/=]al, r €R, a€G.

Even though ® does not distribute with 4 in general, the following special
identity holds:
2 (a4 b) = as (2= b a) = at(a4 2= b)

for any a,b € W (Theorem 6.7).

3.3 n=1: The Measuring Rod M = {£||a||,a € G}

All elements in M are colinear, hence the relator image reduces to {I; = 1}, and
4 = 4+ on M. M is a 1D-linear vector line equipped with ¢, = and ||| deriving
from G and V. These 3 operations usually differ from the standard operations
+,-,| | defined on R.

3.4 n>2: The V-Framed Metric Cloth W

We suppose that ||a¢-b|| < ||a]|< ||b]|, a,b € G. This ends the list of axioms satisfied
by Ungar’s gyrovector space in the carrier V' (Definition 6.2, Ungar 2008).

To this list, we add that, when a and b are dependent and nonzero: b = ra,
r # 0, there exists [ € R\{0} such that b =lxa with 1-a =1%a =a for r = 1.
Ifr=0,0-a=0=0xa=0. Inother words, r - (-) = r(-) = Ix(-): the
map | — r = p(l), p(0) =0, u(1) = 1, is a change of scale on the axis spanned
by a # 0, induced by the change of context from the linear vector space V(+, )
to the additive cloth W (4, = ). As a consequence rel(a,b) = I and the vectors
a4 b=a+b=(1+1)=a are colinear with a + b= (1 + 7)a.

The structure W = (5,4, %) = (G, x) obeying the assumptions above is
a metric cloth in the normed vector frame V. The cloth W is organically and
metrically woven by {4, relator, x , || - ||}. It satisfies the
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Proposition 3.1. The addition 4 in the metric cloth W satisfies (Hy) and (Hz).

Proof. 1) (Hy): observe that g¢ g = 2% g. Hence if 2% g =0, ||2= g|| = 2% ||g|| =0
and ||g|| =0 in < ¢g = 0.
2) (Hy): g = %)81 (2mg) = %(g¢ g). Now Ungar’s Theorem 6.4 tells us that =
distributes azially along the axis spanned by any g # 0 in G:
re(riegeromg) =re(rixg)era(roxg) =

(rri)= g4 (rra)e g = (r(r1 +1r2)) & g.
Setting r = 1/2 and r1 = ro = 1 we get %x (g4 g) = %38{ g4 %in g. Therefore
the half-vector h for g exists and is uniquely defined by %in g. O

Because x distributes axially in W, it follows readily that anticommutativty
is ruled out for <

Example 3.2. The scalar multiplication for the organ B, in Example 2.2 is such
that r=0 =0, rxz = p(r)z for 0 # 2 € B.. We set z. = 1z, then Definition 6.86
on p. 218 gives

p(r) = Hxl H tanh(r tanh ™' ||z.||), r € R, (3.17)
c
with 1(0) = 0, u(1) = 1. Then B, becomes the R3-framed cloth Wg (based on
Einstein’s addition) which is an alternative framework for Special Relativity in
Physics, classically presented by means of Lorentz transformations, hence implic-
itly on the field of quaternions H.
Let ¢ = (car, X) be given in H, with real part ca, o € R and imaginary part
X in R3. Then ¢* = c?a? — || X||? + 2caX. A Lorentz transformation in H leaves
invariant the quantity

Rq*> = c*a® — | X||* = f constant for all ¢ € H

(Poincaré 1905). Observe that || X||? = c?a? — f and ||S¢?|? = 4c?a?(c?a? — f)
are nonnegative iff c2a? > f which is always satisfied when f < 0.

By (11.2) in (Ungar 2008), the Lorentz transformation without rotation is a
boost L(u) for u € B, such that, for u, = %u, Ge = %q = (a, X,)

Tu

L(u)g. = (Yula+ < ue, Xe >, voula +
(W)ge = (yul s Yl T4

< Uey Xe >]).
Then by (11.10) for u,v € B, we get the composition law:
L(u)L(v) = L(uév)rel(u,v) = rel(u,v)L(veé u).

The general case (transformations with rotations in SO(3) is given in (11.15),
(11.20).
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These formulae shed an interesting light about the connection between hy-
percomputation in H based on x and computation in the cloth Wg based on
Einstein addition 4 g. The connection is developed in the references (Chatelin
2011, 2012b).

Example 3.3. For a given A\, 0 < A < 00, we set x) = %x for x € R™, and
consider the organ By = {z € R";||z|| < A} where the addition is the Poincaré
addition
(L2 <z > HwlP) 2+ (1=l y
L+2 <ax,yn > +Haal? [yl

which is not well-defined when y = —x on the sphere dB). The scalar multiplica-
tion r € R— reax = {0 for x =0, u(r)z for 0 # x € By} is defined by (3.17)
where c¢ is replaced by A (Definition 6.83 where Mobius stands for Poincaré).

Using a common reference A\, 0 < A < 0o, we obtain two metric cloths Wg and
Wp framed in R™. Remarkably, these two cloths are isomorphic in the following
sense. The bijective map ¢ : Wg — Wp defined by z — 2’ = ¢(x) = %xstx
preserves ¢ and x. See Table 6.1 on p. 226 for more, see also (Ungar 2012).
The commutator [z,y] = (x4 y) — (y4 ) is studied for ¢, and 4, in (Chatelin,
2012c).

THp Y=

Example 3.4. Let 4 py represent the relativistic addition of velocities in the
traveller’s time defined in Example 2.3. The underscript PV for proper velocity
used by Ungar indicates that time refers to the traveller, i.e. the moving observer
(standing inside the phenomenon) rather than to an outside observer. Definitions
6.87 on p.223 gives

1
ppy (r) = —— sinh(rsinh ™" ||z,]), 7 € R,
[l
which is a modification of (3.1): X replaces ¢ and sinh replaces tanh. Then
(V4 py, ) is the metric cloth Wpy .

Because a —a=0inV, —a = (—1) x a = ea in W. In general rx (a4 b) #
(rea)4 (reb), unless a and b are dependent. Scalar multiplication distributes
axially (Theorem 6.4). The automorphisms of W form the group Aut (W): they
consist of automorphisms of G which preserve also the scalar multiplication x and
the scalar product < -,- > (Definition 6.5).

The identification —a = e a = = a which holds in W provides more insight on
the induced addition + by considering the mirror equation for (2.2) where a and
b are exchanged:

b4 2 = a. (3.18)
Lemma 3.5.
=3 (3.19)
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Proof. (3.1) yields & = —b4 a by (2.4) and & = be a by (2.8). Now & = —(—b4a) =
—7. O

In the larger context of a cloth, the liaison A includes +, as illustrated by the
identification & = —z.

Definition 3.6. An additive weaving computation refers to any algebraic com-
putation taking place in a metric cloth W = {S, 4, = }.

The set of operations that we shall consider in Weaving Information Processing
(WIP) is restricted to Op(W) = LU R U Aut (W).

Definition 3.7. The Weaving Information Processing (WIP) in a metric cloth W
is realised in W by means of Op(W).

We shall study by geometric means the results of WIP. The metric cloth W
inherits from its euclidean frame not only a scalar product/norm, but also its affine
essence with respect to a real parameter. Therefore the geometry derived from a
cloth is based on lines (as affine functions of a real parameter) and in particular on
geodesics (for which the triangle inequality becomes an equality). In what follows,
we build on Ungar’s mathematical vision based on physical insight. We develop
some aspects of the role of geometry in WIP. The existence of the three additions
4, 4, + endows cloth geometry with several ways to carry information, shedding
a new light on the role of non euclidean geometry in Information Processing (IP).

4. The Metrics Associated with ¢ and +

4.1 Definition

We revisit the three linear equations (2.2), (2.3) (2.7) and their three solutions
x (24), y (2.5), & (2.7). A simplification occurs because ||rel(a,bd)|| = 1 for z =
rel(—a,b), hence ||z|| = ||| =# ||y||. Thus one can associate two metrics d in W
with the three cancellation laws. They are given by

d(a,b) = ||-asb| = [b=al, (4.20)

d(a,b) = ||b=al = |berel(b,a)al. (4.21)

where the upperscripts “and " for d refer to the respective additions ¢ and 4.
The values are identical when a and b are dependent.

Ungar’s inequality (6.14) (resp. (6.18)) expresses the following triangle (resp
relating-triangle) inequality (4.3) (resp. (4.4)):

d(a,c)
d(a, rel(a=b,b=c)c)

d(a,b)4d(b,c), (4.22)
d(a,b) +d(b,c). (4.23)
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It is clear that d defines a distance, whereas d does not (pp. 158 and 159).
Curves for which (4.22) is an equality are the geodesics of 4 associated with the
distance d.

4.2 Invariance Properties

The two metrics are invariant under Aut (W). Metric invariance under left shift
in £ holds for d by (2.15): || — a4 b|| = ||be a| = ||(g¢ b)e (g4 a)| for any g € G
(Theorem 6.12).

Regarding R-invariance for + (based on 4 g), if rel(a,b) = I, then: a~b =
(a4 g) = (b4 g) implies R-invariance for +. This is always true when a and b are
dependent. In general (2.16) above holds with k& = rel(a,b)g, ||k|| = ||g||. The
topic will be developed further in Section 8.1.

Remark 4. On the notational dilemma

It is important to keep in mind that, in the connecting context of weaving
computation, the notation itself is, by force, ambiguous. For example the notation
d and d was suggested by the definitions (4.1), (4.2). But, of course, the notation d
measures in an equal fashion both z = e a4 b associated with L4 and & = bea =
rel(a,b)x associated with 4. And d reflects the unique aspect R¢ converted into
+. In the difficult task to capture as best as possible the subtle relational interplay
between ¢ and 4, cloth geometry will prove to be a precious ally.

5. About the Organic Lines Passing through 2
Distinct Points in Cloth Geometry

5.1 Introduction

Let be given a # b in R™. In euclidean geometry there exists a unique straight
line passing through a and b, which can be represented by the affine function:
t € R— a+ (b—a)t € R" the point a (resp. b) corresponds to ¢ = 0 (resp.
1). The straight line is the geodesic of the euclidean metric. The segment [a, b] is
defined by 0 < ¢t < 1. It has a unique midpoint mq, = a—i—%(b—a) = %(b—i—a) = Mpq.
This simple euclidean picture will be modified in cloth geometry since there exist
more than one affine curve passing through two points due to the existence of more
than one cancellation law.

In what follows we restrict our attention to the three fundamental (cancellation)
laws (2.9), (2.10), (2.11) that we put at the foundations of our geometric study.
The three laws are ordered respectively as first, second and third. They define
three types of affine functions defining organic lines L; numbered by i € {1,2,3}.
It is important to distinguish whether a and b are dependent or not.
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5.2 Three Fundamental Organic Lines through a and b In-
dependent

To each fundamental law we can associate a unique fundamental (organic) line
passing through a for ¢ = 0 and b for ¢ = 1. The non commutative addition ¢
provides the left-(resp. right-) line L — Lgp (resp. R — Lgp). The commutative
addition + provides the unique line-Lq;. These lines are given by the table below

symbol definition representation, ¢t € R

L1 = L-L,, | left-line for L4 a4 ((—aeb)xt) (5.24)
Ly = R-Lgy, | right-line for R4 | ((b=a)=t)¢a (5.25)
L3 = Ly line for + (bea)=t)+a=a+((bea)=t) (526)

We call a the origin of the 3 lines (¢t = 0). The three solutions x,y, % are the
respective coefficients of ¢ for the lines; they are distinct iff @ and b are independent.
The 3 representations can be rewritten respectively under the form: a4 xxt,
yetéa, txtda=a+imt.

Lemma 5.1. If a and b are dependent, non zero and distinct, y = b—a = be a =
T = —a4b=x is a real multiple of a.

Proof. Use rel(a,b) =1 to show that z =y =2. fb=1Ixa,l# 1, 2 = —béa=
(1—-0wma=pu(l—1a, where (1 —1) # 0 for I # 1. O

5.3 L; and L, are Geodesics for d and d

The lines Ly and Lo define 2 notions of collinearity between a,b and a third point
¢ which are distinct when a and b are independent.

By Definition 6.22 (resp. 6.55) the 3 points a,b, ¢ are Li- (resp. Lo-) collinear
iff there exists ¢ € R such that ¢ satisfies (5.1) (resp. (5.2)). The points ¢ defined
for 0 <t < 1 are between a and b on L (resp. Lz). They define the open organic
arc L1 — (a,b) (resp. Lo — (a,b)).

In view of (4.3), it is not surprising that L; is a geodesic for d (Theorem 6.48,
Remark 6.49). The less obvious Lemma 6.61 tells us that rel(a—c, c—b) = I when
a, b, c are La-collinear. It follows that Lo is a geodesic for d (Theorem 6.77, Remark
6.79).

We observe that the noncommutativity of ¢ (L4 # R+< ) which is controlled
by the relator entails the existence of two distinct geodesics related to the metrics
(4.1) and (4.2) when a and b are independent, rel(a,b) # I.
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Corollary 5.2. When a # 0 and b = l=a, | # 1, the 3 lines L;, i = 1,2,3,
coalesce into the geodesic for d = d which is the euclzdecm straight line spanned by
a.

Proof. Apply Lemma 5.1. The common geometric image is a euclidean straight
line, more precisely the linear axis spanned by a # 0. |

If I = 1, the lines degenerate into the point a # 0. Observe that it is the linear
independence of a and b which forces the organic lines to bend, indicating a non
linearity in disguise.

6. About Midpoints on Organic Arcs

There are 3 types of fundamental organic arc (a,b) to consider which are denoted
L; — (a,b). We first assume that a and b are independent.
6.1 Midpoints on L; and L, for ¢

In Chapter 6, Ungar shows that a unique midpoint on L; — (a, b) exists for (5.1)
by Theorems 6.53, 6.34 and on Ls — (a, b) for (5.2) by Theorem 6.74:

° mgb:afi}(xx%):%x(a%b):be (zx%) =mk, (6.27)
lae mf, | = [[bomb, || = al= &,

o ml = (y=i)ea=bo(ya)=ml, with |yl # ], (6.28)
la=mB |l = [lb=m& || = |ly|= 5.

The equality m%, =mk = %in (a+b), suggests that a and b could play a more
symmetric role in the definition of the left line L; for ¢ under an appropriate

change of parameter.

Lemma 6.1. The line Ly = L-Lg;, can be represented in the four equivalent forms:
a4 xet = ax(l —t)ebut, x = —a4b, and b4 Txt’ = bx (1 —t')4 =t/
T=—béa, witht+t =1.

Proof. a4 (—axt4¢bet) =ax (1 —t)¢ bt since rel(a,a) = I.
When t' replaces ¢, a and b are exchanged. O

Letting t =t/ = % yields maLb which admits the fully symmetric representation
% (a+b). This reflects an essential property of the scalar multiplication x by 2
Theorem 6.7, Ungar 2008).

(SIS

—

2% (a4 b) = as (2x béa) = at(as (2= b)) (6.29)
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for any a,b € W. In (6.3), 2% a is split so that a occurs in two places in the rhs of
2% (a4 b), yielding three terms.

This yields the remarkable

Theorem 6.2. For any two independent points a # b the three additions L4,
R4 and + provide the same arithmetic mean on the geodesic L1 = L-Lygy:

1 1 1 .
mb, = §x(a¢b) = §x(b¢a) = §E(a+b)-

Proof. This is Theorems 6.33 and 6.34. Observe that, in addition to the above
coincidences, and to (6.1), we also have mZ%, = b+ (37:181 %) =ae (50381 %) O

No such remarkable property holds for mfb on Ly = R-Lg,. The identities
about mf and m/! given in (6.2) cannot be further rewritten in general.

6.2 On the Line L for +
The third type of organic arc (a,b) on L defined by (5.3) above has two pseudo-

means: Mgy = (ﬁcxzt %) +a differs from 1y, = b;ﬁ:m% (Section 6.13 in Un-
gar). However, ||z|| = ||#|| guarantees the equality of the respective distances
@ = 1ap | = ||b=1ipa|| = ||&]| = & and of their counterparts on L-Lqy.

Lemma 6.3. The two pseudo-means mqp and Mmp, on i/ab are such that

1 - o o
HJ]” bt 5 = d(a7m1€b) = d(aa mab) = d(ba mba)-

Proof. Clear by (6.1). O

When ¢ and b are independent, the two midpoints: m” on L-Lgp, m® on R-Lgp,
enable dichotomy inside the two arcs Ly — (a,b), Lo — (a,b). The existence of two
pseudo-means M4, and My, on Lap, forbids any appeal to a dichotomy argument
on an Lg-arc. For this reason, the general study of L3 = Lap is stopped at this
point by Ungar, see. p. 205.

Lemma 6.4. Ifa # 0, b = ra, for r € R, the four means (or midpoints) coalesce
into the single point m = %181 (a—?— b) on the unique line Lap.
Proof. When a and b are dependent, ¢ = +, hence x = y = 4. Then, by

Corollary 5.2, the three organic lines Li, Lo and L3 coalesce into a unique one
which is the geodesic for d = d through a and b. Clearly m* = m®, and 1, =

(bea)ﬂ}ae(ix%):(ix%)&a:mab:mR:mL. O
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7. Directional Relators

7.1 Definition

In this Section, the admissible relators belong to the subset @ of automorphisms
in Aut W which satisfy (Hs):

rel(a,b) = rel L,L H
(.0) = rel{ o o) (H)
for any pair (a,b) of nonzero vectors in V.
In other words, the map rel is specified by the unit vectors 1, = ﬁ and
1y ” b|| defining linear directions spanned by a and b. Any relator satisfying

(Hs) is called directional. It follows that
rel(a,b) = rel(a,be t) = rel(axt,b) for any 0#t€R.

Example 7.1. Let 2,y € V = R" be independent, then 8 = (z,y) ¢ {0,7}.
Let R(f) denote the plane rotation x — y. We define x4y = = + R(6)y, hence
y4x =y + R(—0)x = R(—0)(z4y) for independent = and y. Otherwise ¢ = +.
The range @ of the relator is the set of plane rotations SO(2) except the symmetry
—1Is.

7.2 A Twofold Interpretation of L3 under (Hj)

We use the generic notation Lo, = L(a,z) where x is the coefficient of the param-
eter ¢ in the equation for the associated line passing through the origin a(t = 0)
and b(t = 1). For example, Lay = L3 = L(a, %), @ = bea. The line Lapy can be
interpreted equally as a version of (i), Ly or (ii), Lo.

Lemma 7.2. (i) a+ 2%t = a¢ xv=t with rel(a, —b)i =
(ii) $et+a = 2= te ay with az = rel(b, —a)a.
(iii) Moreover ||z|| = ||z||, ||a]] = ||laz2||: & and as are rotated about O from x

and a through the same angle.

Proof. (i) a+a&=t= a4 (rel(a,—2)2)= t by (2.6) and (Hs3) with rel(a, —b4 a) =

rel=1(—b4a,a) = rel1(—b,a) = rel(a, —b) by (Al). And rel(—a,b)i = .

(ii) 2= t +a = (be a) = t4 rel(2, —a)a by (2.6) and (H3) again, and rel(be a, —a)
= rel(b4 (—a), —a) = rel(b, —a).

(iii) Clear when we observe that rel~!(a, —b) = rel(b, —a). O

Proposition 7.3. When the relator is directional, the following two interpreta-
tions hold for I:ab:

(i) Loy = L-L(a,z) = L-Lqap with & = rel(a, —b)Z, b = a4z = a+i.

(ii) Lay = R-L(ag, ) = R-Layy, with ay = rel(b, —a)a, by = &4 ap.

Proof. Apply Lemma 7.2. For t = 1, (i) a¢- 2 = b = a+2, (i) 24 a2 = by <= & =
by — as = bea. O
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Figure 1: AIA/ = Loy and its left and right interpretations/images:
LL = L—Lab and RL = R—L(ag, .f})

The line Lo, = L(a,%) can be interpreted at the same time as the left or
right image of two distinct sources. In the left (resp. right) image, the origin
a is preserved (resp. moved to ag) and the coefficient & is moved back to z
(resp. preserved). Therefore the line L = Ly is a composite construction resulting
from ¢ and rel(b, —a) with a dual character: it can be interpreted either leftwise
or rightwise. Quite remarkably, the left interpretation LL is L-Lq, = Ly itself.
The right interpretation RL = R — Lg,b, can be characterised by the rotation
x +— & = rel(b,—a)x about O through the angle . Then a is rotated into as
through €. See Figure 1.

There are altogether four lines of interest associated with a pair (a,b): the
three fundamental lines L;, i = 1,2, 3 through a, b plus the right interpretation or
image RL through as, b.

7.3 a and b are Dependent

When a and b are dependent and distinct, nonzero, the 3 points O, a, b are collinear.
As we know an essential simplification takes place: the three organic lines above
coalesce geometrically into one. When the relator is directional, more can be said
about the right image R — L, for L.

Lemma 7.4. If a # b are dependent, then rel(a,b) = I, az = a, bo = b and
RL=L;,i=1,2,3. Ifa=10, x =0 and the line reduces to the point a.

Proof. By assumption rel(a,b) = I then a¢b = a+b, hence v =y = & = bea.
The 3 lines L1, Lo, L3 coalesce into a unique line a4 zx t = xx t¢a = = t+a, if
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x # 0 <= b # a (Corollary5.2). If b = a, x = 0, the lines reduce to the unique
point a = b # O.

For the right image RL as = a and by = b, yielding the identification RL =
L; O

When a and b are dependent and distinct, a unification takes place. Not only
the organic lines coalesce into the geodesic L1, but also does, when the relator is
directional, the right image RL.

8. Weaving Information Processing (WIP)

8.1 Organic Lines

Among the three fundamental lines passing through a and b independent, the first
two are geodesics (expressing two different views on the non commutativity of
4 (Section 5.3)). Remarkably, the third organic line Lj offers, under (Hj) two
geodesic images of itself, either LL = L as its left image, or RL=R-— La,b, as
its right image.

This Section develops some consequences of these geometric properties on in-
formation processing in weaving computation.

Proposition 8.1. The two additions ¢ and + coalesce on the geodesic L, =
L-Lgy.

Proof. By successive dichotomy arguments based on Theorem 6.2 above: x4y =
x4y for any x,y between a and b on L-Lg. O

Proposition 8.1 indicates that a sort of “differential” commutativity holds for
r4y when z and y vary on Ly. Given a and b linearly independent the geodesic
for d through a, b describes the unique locus of points for which 4 is commutative,
hence ¢ = + locally (on L;). This mechanism underlies the emergence of the
axiomatic role of commutativity for addition in classical mathematics.

Let us turn to Lo which is a geodesic for J; it plays a very different connecting
role in IP that is discovered by revisiting (2.16) above:

Proposition 8.2. The line Ly = R-Lgyy, is such that for any w € W and s €
R—Lab, then
b=a = (berel(b,s)w) — (a¢ rel(a, s)w) (8.30)

Proof. See Theorem 6.76 in (Ungar 2008) and Figure 2. O
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R-Lgy

@)

Figure 2: a,b, s € R-Ly, = Lo.

The identity (8.1) is one possible form of the kind of right shift-invariance
enjoyed by + when a and b are independent, which generalises (2.16). Indeed,
if s = a, (8.1) yields b—a = (b4 rel(a,b)w)—(a¢ w) which becomes (2.16) after
exchanging a and b, and setting w = g. The coefficient y = b= a is invariant
when the same right shift, chosen in {-4rel(-, s)w, w € W, s € R-La}, is equally
applied to a and b, see Figure 2 . This ezxact, albeit special, kind of R-invariance
for + under right shift should be contrasted with the metric L-invariance for ¢
(which hides the rotation rel(g,b) present in (2.15)).

Definition 8.3. Given a # b, the property (8.1) for w € W, s € Ly = R-Lyp
defines the Lo- link between a and b assumed to be independent.

Any s on R-Lp is uniquely defined by ¢ € R through (5.2) which defines the
map:
teR—y(t) = (yﬁt)fi’a, teR, y=b=a.

At any (t,w) € R x W we consider in W
za(t) = rel(a,y(t))w, z(t) = rel(b, y(t))w,

with 2,(0) = 2,(1) = w. By (8.1), b—a = (b4 2(t)) — (a4 2,(t)) for all t € R,
with ||z ()] = ||z6(t)]] = ||w]| for any w € W.

The Ls- link between a and b is ruled by the two values rel(a,y) and rel(b,y)
for the relator. Indeed, rel(a, (b —a)=t4 a)rel(b—a,a) = I by (2.16) in Ungar
(2008), and rel~(b— a,a) = rel(—a,a —b) (Section 2.4 in Ungar).

Proposition 8.4. When w varies on the sphere S, = {w, [[w| = r} for0 <r <A,
the Lo- link between a and b maintains z,(t) and z,(t) on S, for all t € R. In
particular zq4(0) = z(1) = w.

Proof. Clear from the above discussion. O
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When w is arbitrary in W, the double equality ||w|| = ||za(t)|| = ||25(¢)]| holds
for any ¢, and hides the actual source of the Ls- link (8.1) between a and b which
resides in the relator at the pairs (a,b—a) and (b,b— a).

As for the third line, Section 7 has told us that, when the relator is directional,
the line L = L3 is a shape-shifter: it can be interpreted as LL = L; and equally
as RL = R — Lg,p, which differ when rel(a,b) # I.

8.2 Weaving Computation and Broadcasting Information

The broadcasting of information from a to b uses the real parameter ¢ in R to
channel through the three lines L; with distinct features.

1) For the geodesic Ly, ||be a| is invariant under left shift. We say that L;
radiates metric information. In other words, L; is a channel which is blind to
rotations performed on the results produced by WIP: it is a normative channel.
Because the two additions ¢ and 4 yield identical results for any pair of points
picked on itself, L1 draws the commutative path from a to b: addition 4 is locally
commutative on L.

2) By comparison, the geodesic Ly through a and b (when independent) is a
channel which selects, from the whole of WIP results, only the ones which enjoy
the Lo-link (according to Definition 8.3). We say that Lo emanates selected ezact
information. It is a discriminative or filtering channel.

The lines L, and Ly are the two channels associated with L4 and R4 respec-
tively: they differ geometrically when a and b are independent.

3) As we have already noticed, the third line Ly = Lisa computational con-
struct which can be interpreted by means of any of the channels L; and Lo when
the relator is directional. The two interpretations differ markedly from L and
between themselves.

The left image L; generally differs from Lay for t # 0 and 1. The right image is
RL = R-Lg,, which passes through ag # a (t = 0) and by # b (t = 1) in general.
This computational property lends weight to the notion of “action at a distance”
for information, a possibility which is most often ruled out a priori in empirical
science.

By contrast, if a and b are dependent, a # b, there exists a unique channel
because all L; coalesce into the axis spanned by a # 0. When the relator is
directional, the right geometric image for L is L itself.

It appears that there are several distinct ways by which information can be
broadcast from a to b:

(i) If a and b are independent, there exist two distinct channels of information
based on L4 and R+<: the left one is a geodesic for d which is normative and
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the right one is a filtering geodesic for d. Provided that the relator be directional,
these channels enable the computing agent to get a left and right interpretations
for the construct Ly = L. It is remarkable that the right interpretation sustains
the ill-received concept of “action at a distance” for information.

(ii) If @ and b are dependent, and if the relator is directional, the two channels
L1 and Lo coalesce with the organic line Ls and with its two images.

9. An Epistemological Appraisal

The fact that hyperbolic geometry underlies Special Relativity was quickly realised
by a handful of physicists and geometers (Ungar, 2008, Section 3.8); Ungar (2012).
But the scope of hyperbolic geometry reaches much further.

9.1 Hyperbolic Geometry in Nature

A number of natural shapes exhibit, at least locally, a hyperbolic character in
their geometry. The most famous example is a horse saddle or a mountain pass.
Among other natural hyperbolic surfaces, one can cite lettuce leaves, coral reef
or some species of marine flatworms with hyperbolic ruffles. According to W.
Thurston, if one moves away from a point in hyperbolic plane, the space around
the point expands exponentially. The idea was implemented in crochet in 1997
by D. Taimina by ceaselessly increasing the number of stitches in each row of
her crochet model (Henderson and Taimina 2001). Experiments have shown that
the visual information seen through the eyes and processed by our brain is better
explained by hyperbolic geometry (Luneburg 1950). This explains the popularity
of hyperbolic browsers among information professionals (Lamping et al. 1995,
Allen 2002). Einstein gyrovector spaces are used in (Urribarri et al. 2013) to
program an efficient tree layout, with varying levels of detail for data enclosed in
a 3D-volume.

9.2 Axiomatic Vs. Cloth Geometries

The classical concept of a group underlies the three geometries which can be ax-
iomatically derived from three versions of the parallel postulate: by a point not
on a given line in a plane, one can draw a number p of parallels to the line with
p € {0,1,00}. The best-known case p = 1 corresponds to a linear vector space
endowed with a scalar product and derived norm. The cases p = 0 (elliptic)
and p = oo (hyperbolic) are modifications of the euclidean case, each with many
equivalent models.

By comparison, cloth geometry is derived from a metric cloth framed in a linear
normed space with dimension n > 2, and based on an organ G(+4 ,relator). It is
not axiomatically defined, but is a computational construct based on 4 and on



Weaving Computation 223
- - ==~

the corresponding choice of automorphisms in the relator’s range R. The compu-
tation results in a trimorphic geometry in which the relator for 4, by inducing
a secondary addition 4, blurs the clear-cut distinctions created by axiomatisation
based on an abelian group. For example, it can be proved that p = co and p =1
are co-existing properties (Figure 8.50 on p. 370). Depending on the choice R of
isometries, the computed geometry will exhibit, in addition to the euclidean struc-
ture of the frame V', new non-euclidean features, among which some are considered
as characteristic of either hyperbolic or elliptic geometries defined axiomatically.
To witness, Chapter 7 in (Ungar 2008) ends on p. 259 with the following statement:

“In modern physics, hyperbolic geometry is the study of manifolds with Rie-
mannian metrics with contant negative curvature. However, we can see from Table
7.1 that in classical hyperbolic geometry, that is, the hyperbolic geometry of Bolyai
and Lobacheivsky, constant negative curvatures and variable positive ones are in-
separable.”

The clear-cut distinction between the three aspects of geometry is relative
rather than absolute: it can be by-passed by weaving computation.

9.3 Cloth Geometry in the Mind

In (Calude and Chatelin 2010,Chatelin 2012 a,b,d,2015) we have argued that hy-
percomputation in multiplicative Dickson algebras is part of the algorithmic toolkit
for the human mind. Experimental evidence provided by Special Relativity indi-
cates that the mental reconstruction of the observed outside 3D-reality is controlled
by cloth geometry based on Einstein addition of 3D-velocities. This may offer a
possible clue to what is perceived by some physicists as a pre-established har-
mony between mathematics and physics (Minkowski 1908 Wigner 1960, Pyenson
1982, Ungar 2003). The paper (Ungar 2003) analyses the twofold harmony which
takes place in Special Relativity. Two complementary aspects of equal importance
are useful to understand SR: either physics and geometry in 3D (Einstein 1905)
or analysis in 4D (Poincaré 1905, Minkowski 1908). These complementary as-
pects are but the two sides of the same coin: mathematical computations in the
mind.Both aspects have not been equally understandable in the beginnings. There-
fore Minkowskian relativity prevailed for a long time, leaving certain theoretical
gaps which can be filled elegantly with an appeal to the original idea of Einstein in
its geometrically more mature form developed later by Ungar, see (Ungar 2003).

Going back to the human intellectual reconstruction of relativity, we posit
that, more generally, there exists a commonly shared set of relators for mind
computation. This would explain why most people agree on the general appearance
of the external landscape, if not on all the details. Two eye-witnesses never agree
on the minute details about the scene they both observed at the same place and
time. The existence of a common cloth geometry in 3D could be the reason why
we, human beings, have the feeling that we share more or less the same external
reality, our habitat called Nature.

As for the inner world inside each of us, it differs widely from one individual to
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the next. Why? Because the number n of dimensions for the frame is not bound
to be 3 anymore, but may vary arbitrarily at will, n > 2.

Cloth geometry provides a plausible mechanism for outer action and inner
understanding after observation. In WIP perspective, both processes result from
a drive in the mind toward explanation. The observer is free to choose to relate
a and b by outer or inner observation. However the reader should remember that
the physical reference A = ¢ for the speed of light is imposed by physical reality
and defines the limit of observable velocities. No such constraint exists for inner
observation; in other words the inner reference A is self-imposed (or chosen).

9.4 On the Poincaré Vs. Einstein Debate about Relativity
and Geometry

During the first two decades of the 20th century the intellectual debate about the
“true” nature of physical space was structured around Poincaré (and his legacy after
1912) and Einstein, see (Paty 1992). These giants stood at the two endpoints of
a continuum of ideas running from Mathematics to Physics. The issues at stakes
have been heatedly debated, including a priority dispute which appears rather
futile in view of Ungar’s isomorphism between Wg and Wp.

On the one hand Poincaré had an axiomatic vision of Geometry based on
groups which led him to anticipate the “law of relativity” (Poincaré 1902). In
special relativity he proved the dynamical invariance of physical laws for Mechan-
ics and Electromagnetism (slightly ahead of Einstein). The relativistic dynamics
presented in (Poincaré 1905) bears on group theory and (implicitly) on the field
H of quaternions, two advanced mathematical notions which are now common in
theoretical physics. His work wraps up more than 250 years of discoveries about
the baffling behaviour of light (Auffray 2005). Poincaré is often criticised because
— as Lorentz, Maxwell and Fresnel did before him — he occasionally mentions ether,
a notion which is considered unnecessary in current physics. We remark that in
the cognitive perspective of information processing in the mind, a background ref-
erence is required for weaving computation, whatever name is given to it, ether,
or cloth geometry, or even riemannian geometry for General Relativity.

On the other hand, it is clear that Einstein did not at first feel the need for
a non-euclidean geometry, because he only slowly became aware of the physical
consequences of his non symmetric composition law. Together with Ehrenfest, Max
Born and others, he realised that an accelerated motion would not permit exact
rigidity for the moving body, but would imply elastic deformations and possible
explosion. In order to save the relativity principle (by showing that it can apply to
all kinds of motions including accelerations) Einstein had to modify the geometry,
thus uncovering the full breadth of the 1905 paper.

Following (Paty 1992 ), we may say that: “Poincaré thought Physics with his
geometric mind, as much as Einstein viewed Geometry through his physicist’s
eyes”.
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The principle of relativity has been observed in light phenomena since the 17th
Century. In this intellectual odyssey, history has chosen to emphasise the year
1905 and the sole contribution of the physicist Einstein, This is an ironical twist of
fate since the version of Special Relativity which survives today in textbooks rests
upon the group structure of Lorentz transformations due to the mathematician
Poincaré, while it overlooks the information role played implicitly by Einstein’s
non commutative addition of 3-vectors for the construction of the human image
of the world.

In retrospect, one realises that special relativity in physics has two intricate
aspects based on two algebraic structures: the metric cloth Wg (based on 4 g)
envisioned by Einstein and the noncommutative field H (based on x) implicit in
Poincaré. A thorough comparison between the distinct computational roles played
by these two structures is given in (Chatelin 2011).

9.5 Einstein’s Vision of Relativity

In 10 years (1905-1915) Einstein’s vision evolved from the commonly shared eu-
clidean view to a highly personal one. By transmuting ideas borrowed from Rie-
mann and Poincaré he was led to General Relativity in 1916. This larger vision he
would maintain and refine for the rest of his life (Einstein 1921). Hence his work
presents a remarkable continuity of thought since the day he planted the seed of
Relativity by positing that admissible velocities do not add in a symmetric fashion.
The simplicity of this idea — so daring at the time — should strike a chord in any
mathematically inclined mind! Simplicity is not triviality ...; it means depth and
beauty, conferring a flavour of eternity to Einstein’s revolutionary idea. The new
idea ran against a couple of centuries of scientific development for physics, which
had climaxed in the 19th century with a commutative addition for 2- or 3-vectors
in classical Mechanics, symbolised by the parallelogram law. It is fair to say that
there exists a world of difference between the two physics papers authored by Ein-
stein and Ungar which are 83 years apart (1905-1988): the difference illustrates
the progress of algebraic knowledge in the 20th century. More than a century
had to elapse to allow the slow coming of age of the idea of relativity: from its
birthplace in experimental physics to its original habitat in the human mind which
can add vectors in a noncommutative way. This evolution would not surprise the
perceptive Mach who wrote in Die Mechanik (1883): “We should not consider as
foundations for the real universe the auxiliary intellectual means that we use for
the representation of the world on the stage of thought.” (italics in original).

The relativistic formula is routinely put to good use by engineers in telecommu-
nications, geolocalisation and space industries. But is it really understood? A look
at textbooks for physics undergraduates casts some doubts. The pristine clarity of
Einstein’s addition is obscured behind the cloud of Lorentz transformation and its
inherent technicalities. The essence is lost in the mist of Minkowski’s 4D-spacetime
as this is recalled in (Ungar, 2003). It is not uncommon to find only the symmetric
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formula (valid for parallel velocities) as any quick websurf will confirm. It is no
surprise that history has chosen to tout the (physically more difficult) equation
E = mc?, which is but one of the many consequences of Einstein’s seminal law of
noncommutative addition. Why is the analytic Poincaré/Minkowski version still
prefered? Because it was the first to be accepted in Physics and it offers a sat-
isfactory answer to most questions which have been raised to-date (Ungar 2003).
The gaps uncovered in Theoretical Physics have not yet reach the critical mass
which would force the physics community to fully endorse the geometric version
of Einstein on an equal footing. Hence Ungar is still a lone pioneer.

The result of this unsatisfactory -but all too human- state of affairs is that
relativity is not yet fully embraced: it is, at best, interpreted as an exotic law
of Nature, with no deeper consequences on everyday life than the use of cellular
phones and GPS devices. Relativity is not perceived as giving us a clue about
the ways by which the human mind builds its “mago mundi”, its image of the
world (Chatelin 2012a,b,d). The role of relativity in western science is mostly
confined to physics research (nanoscale or high energy) in order to develop ever
more sophisticated technologies. More than one century after Einstein’s ground
breaking invention, relativity has not yet been taken seriously by social scientists.
They do not venture beyond the overly simplified version that is called relativism, a
mental construct which does not do justice to the philosophical depth of relativity.

Information Processing is of paramount importance for human affairs. Informa-
tion-based activities such as education, medicine, economy and ecology, could
benefit greatly from a new relativity-based scientific approach to cognition.

Acknowledgement. This paper on relating computation owes its existence to
the deep theory of gyrovector spaces developed by Prof. Ungar since 1988.
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Abstract

The Lorentz transformation of order (m = 1,n), n € N, is the well-known
Lorentz transformation of special relativity theory. It is a transformation of
time-space coordinates of the pseudo-Euclidean space R™=" of one time di-
mension and n space dimensions (n = 3 in physical applications). A Lorentz
transformation without rotations is called a boost. Commonly, the special
relativistic boost is parametrized by a relativistically admissible velocity pa-
rameter v, v € R, whose domain is the c-ball R} of all relativistically
admissible velocities, R = {v € R" : ||v|| < ¢}, where the ambient space
R™ is the Euclidean n-space, and ¢ > 0 is an arbitrarily fixed positive con-
stant that represents the vacuum speed of light. The study of the Lorentz
transformation composition law in terms of parameter composition reveals
that the group structure of the Lorentz transformation of order (m = 1,n)
induces a gyrogroup and a gyrovector space structure that regulate the pa-
rameter space R_. The gyrogroup and gyrovector space structure of the ball
R{, in turn, form the algebraic setting for the Beltrami-Klein ball model of
hyperbolic geometry, which underlies the ball RY. The aim of this article
is to extend the study of the Lorentz transformation of order (m,n) from
m = 1and n > 1 to all m,n € N, obtaining algebraic structures called
a bi-gyrogroup and a bi-gyrovector space. A bi-gyrogroup is a gyrogroup
each gyration of which is a pair of a left gyration and a right gyration. A
bi-gyrovector space is constructed from a bi-gyrocommutative bi-gyrogroup
that admits a scalar multiplication.

Keywords: Bi-gyrogroup, bi-gyrovector space, eigenball, gyrogroup, inner
product of signature (m,n), Lorentz transformation of order (m,n), Pseudo-
Euclidean space, special relativity.

2010 Mathematics Subject Classification: Primary 20N02; Secondary 20N05,
15A63, 83A05.

*Corresponding author (E-mail: abraham.ungar@ndsu.edu)
Academic Editor: Ali Reza Ashrafi
Received 26 January 2016, Accepted 17 March 2016
DOI: 10.22052/mir.2016.13925
(© 2016 University of Kashan



230 A. A. Ungar
e

1. Introduction

Following the parametric realization of the Lorentz transformation group in pseudo-
Euclidean spaces [46], the aim of this article is to study Lorentz transformations in
pseudo-Euclidean spaces, where each of the resulting generalized Lorentz transfor-
mation group is parametrized by a generalized relativistically admissible velocity.
A generalized relativistically admissible velocity, in turn, is an element of the
eigenball RI*™ of the ambient space R™*™ of all real n x m matrices, just as
a relativistically admissible velocity in special relativity is an element of the ball
R = {V € R" : |V]| < ¢} of the ambient Euclidean n-space R™. Here ¢ > 0 is
an arbitrarily fixed positive constant, analogous to the vacuum speed of light in
special relativity.

A pseudo-Euclidean space R™™ of signature (m,n), m,n € N, is an (m + n)-
dimensional space with the pseudo-Euclidean inner product of signature (m,n).
A Lorentz transformation of order (m,n) is a special linear transformation A €
SO(m,n) of R™™ that leaves the pseudo-Euclidean inner product invariant. It
is special in the sense that the determinant of the (m 4+ n) x (m + n) matrix
representation of A is 1, and the determinant of its first m rows and columns is
positive [21, p. 478]. The group SO(m,n) of all Lorentz transformations of order
(m,n) is also known as the special pseudo-orthogonal group [21, p. 478], or the
group of pseudo-rotations [7]. A Lorentz transformation without rotations is called
a boost when m = 1 and a bi-boost when m > 1. Bi-boosts are studied in [46].

In [46], the bi-boost B(P) in a pseudo-Euclidean space R™" is parametrized
by P € R™ ™ R" ™ being the space of all real rectangular matrices of order
n X m. In the special case when m = 1, the parameter P is a column vector in
R™ that represents a proper velocity. In physical applications n = 3, and a proper
velocity in R3 is a velocity measured by proper (or, traveler’s) time rather than
observer’s time, as explained in [37,40].

In Sections 2-5 we review part of the study in [46] of the bi-boost B(P) in order
to reach the position enabling us to change the parameter P € R™*™ to a new
parameter V' € R?*™ in Section 6. Here, the space R?*™ of the new parameter
V' is the c-eigenball of the ambient space R™"*™, given by

R™*™ — [V € R™ ™ : Each eigenvalue A of V'V satisfies 0 < \ < ¢?}
= {V € R"™"™ . Each eigenvalue X of V'V satisfies 0 < A < ¢?}

where ¢ > 0 is an arbitrarily fixed positive constant, said to be the eigenradius of
the eigenball.

In the special case when m = 1, the space R™"*™ specializes to the Euclidean
n-space R"*1 = R" of n-dimensional column vectors. Accordingly, as shown in
Example 8.2 (for ¢ normalized to ¢ = 1), the eigenball R?*! = R” specializes to
the c-ball of the ambient space R", given by R?*! = R? = {V € R" : |[V|| < ¢}.
Thus, when m = 1, the concepts of the c-eigenball and the ¢-ball coincide, and the
Lorentz transformation of order (m,n) specializes to the Lorentz transformation
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of special relativity theory in one time dimension and n space dimensions (n = 3
in physical applications).

Eigenballs R?*™ are studied in Section 7, and in Section 8 any eigenball R?*"
forms the parameter space of a Lorentz transformation A of order (m,n). It is then
shown in Sections 9-10 that the resulting bi-boosts B.(V), V € R?*™ and B.(P),
P € R™"™™ leave invariant the inner product of signature (m,n), as expected.

The crucial step of this article is performed in Sections 11-12, where the com-
position law of two successive Lorentz transformations of order (m, n) is expressed
in terms of a resulting parameter composition law, V3, @®V5, in the parameter space
R2*™. The parameter composition law, in turn, gives rise in Sections 13-16 to
the novel bi-gyrogroup and bi-gyrovector space structure of the eigenball R?*™.
These novel algebraic structures, finally, pave in Section 17 the road leading to the
novel non-Euclidean geometry of the eigenball R?*™ m,n € N.

The algebraic and geometric structure of the parameter space R?*™ is of in-
terest in nonassociative algebra, non-Euclidean geometry, and relativity physics.
In the special case when m = 1, it gives rise to

1. the group-like structure called a gyrogroup; to
2. the vector space-like structure called a gyrovector space; to

3. improved understanding of the hyperbolic geometry of Lobachevsky and
Bolyai in terms of novel analogies with Euclidean geometry; and to

4. improved understanding of the way hyperbolic geometry regulates Einstein’s
special theory of relativity.

These structures and their use in hyperbolic geometry and in special relativity,
along with other applications, are studied in many papers as, for instance, [2-5,29],
[9-13], [31-34], [8,22-24,26-28,47], [25, 38,44, 46|, and in seven books [36, 37,40
43,45]. Hence, the extension of these structures from m = 1 and all n € N to all
m,n € N is a most promising step towards revealing the non-Euclidean geometry
that underlies the eigenball R?*™ m,n € N. Accordingly, along with [46], this
article initiates the extension of the exploration of the algebraic and geometric
structure of the eigenball R?*™ from m = 1 to m > 1, for all n > 1, and the
related extension from gyrogroups and gyrovector spaces to bi-gyrogroups and
bi-gyrovector spaces.

2. On the Generalized Lorentz Transformation

The (generalized) Lorentz transformation group SO(m,n), m,n € N, is a group of
special linear transformations in a pseudo-Euclidean space R™™ of signature (m, n)
that leave the pseudo-Euclidean inner product invariant. A Lorentz transformation
A of order (m,n), A = SO(m,n), is special in the sense that the determinant of
the (m +n) x (m + n) matrix representation of A is 1, and the determinant of its
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first m rows and columns is positive [21, p. 478]. In the first part of this paper we
present results from [46], where the set SO(m,n) is described in detail.

Let R™*™ be the set of all n x m real matrices, let SO(n) be the special
orthogonal group of order n, let I,, be the n x n identity matrix, and let 0,, , be
the m x n zero matrix.

Theorem 2.1 below realizes the Lorentz transformations A € SO(m,n) para-
metrically, with the three matrix parameters P € R"*™ 0O, € SO(m) and
O, € S0O(n).

Embedding each matrix parameter in an (m + n) x (m + n) matrix, we define
(i) bi-boosts; (ii) right rotations; and (iii) left rotations as follows:

Bi-Boosts: A bi-boost is an (m +n) X (m +n) matrix B(P) parametrized by
P e R™™m,

JI. PP pt
B(P) := <

P VI, + PP

where P? is the transpose of P.
Right Rotations: A right rotation is an (m + n) x (m + n) block orthogonal
matrix p(Oy,) parametrized by O,, € SO(m),

) e R(m+n)><(m+n) , (1)

p(Oy,) = (onm 7 ) € RimAn)x(m+n) (2)

Left Rotations: A left rotation is an (m 4+ n) x (m 4+ n) block orthogonal
matrix A\(O,,) parametrized by O,, € SO(n),

Im Omn m-+n m-Tn
AOy,) = <0nm o, > € R(mAn)x(m+n) (3)

Theorem 2.1. (Lorentz Transformation Bi-Gyration Decomposition, P)
( [46, Theorem 8]). A matriz A € R+ X(m+n) s 4 Lorentz transformation of
order (m,n), A € SO(m,n), m,n € N, if and only if it is given uniquely by the
bi-gyration decomposition

Om  Omon VI + PP pt I Omn
A= (4)
On,m In P \% In + PPt On,m On

or, prarmetrically in short,
Om

Results (4) - (5) of Theorem 2.1 indicate the notations we use with the generic
Lorentz transformation A of order (m,n).
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We now take the results in ( [46, Theorem 13]) as definitions in Def. 2.2 below,
giving rise to a binary operation, @, in R"*™ along with two families of automor-
phisms of R"*™  called bi-gyrations, which are the left gyrations lgyr|[-, -] and the
right gyrations lgyr|-, -|.

Definition 2.2. (Bi-Gyroaddition and Bi-Gyration). The bi-gyroaddition &
and bi-gyration (Igyr,rgyr) in the parameter bi-gyrogroupoid (R"*™, @) are given
by the equations

PP, = Pl\/lm L PP+ \/In + PLPP, € RV

lgyr[Py, P] =

-1
VI T (PoB) (Pob) {Plpg /Lo + PP T+ P2P2t} € SO(n)

rgyr(Py, Py) =

—1
{PfPQ + \/Im + Pt \/Im + PQtPQ} ViIn + (PLOP)YPi®P,) € SO(m)
(6)
for all P, P, € R™*™,

Def. 2.2 proves useful in Theorem 2.3 below, which presents the Lorentz trans-
formation composition law in terms of parameter composition.

Theorem 2.3. (Lorentz Transformation Product Law) ( [46, Theorem 21])
The product of two generic Lorentz transformations

Al = (Ph On,la Om,l)t (7)
Ay = (P2,0p2,0p2)"

of order (m,n), m,n € N, is given by

P1 P2 P10m72@0n,1p2
AMAy =] On1 Onz | = | lgyr[PiOm,2, 05,1 P]0,10,2 | . (8)
Om,l Om,2 Om,10m,2rng[P1Om,2, On,1P2]

where @, lgyr and rgyr are given by (6) in terms of the parameters Py, Py € R"*™,
Illustrative examples follow.
Example 2.4. In the special case when Py = Py = 0, and O = O o = Iy,
the parameter composition law (8) yields the equation
On,m On,m On,m
MOn1)A(On2) = | Ona On2| =10n10n2 | =A0n10n2) (9)
I, L L
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demonstrating that under the parameter composition law (8) the parameter O,
forms the special orthogonal group SO(n).

Example 2.5. In the special case when Py = Py = 0y, and Op 1 = Oy 0 = I,
the parameter composition law (8) yields the equation

On,m On,m On,m
p(Om,1)p(Om72) = I, I, = I = p(Om,lom,2) (10)
Om 1 Om,2 Om,lOm,Q

)

demonstrating that under the parameter composition law (8) the parameter Oy,
forms the special orthogonal group SO(m).

Example 2.6. In the special case when O, 1 = Oy 2 =1, and Opy 1 = Opy 2 = I,
the parameter composition law (8) yields the equation

P Py PoP
Im Im rg‘yr[Pl, PQ]

Clearly, under the parameter composition law (8) the parameter P € R™*™ does
not form a group, owing to the presence of bi-gyrations. Indeed, (11) demonstrates
that, in general, the composition of two bi-boosts is not a bi-boost but, rather, a
bi-boost associated with a bi-gyration.

In the special case when Py = P and P, = &P, (11) gives

P oP PoP On.m
B(P)B(@P) =\ In I, = lgyr[Pa @P] = I, ) (12)
I, I, rgyr[P, ©P] I,

so that the inverse of B(P) is B(6P) = B(—P). In (12) we use the results
lgyr[P,©P] = I, and rgyr[P,©P] = I, which are verified in ( [46, Eq. (114)]).

The product rule (8) is neither commutative nor associative. However, it pos-
sesses a rich algebraic structure. Thus, in particular, it obeys a commutative-like
and an associative-like laws, called the bi-gyrocommutative and the bi-gyroassociative
law of the bi-gyrogroupoid (R™*™ @).

Theorem 2.7. (Bi-Gyrocommutative Law in (R"*™ @)) ( [46, Theorem
25]). The binary operation @ in R™*™ possesses the bi-gyrocommutative law

Pl@PQ = 1gyr[P1, PQ](PQ@Pl)rgyI‘[Pl, PQ] (13)

for all Py, P, € R"*™,
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In Theorem 2.7 the bi-gyration (lgyr[Pi, Ps],rgyr[P1, P»]) takes Po@P; into
Pi®P,. It rotates the n x m matrix Po®P; € R™*™ from the left by the orthog-
onal matrix lgyr[P, P2] € SO(n), and from the right by the orthogonal matrix
rgyr[Pr, Po] € SO(m).

Theorem 2.8. (Bi-Gyroassociative Law in (R"*™ @)) ( [46, Theorem 27]).
The binary operation & in R™ ™ possesses the bi-gyroassociative law

(Pl@PQ)@lgyI‘[Pl, P2]P3 = Plrgyr[PQ, Pg]@(PQ@Pg) (14)
for all Py, P, € R"*™,

Note that P; and P, are grouped together on the left side of (14), while P
and Ps are grouped together on the right side of (14).

3. Bi-Gyrogroups

It proves useful in [46] to replace the binary operation @ in R**™ by a new binary
operation, @', according to the following definition.

Definition 3.1. (Bi-Gyrogroup Operation, Bi-Gyrogroups) ( [46, Defini-
tion 35]). Let (R™*™,®) be a bi-gyrogroupoid. A new bi-gyrogroup binary oper-
ation @' in R™*™ is given by

P @' Py = (PL®Ps)rgyr[Pa, P1] (15)
for all P, P, € R™*™. The resulting groupoid (R"*™ &) is called a bi-gyrogroup.

The bi-gyrogroup (R™*™ @) is defined in Def. 3.1 in terms of the bi-gyrogroupoid
(Rnxm7 @)

It is shown in [46] that (15) implies the following four identities that exhibit
an interesting symmetry between the binary operations @ and &’ in R™*™,

P @' Py = (P Ps)rgyr[Pa, Pi]
PioP, = (P@' P)rgyr[ Py, Ps)
P&’ Py = lgyr[Py, P] (P Py)
P& P, = 1gyr[Py, P|(P2&' Py)

(16)

for all Py, P, € R**™,

Theorem 3.2. (Bi-Gyrocommutative Law in (R™*™ &')) ( [46, Theorem
42]). The binary operation &' in R™*™ possesses the bi-gyrocommutative law

Pl@/PQ = 1gyI‘[P1, PQ](PQ@/Pl)I‘gyI‘[PQ, Pl] (17)

for all Py, P, € R"*™,
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It follows from (13) and (17) that the binary operations @ and @’ possess
the same bi-gyrocommutative law. This is, however, not the case with the bi-
gyroassociative law, as shown in Theorem 3.3.

Theorem 3.3. (Bi-Gyrogroup Left and Right Bi-Gyroassociative Law)
( [46, Theorem 41]). The binary operation @' in R"*™ possesses the left bi-
gyroassociative law

Pl@I(PQ@/X) = (Pl@'Pg)@/lgyr[Pl, PQ]XngI‘[PQ, Pl] (18)
and the right bi-gyroassociative law
(Pl@lpg)@/X = Pl@/(PQ@/lgyI‘[PQ, Pl]XI‘gyI‘[Pl, PQ]) (19)

for all Py, Py, X € R™*™,

4. Gyrogroup Gyrations

The bi-gyroassociative laws (18)—(19) and the bi-gyrocommutative law (17) sug-
gest the following definition of gyrations in terms of left and right gyrations.

Definition 4.1. (Gyrogroup Gyrations) ( [46, Definition 43]). The gyrator
gyr : R x R™ ™ — Aut(R™*™, @)

generates automorphisms called gyrations, gyr[Py, P»] € Aut(R™*™, @&'), given by
the equation

gyr[Py, Po) X = lgyr[Py, Po) Xrgyr[Ps, Pi] (20)
for all Py, Pp, X € R™™ where left gyrations, lgyr[P;, P»|, and right gyrations,
rgyr[ P, P1], are given in (6), p. 233. The gyration gyr[Py, P] is said to be the
gyration generated by Pp, P, € R"*™. Being automorphisms of (R™*™ &'), gy-
rations are also called gyroautomorphisms.

Def. 4.1 will turn out rewarding, leading to the elegant result that any bi-
gyrogroup (R™ ™ @') is a gyrocommutative gyrogroup.

Theorem 4.2. (Gyrogroup Gyroassociative and Gyrocommutative Laws)
( [46, Theorem 44]). The binary operation @' in R™*™ obeys the left and the right
gyroassociative law

P& (Pd' X) = (1@ Po)@ gy [Py, Po] X (21)

and
(P& P&’ X = P&/ (P& gyr[P2, P1| X) (22)

and the gyrocommutative law

Pl@lpg = gyr[Pl, PQ](PQ@Ipl) . (23)
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Proof. Identities (21)—(22) follow immediately from Def. 4.1 and the left and right
bi-gyroassociative law (18)—(19). Similarly, (23) follow immediately from Def. 4.1
and the bi-gyrocommutative law (17). O

Lemma 4.3. ( [46, Lemma 45]). The relation (20) between gyrations gyr[Py, Ps]
and corresponding bi-gyrations (lgyr[ Py, Ps), rgyr[Pa, Pi]), P1, P, € (R™*™ @), is
bijective.

It is obvious from (20) that a gyration gyr[P;, P»] is determined uniquely by
the bi-gyration (lgyr[Py, P2],rgyr[Pi, P2]). It follows from Lemma 4.3 that also
the converse is true, that is, a bi-gyration (1gyr[P1, P2, rgyr[P1, P,]) is determined
uniquely by the gyration gyr[P, Ps].

It is anticipated in Def. 4.1 that gyrations are automorphisms. The following
theorem asserts that this is indeed the case.

Theorem 4.4. (Gyroautomorphism) ( [46, Theorem 46]). Gyrations gyr[Py, Ps]
of a bi-gyrogroup (R™*™ @) are automorphisms of the bi-gyrogroup.

Theorem 4.5. (Left Gyration Reduction Properties) ( [46, Theorem 47]).
Left gyrations of a bi-gyrogroup (R™*™ @') possess the left gyration left reduction
property

lgyr[P1, P2] = lgyr[P1&®' P, Ps) (24)

and the left gyration right reduction property
lgyr[Py, Po) = lgyr[ Py, Pa®' Py). (25)

Theorem 4.6. (Right Gyration Reduction Properties) ( [46, Theorem 48]).
Right gyrations of a bi-gyrogroup (R™*™ @) possess the right gyration left reduc-
tion property

rgyr[Pr, ] = rgyr[P1&' Py, Py (26)

and the right gyration right reduction property
rgyr[ Py, Po] = rgyr[ Py, P®' Py . (27)

Theorem 4.7. (Gyration Reduction Properties) ( [46, Theorem 49]). The
gyrations of any bi-gyrogroup (R™*™ &), m,n € N, possess the left and right
reduction property

gyr[P1, Po] = gyr[ P&’ P, P (28)

and
gyr[P1, Po] = gyr[P1, P& Py]. (29)

Proof. Identities (28) and (29) follow from Def. 4.1 of gyr in terms of lgyr and
rgyr, and from Theorems 4.5 and 4.6. O
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5. Gyrogroups and Bi-Gyrogroups

We are now in a position to present the definition of the abstract (gyrocommu-
tative) gyrogroup, and note the proof in [46, Theorem 52| that any bi-gyrogroup
(R™™ &), m,n € N, is a gyrocommutative gyrogroup.

Forming a natural generalization of groups, gyrogroups emerged in the 1988
study of the parametrization of the Lorentz group of Einstein’s special relativity
theory [35,36]. Einstein velocity addition, thus, provides a concrete example of a
gyrocommutative gyrogroup operation in the ball of all relativistically admissible
velocities.

Definition 5.1. (Gyrogroups) ( [46, Definition 50]). A groupoid (G,®) is a
gyrogroup if its binary operation satisfies the following axioms (G1)—-(G5). In G
there is at least one element, 0, called a left identity, satisfying

(G1) 0®a =a

for all a € G. There is an element 0 € G satisfying aziom (G1) such that for each
a € G there is an element Sa € G, called a left inverse of a, satisfying

(G2) ©ada =0.

Moreover, for any a,b,c € G there exists a unique element gyr[a, blc € G such that
the binary operation obeys the left gyroassociative law

(G3) a®(bdc) = (adb)dgyr|a, blc.

The map gyr[a,b] : G — G given by ¢ — gyr[a,blc is an automorphism of the
groupoid (G, ®), that is,

(G4) gyrla, b] € Aut(G, @),

and the automorphism gyrla,b] of G is called the gyroautomorphism, or the gy-
ration, of G generated by a,b € G. The operator gyr : G x G — Aut(G,®) is
called the gyrator of G. Finally, the gyroautomorphism gyr|a,b] generated by any
a,b € G possesses the left reduction property

(G5) gyrla,b] = gyr[a®b, b] ,

called the reduction axiom.

The gyrogroup axioms (G1)—(G5) in Definition 5.1 are classified into three
classes:

1. The first pair of axioms, (G1) and (G2), is a reminiscent of the group axioms.
2. The last pair of axioms, (G4) and (G5), presents the gyrator axioms.

3. The middle axiom, (G3), is a hybrid axiom linking the two pairs of axioms
in (1) and (2).

As in group theory, we use the notation a©b = a®(6b) in gyrogroup theory as
well.

In full analogy with groups, gyrogroups are classified into gyrocommutative
and non-gyrocommutative gyrogroups.
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Definition 5.2. (Gyrocommutative Gyrogroups) ( [46, Definition 51]). A
gyrogroup (G, ®) is gyrocommutative if its binary operation obeys the gyrocommu-
tative law

(G6) a®b=gyr[a,b](b D a)

for all a,b € G.

Theorem 5.3. (Gyrocommutative Gyrogroup) ( [46, Theorem 52]).
Any bi-gyrogroup (R™*™ @'), n,m € N, is a gyrocommutative gyrogroup.

Following the definition of the abstract (gyrocommutative) gyrogroup, we are
now in the position to present the definition of the abstract (bi-gyrocommutative)
bi-gyrogroup.

Definition 5.4. (Bi-Gyrogroups) ( [46, Definition 53]). A (gyrocommutative)
gyrogroup whose gyrations are bi-gyrations is said to be a (bi-gyrocommutative)
bi-gyrogroup.

A detailed study of the abstract bi-gyrogroup is presented in [32].

A concrete example of a nontrivial bi-gyrogroup is provided by the Einstein
bi-gyrogroup (R™*™,@’) that stems in Section 2 from the (generalized) Lorentz
transformation of order (m,n), m,n € N. In the special case when m = 1 we have
R™™ = R"™, and the Einstein bi-gyrogroup (R™*™, @') specializes to the Einstein
gyrogroup (R”,@’). It turns out that (R™,®")=(R",®, ), (R",@,) being the Ein-
stein proper velocity gyrogroup associated with the Einstein addition law of proper
(traveler’s) velocities rather than the common observer’s velocities. Einstein PV
(proper velocity) gyrogroups, in turn, stem from the proper velocity Lorentz group
studied, for instance, in [38,40] and [1]. We, therefore, call (R"*™ &') a PV-bi-
gyrogroup.

As a goal of this paper, we now face the task of changing the parameter
P € R™*™  which represents generalized proper (traveler’s) relativistic velocities,
to a new parameter, V', which represents generalized relativistically admissible
(observer’s) velocities. Achieving the goal, we will obtain Einstein bi-gyrogroups
associated with generalized observer’s, rather than traveler’s, velocities.

6. Bi-Boost Parameter Change, P — V

It is now useful to introduce a positive parameter ¢ > 0 into the bi-boost B(P) in
(1), obtaining the bi-boost B.(P),

VI +c2PP Lpt
B.(P) =
P VI, +c2PPt

so that B(P) = B.—1(P) is a normalized form of B.(P).

(30)
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Definition 6.1. For any m,n € N let ¢ : R"*™ — R™*™ be the map given by

—1
¢: P V=+I,+c2PPt P (31)

where ¢ > 0 is an arbitrarily fixed positive constant.
The image
anm = ¢(Rn><m) C Rnxm (32)

of ¢ in R"*™ is called the (open) c-eigenball of R™*™.

The term “eigenball” will be justified in Theorem 7.2 following the observation
that B™*™ C R™ ™ is the set Rl *™ of all V' € R™*™ such that each eigenvalue X of
the Gramian matrices V'Vt and V'V is nonnegative and smaller than c, 0 < X\ < c.
We will see in Example 8.2 that in the special case when m = 1, the c-eigenball
R2X™ of R™*! specializes to the c-ball R” of R™, that is, R?*! = R”.

Lemma 6.2. The map ¢ in Def. 6.1 can be written equivalently as

-1
¢: P — V=n>PI,+c2PP . (33)

Proof. The proof follows immediately from (31) and from the commuting relation

P\/I, + ¢2PtP = \/I,, + ¢ 2PP!P (34)

for all P € R™*™ proved in [46, Eq. (53)] for ¢ = 1. The passage from ¢ = 1 to
¢ > 0 is immediate in this case. O

Theorem 6.3. For any P € R"*™,

-1 —1
V =\/I, 4+ ¢ 2PPt P =P\/[I, +c2PP (35)

if and only if

~1 —1
P=VI,—c2VVt V=VI,—c?2VV . (36)

Proof. The proof is divided into four parts. In Parts T4 and Ip we prove that (35)
implies (36), and in Parts 114 and I1p we prove that (36) implies (35).
Part I4: Assuming (35), we have

P =+/I, + ¢ 2PPtV (37)
and the commuting relation
-1 -1
Pi\/I, +c¢2PPt =./I,, +c2PtP Pt (38)

so that by (38) and (35)

—1 -1 -1
PP/, + c2PPt = P\/I, +c2P'P P'=+/I, +c2PP' PP,

(39)
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Then, by (35) and (39),

—1 —1
VvVt = /I, +c2PPt PP'/I, +c2PPt
= PPY(I, + ¢ ?PP")~! (40)
= (I, +c?PP")~'PP.
Hence,
PP' = (I, + ¢ 2PPH)VV?! (41)

and
PP'=VV!(I, +c*PP"). (42)

A rearrangement of (41) yields
VvVt = PP, — ¢ 2VV?) (43)

implying
PP' =VVi(I, —c2VVH~L. (44)

Similarly, a rearrangement of (42) yields
VVt= (I, —c?*VVY)PP! (45)

implying
PP! = (I, — c2VVH~lvve, (46)

Following (44) we have

I, +c?PP' =1, +c2VVi(I, —c2VVH~!
= (I, — c2VVH(I, — c2VV) 4 e 2VVH(I, — 2V VL
= (I, —c2VV 4 c2VVY (I, — 2V VH !
= (I —c?VVH~!

(47)
so that .
VI, +c2PPt=\/I, —c2VVt . (48)
Hence, by (37) and (48),
-1
P =T, +c 2PPV = /I, —c2VVt V (49)

thus validating the first equation in (36), In Part Iz of the proof we validate the
second equation in (36),
Part Ip: Assuming (35), we have

P=V\/I,, +c2P'P (50)
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and the commuting relation, as in (38),

-1 —1
P\/I, +c2PPt = +\/T, +c2PtP P!

so that by (35) and (51),

(51)

-1 -1 -1
P'P\/I,, +c2PtP = P'\/I, +c2PPt P =+/I,,+c2PtP P'P.

Then, by (35) and (52),

—1 —1
VYV = /I, +c2PtP P'P\/I,, +c2PtP

= P'P(I, +c2P'P)~!
= (I, + ¢ 2P'P)"'P'P.

Hence,
P'P = (I, + ¢ 2P'P)V'V

and
P'P =V'V(I,, +c ?P'P)

A rearrangement of (54) yields
ViV = P'P(I,, — ¢ 2V'V)

implying
PP =V'V (I, —c?VV)~t.

Similarly, a rearrangement of (55) yields
VYV = (I, — ¢ 2V'V)P'P

implying
P'P = (I, — ¢ 2V'V)"'VV.

Following (57) we have

Im+ ¢ 2P'P =1, + ¢ 2V'V (I, — c2VIV)~!

(52)

(54)

(55)

=(In — c 2V — ¢ 2VIV) L4 e 2VIV (L, — 7 2VIV) L

= (In — 2V 4+ c2VIV) (I, — ¢ 2VIV) 7!
= (I, —c?V'V)~!

so that

VIn+ PP =Ty —c VIV .

(60)

(61)
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Hence, by (50) and (61),

-1
P=V\In+c2PP=V\I, —c2ViV . (62)

Equations (49) and (62) validate the two equations in (36).
Conversely, in Parts 174 and I we show that (36) implies (35).
Part II4: Assuming (36), we have

V=1, - c2VViP (63)

and the commuting relation

-1 —1
Vi, —c2VVt  =\/I, —c2VV V! (64)

so that, by (64) and (36)

—1 -1
VVi/I, —c2VV = VI, —c2VtVy vt
-1
=1, —c2VVt VvV,
Then, by (36) and (65),
-1 -1
PP'=\/I,, — c2VVt VV'/I, — c2VV?

=VViI, —c2vvhH ! (66)
= (I, — c2VVH~lvve,

Hence,
VvVt = (I, —c?VV')PP! (67)

and
VVt= PP, — c2VV?). (68)

A rearrangement of (67) yields
PP'=VVYI, +c2PP") (69)

implying
VVt= PP (I, +c?PP")! (70)

Similarly, a rearrangement of (68) yields
PP!' = (I, + ¢ ?PPH)VV! (71)

implying
VVt= (I, +c2PPH)~ PPt (72)
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Following (70) we have

L, —c?VVt=1,—c2PPY(I, +c?PP") !
= (I, +c ?PPY)Y(I, + ¢ ?PP") "t — ¢ 2PP! (I, + ¢ ?PP") !
= (I, + ¢ ?PP! — ¢ ?PPY(I, + ¢ ?PPH) ™!
= (I, +c?pPpPH)~!

(73)
so that
—1
VI, —c2VVt = /I, + ¢ 2PPt . (74)
Hence, by (63) and (74),
-1
V=1, - c2VViP=\/T, + c 2PPt P (75)

thus validating the first equation in (35). In Part I1p of the proof we validate the
second equation in (35).
Part IIp: Assuming (36), we have

V =PI, —c2ViV (76)

and the commuting relation, as in (64),

-1 -1
VivI, —c2VVE =T, —c2VtV Vvt (77)
so that by (36) and (77),
-1 -1 -1
ViV Ly —c2VV =V, —c2VVt V=\/I,, —c2VtV V'V,

(78)
Then, by (36) and (78),

—1 -1
PP =+/I,, — c2VtV V'V, —c2VtV

=VV(I,, —c2Vty)T! (79)
= (In — c2VIV)" VY.

Hence,
ViV = (I, — c2V'V)P'P (80)

and
VYV = PP, — ¢ 2V'V). (81)

A rearrangement of (80) yields

P'P=V'V(I,, +c 2P'P) (82)
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implying
ViV = P'P(I,, + ¢ 2P'P)"t. (83)

Similarly, a rearrangement of (81) yields
P'P = (I, + ¢ *P'P)V'V (84)

implying
VWV = (I, + ¢ ?P'P)"'P'P. (85)
Following (83) we have

Ly —c?VV =1, — ¢ 2P'P(I,, + ¢ ?P'P)!
= (I, + ¢ 2P'P)(I,, + ¢ ?P'P)™' —c?P'P(I,, + ¢ 2P'P)™!
= (I + ¢ ?P'P — ¢ 2P'P)(I, + ¢ 2P'P)~!
=(n+c?PpP)t

(86)
so that )
VI — 2V = /I, + ¢ 2PtP . (87)
Hence, by (76) and (87),
-1
V = P\/I,, — ¢ 2VtV = P\/I,, + ¢ 2PtP . (88)

Equations (75) and (88) validate the two equations in (35), and the proof is
complete. O

Theorem 6.4. Let ¢ : R™™ — B™"*™ m,n € N, be the map given by each of
the two mutually equivalent equations

—1
¢: P V=1\/I,+c2PPt P
-1

¢: P V=DP\I,+c2PtP

where B"*™ = ¢(R"*™) is the image of R™*™ under ¢.
Then, ¢ is bijective, and the inverse ¢~1 : B"X™ — R™ ™ of ¢ is given by each
of the two mutually equivalent equations

—1
$1: Vs P=+I,—c2VVt V
—1
d1: Vo P=VI,—c2VV .

Proof. The proof follows immediately from Theorem 6.3. O

(89)
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7. Eigenballs

In order to characterize the image B"*™ = ¢(R"*™) of R"*"™ under ¢ in terms
of eigenvalues, we present the following well-known theorem.

Theorem 7.1. ( [6, p. 56]). If a square matriz A has the eigenvalue A and
the corresponding eigenvector x, then any rational function R(A) of A has the
eigenvalue R(X) and the eigenvector x.

Theorem 7.1 enables us to prove the following theorem, which characterizes
B™*™ in terms of eigenvalues.

Theorem 7.2. Let

and
R2*™ = [V € R™ ™ : Each eigenvalue \ of VV? satisfies 0 < A\ < ¢*}.  (92)

Then,
B = RIX™, (93)

Proof. Let V€ B"*™ = ¢(R™*™). Then there exists P € R™"*™ such that

V = ¢(P) = \/Tn + c2PP! P (94)

and, hence, by (72),
VVi= (I, +c PP PP, (95)

Let \;, i =1,...,n, be the eigenvalues of PP?. Then )\; > 0 and, by (95) and
Theorem 7.1, the eigenvalues p; of VV? are

Ai

TS WE (96)

i
so that 0 < u; < ¢®. Hence V € R™™ implying the inclusion B"*™ C R?*™,
To prove the reverse inclusion, let V' € R?*™ and let u;, ¢ = 1,...,n be the
eigenvalues of VV*. Then 0 < u; < c?, so that we can define P € R™*™ by the
equation

-1
P=\I,—c2VVt V. (97)
By means of Theorem 6.3, (97) implies
-1
V=+1I,+c2PP. P (98)

so that V' = ¢(P) € B™*™, implying the reverse inclusion R?*™ C B"*™. Hence,
B™*™ = R*"™ as desired. O



Lorentz Group in Pseudo-Euclidean Spaces 247
D e

For any V € R™ ™ the set of nonzero eigenvalues of VV? equals the set of
nonzero eigenvalues of V*V. Hence, following (92) we have

R2*™ = [V € R™ ™ . Each eigenvalue A of VV" satisfies 0 < \ < ¢?}
= {V € R™™ : Each eigenvalue )\ of V'V satisfies 0 < \ < ¢*}

(99)

Result (93) of Theorem 7.2 suggests calling B"*™ = RI*™ the eigenball of
R™*™ of eigenradius ¢, or the c-eigenball in short.

8. Reparametrizing the Bi-Boost

We now wish to change the bi-boost parameter P € R™*™, the domain of which
is the set R™ ™ of all n x m real matrices, to the new parameter V € RI*™,
the domain of which is the eigenball R?*™ of R"*™. We, therefore, recall the
following equations, which are taken from (36), (61) and (48).

—1 -1
P=+\I,—c2VVt V=V, - c2VtV

VIn 2P P = /T —c 2V (100)
VI, +c2PPt = /T, — c2VVt

A generic parameter V € RI*™ in the eigenball R?*™ is constructed by con-
structing a generic parameter P € R"*™ and employing (35).

The equations in (100) along with analogies with the gamma factor of special
relativity theory suggest the definition of a left gamma factor thv and a right

gamma factor Fﬁ,v by the following equations.

-1
rhy =L, —c2VVt  eR™™
-1
Ly =Ly —c2VIV e R™™,

Naturally, the pair (thv, Fﬁz,v) of a left and a right gamma factor is called a
bi-gamma factor. Practically, it is sometimes convenient to use the short notation

(101)

TYm, v = Ffi,v ) Yn,v ‘= F’I’L{,V (102)

in which a left (right) gamma factor is implicitly indicated by the subscript n
(m). Tt proves useful to use interchangeably the short notation with v and the
full notation with T in (102). We will use the short notation mainly in lengthy
intermediate results as, for instance, in (146), p. 255.

Following (36), the left and right gamma factors are related by the first com-
muting relation in (103) below. The remaining commuting relations in (103) follow
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immediately from the first one, noting that left and right gamma factors are sym-
metric matrices.

rkyv=vrs,
Fi,vvt = VtFTLz,V

(103)
Ly yvvi=vvrh,
Lk yviv =viwri ., .
Moreover, by Theorem 6.3 with P replaced by F,
—1
E=TL,V=VI}, < V=yI,+c?2EE" E
' (104)

—1
= E\/I,, +c?EtE .

The result in (104) will prove useful in (163), p. 259.
In the bi-gamma notation (101), the equations in (100) take the form

P=TL,V=VIE, eR™"
VI, +c2PPt =Tk, e R™" (105)
VIn+c2PtP =TF , e R™™.

Introducing the arbitrarily fixed positive constant ¢ > 0 into the bi-boost
B(P) in (1) we obtain the bi-boost B.(P), shown in (106) below, parametrized by
P € R ™. The bi-boost B.(P) leaves invariant the inner product of signature
(m,n), m,n € N, shown in (138), p. 254, as we will prove straightforwardly in
Theorem 10.1, p. 256.

The bi-boost B.(P) can be written as a bi-boost B.(V) parametrized by the
new parameter V € R?*™. Abusing notation, instead of B.(V) we write B.(V)
since no confusion may arise. Thus, following the change of parameter from B.(P)
with parameter P € R™*™ to B.(V) with parameter V' € R7?*™ we have by means

of (30) and (105),

VI, +c2PtP C%Pt
B.(P) =
P VI, +c2PP?
(106)
Fﬁz,v cizrﬁ,vvt = C%Vtrﬁ,v
= =: B.(V).
Fﬁ,vv = VF%V FTI;,,V

It can be shown that when m = 1 the bi-boost B.(V') specializes to the standard
Lorentz boost in one time dimension and n space dimensions, studied in [35]. It,
therefore, proves useful to replace the bi-boost B.(P) parametrized by P € R™*™
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by the equivalent bi-boost B.(V') parametrized by V € R?*™  obtaining

(Fﬁ‘i,v %Fi,th>

B.v)=| | "
1—‘n,V‘/ Fn.,V

(107)

as we see from (106).

Accordingly, the generic Lorentz transformation A(P, O,,, O,,) of order (m,n),
m,n € N, in (4) becomes A = A(V,0,,O,,) given by the unique bi-gyration
decomposition in theorem 8.1 below.

Owing to the bijective correspondence between the old parameter P € R™*™
and the new parameter V' € R?*™ Theorem 2.1 can be translated into the fol-
lowing theorem.

Theorem 8.1. (Lorentz Transformation Bi-Gyration Decomposition, V),
A matriz A € RUtm)X(m4n) Gs the matriz representation of a Lorentz transfor-
mation of order (m,n), A € SO(m,n), if and only if it is given uniquely by the
bi-gyration decomposition

A\ Om Omn\ (TEy STE VY (L Omn L0
= . . (108)
Onm In ) \IkyV  TE, Opm  On

or, prarmetrically in short,

\%4
A= A(Om; V, On) = p(Om)B(V))‘(On) = | O (109)
Om

for any Ve R*™_ O, € SO(m) and O,, € SO(n).

Example 8.2. In this example we show that in the special case when m = 1 the
eigenball R?*1 specializes to the open c-ball R? of R"*! = R".

For m =1, V € R"™ = R" is a column vector in the Euclidean n-space R",
and V'V = ||[V||? is a 1 x 1 matrix the eigenvalue of which is A = ||V||2. Hence,
following (99) and Theorem 7.2 we have V € R?*™ and

R™! = [V € R": The eigenvalue ||V||? of V'V satisfies 0 < |V||? < ¢}
={VeR": 0<|V|<c} (110)
=:RV.

Indeed, in special relativity, the relativistically admissible velocities are elements
of the c-ball R, where c represents the vacuum speed of light.

Example 8.3. In this example we show that when m = 1 the right gamma factor
equals the gamma factor of special relativity theory.
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When m = 1, P € R"*! =R" is a column vector so that PP = ||P||%. Then,
by (35),

V=o(P)= PVInte PP =l (111)

1+ ¢ 2||PJ]?
so that V € R"” is a column vector and
P|?
V|I?=VV = ”7. 112
Ivi T (112)
Hence, 0 < |V]| < ¢ and, by (101),
1
(113)

| A = =
m=1,V =2V 047

for all V € B"*! = ¢(R"*1). Here 7, is the gamma factor that plays an important
role in special relativity and in its underlying hyperbolic geometry [36,37,40,42,
43, 45].

Example 8.4. Extending (113) to m > 1, it can be shown that the left and right
gamma factors,

—1
Ly =VI,—c2VVt  =+\/I, +c2PPt (114)

and
~1
Ly = VIn—c2VV =L, +c2P'P, (115)
are related by the equation
1 _
~I,+TL, = P+ rfy)-tpt (116)
where P and V are related by Theorem 6.3. Note that by means of (114)—(115),
(116) is equivalent to the elegant matrix identity (117), which we prove in the

following lemma.

Lemma 8.5. The matriz identities

1 —1
—I,+ /T, + ¢ ?PP' = P (Im + /1, +c2PtP ) Pt (117)
C

and

1 —1
~Ln+ T + c2P'P = P! (In + /I, + PPt ) P (118)
C

hold for all P € R™™™ m,n € N.
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Proof. Clearly,

2
(Im /I + c2PP ) =2 (Im + /I, + c2P'P ) +cIPtP. (119)

Let

R:= (Im + /T + ¢ 2PP )_1 (120)
so that (119) can be written as
2R+ ¢ 2P'P — (R = 0, - (121)
Left multiplying and right multiplying (121) by R yields
2R+ ¢ 2RP'PR — I, = Oy - (122)
Left multiplying by P and right multiplying by P?, (122) yields
PQ2R+ ¢ 2RP'PR — I,,) P' = Oy (123)
so that
2PRP' 4+ ¢ ?PRP'PRP' = PP! (124)
and hence,
I, + ¢ ?(2PRP" + ¢ ?PRP'PRP") = I, + ¢ *PP". (125)
Identity (125) can be written as
(I, + ¢ 2PRP")? = I, + ¢ 2PP* (126)
implying
I, + ¢ 2PRP" = /I, + c2PPt. (127)
Finally, by means of (120), (127) yields (117), as desired.
The proof of (118) is similar to that of (117). O

Example 8.6. In the special case when m = 1, P € R®*! = R” is a column
vector, P'P = || P||?, and PP! is an n x n matrix, so that (117) specializes to

1
VI, +c2PPt=1,+ —

5 P
A1t Tr PP

(128)

We now manipulate (128) in the following chain of equations, which are num-
bered for subsequent explanation. For all V € R?*1 = R?,

1)

- o~ 1 1 L 2y,
VI =e?VVE 5= It o (i) VY
e
b 11 ) 129
— [n+_2 V(Fﬁv) vt ( )
14y, ’
(3)
1 2
= [+ yyt

Al+ny,
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Derivation of the numbered equalities in (129) follows:
1. This equation is equivalent to (128) since (i) the left sides of the two equations
are equal by (48); and (ii) their right sides are equal by (61) with m = 1,
and by (66) along with (101).
2. Follows from Item (1) by (113) and by the first commuting relation in (103).
3. Follows from Item (2) by (113), noting that m = 1.

Noting (101), the chain of equation (129) yields the important equation

1 4
Al+ry,

by =1+ Vvt  (m=1), (130)
which holds for m =1 and all n € N.

The importance of (130) is revealed in Example 8.7 below, enabling us to show
straightforwardly that the bi-boost B.(V), V € RI*™ m,n € N, specializes to
the Lorentz boost B.(V), V € R?*1 = R?, of special relativity in the special case
when m = 1.

Example 8.7. When m = 1 the bi-boost B.(V) in (107) can be manipulated by
means of (103) and by means of (113) and (130), obtaining the following chain of

equations.
Loy =l vV
B.(V) =

v,
Iy C%Fﬁ:Lth

) (vrﬁ_l,v e, ) (181)
Tv ciﬂvvt

2
WV It EEVVe

where V € R?*! ¢ R"*! = R” is a column vector in the ball R?*! = R” of R",
Ry ={VeR": |V]<c}. (132)

The extreme right side of (131) turns out to be the standard special relativistic
(n+1) x (n+1) matrix representation of the Lorentz group in one time dimension
and n space dimensions [35] [36, p. 254] [40, p. 447]. Accordingly, it follows from
(131) that in the special case when m = 1 the Lorentz group of order (m,n)
specializes to the Lorentz group of special relativity theory.
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Example 8.8. In the special case when m = 1, P € R**! = R” is a column
vector so that P!P = ||P||?. Accordingly, when m = 1 Identity (117) specializes
to Identity (128),

1 PPt
VI, +c2PPt =1, + . (133)

14 /1+c2P|?

Hence, when m = 1, the boost B.(P) in (106) specializes to the proper velocity
(PV) bi-boost

V1+e2||P? =P
B.(P) = P I, + L pPp! (134)
B Y e T B

in one proper-time dimension and n space dimensions, where P € R" is the proper
velocity of special relativity (in physical applications n = 3).

The PV-bi-boost (134) leaves invariant the relativistic inner product in (138)
below.

The PV-bi-boost B.(P) involves the proper-velocity parameter P € R"™, which
is measured by means of proper-time. The need for a search for a proper-time
boost, like the one in (134), arises in several papers as, for instance, [14-20] and
[37-39, 46].

The application B.(P)(t,x)" of the PV-bi-boost B.(P) to time space coordi-
nates (t,x)? is linear, and it keeps the relativistic norm

T=/t? —x2/c? (135)

invariant.

Similarly, the application B.(P)(y/72 + x2/c?,x)! of the PV-bi-boost B.(P)
to proper-time space coordinates (7,x)* is nonlinear, and it keeps the proper-time
T invariant.

9. The Bi-Boost B.(V)

We know by construction that the bi-boost B.(V), V € R2*™  of order (m,n),
m,n € N, preserves the inner product of signature (m,n) in the pseudo-Euclidean
space R™". However, solely owing to the commuting relations in (103), a direct
proof is straightforward, simple and, hence, instructive. Accordingly, the aim of
this section is to prove directly that the bi-boost B.(V) in (139) below preserves
the pseudo-Euclidean inner product of signature (m,n), m,n € N, in (138) below.
Let
t T

t=1] : | eR™ x=| 1 |eR" (136)
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so that
<t> :(tlv'-'vtM7$15---;zn)tERm’n (137)

X
is a generic point of the pseudo-Euclidean space R™™. The inner product of
signature (m,n) in R™" involves the constant ¢ > 0 according to the equation

t
t1 t2) [t I, Omn ta\ . . o
<X1> . (Xg) o (Xl) <0n’m _c—2ln) (Xg) =ttty — ¢ "X1'X0 (138)

for all (t1,x1), (t2,%2)" € R™™, where t1-t; = tits and x;-x3 = xixy are the
standard inner product in R™ and R, respectively.

The bi-boost B.(V) is given by its (m + n)x)(m + n) matrix representation
(107),

LRy IR,V
B.(V)=1{_, . (139)
I‘n.,V‘/ I‘n.,V
m,n € N, where the left and right gamma factors are given by (101),
-1
rt, =+/I, —c2vvt e R™"
: (140)

TR = /T, —c2Vty e Rmxm
m,V m .

The space of the parameter V in (139)—(140) is the c-eigenball R?*™ C R™*™
which is given by

R?*™ = [ € R™ ™ . Each eigenvalue A of VV" satisfies 0 < \ < ¢?}

nxm : t : 2 (141)
={VeR : Each eigenvalue A of V'V satisfies 0 < A < ¢“}.

The generic parameter V' € R2*™ in the c-eigenball R?*™ of R™*™ is con-
structed by constructing a generic parameter P € R™*™ and employing (35),

—1 -1
V =/, + c2PPt P =P\, tc2PtP . (142)

Theorem 9.1. The bi-boost

B.(V) =

Fﬁi,v C_QFﬁ,VVt
(143)

LoV oy

V e R¥*™, m,n € N, leaves the pseudo-Euclidean inner product (138) invariant,

T @)@

for any t1,t2 € R™ and x1,x5 € R™.
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Proof. For convenient, we use in the proof the short notation in (102).

—2 t —2 t

t Ymyv € TmyV Cv Yyt Y v Vix
B.(V = = . (145
()@> <%yV Vv ) X Yoy VE+ 7, v )

Hence, by (136)—(138), (103) and (105), we have the following chain of equations.

t1 to
5 (2) 500 (2)
_ t _
Ym.vt1 +c 27m7VVtx1 ( I, O ) Y 27m7VVtX2
= "
'ymVth + C*Q'ynjvxl R e £ 'ymVVtg + Vv X2
= (ti/-Ym,V + C_2Xiv/7m,\/a - C_Qtivt’Yn,V - C_Qxﬁf}/n,V)

’ym,VtQ + 072’)/771,V‘/tx2
X
vn,VVtg + Y v X2

= t’i'yfnyvtg + c_2t§7%7VVth + c_2x§V7%7Vt2 + C_4X§V772717VVtX2
- 0_2(tﬁvt%2z,v‘/t2 + tivt%%,vx2 + Xi%%,vvb + Xﬁ%%,vxﬂ
= ti’)/72n7vt2 + 672t§772717vth2 + CiQXiV’)/?n’VtQ + c*4x§77217VVVth
— (T V Vg vt + ¢ 2y, v Vixe + TPV, pbe + ¢RIy yXa)
=t{ (L — V'V )2 yto — ¢ %02 (I — ¢ 2V V %o
=tity — ¢ *xixo

=t1ty — 072X1-X2

- () (2)

(146)
as desired. O
Example 9.2. Following (140) we have the obvious limits of large c,
i . (147)
lim Tk, =1,.
c—00 ’

Hence, in that limit we have

%m:mmm{%%ﬂ (148)

c—00



256 A. A. Ungar
e

so that the limit of (145) as ¢ approaches infinity yields an obvious generalization
of the familiar Galilei transformation in a pseudo-Euclidean space of signature

(m, n),
(- ) O-(h) o

10. The Bi-Boost B.(P)

We know by its construction in [46] that the bi-boost B.—1(P), P € R™*™ of
order (m,n), m,n € N, preserves the inner product (138) of signature (m,n) in the
pseudo-Euclidean space R™™. However, solely owing to the commuting relations
in (154) below, a direct proof is straightforward, simple and, hence, instructive.
Accordingly, the aim of this section is to prove directly that the bi-boost B.(P)
preserves the inner product (138) for an arbitrarily fixed positive constant c.

Theorem 10.1. The bi-boost
I, +c2PtP C%Pt
P VI, +c2PPt

P eR"™™ m n €N, leaves the pseudo-FEuclidean inner product (138) invariant,

ot e B.(P) (:{11) B.(P) <i22> = (;) ' C’i) sy

for any t1,t2 € R™ and x1,x5 € R™.

B.(P) = (150)

Proof. Tt is convenient to use in the proof the short notation

by, =1, +c2PtP
by =1, +c 2PP?

by, &P
BC(P)<P (’b ) (153)

(152)

so that, by (150),

and, by (34), we have the commuting relations

Pb,, = b, P

154
P'b, = by, P*. (154)

The application of the bi-boost B.(P) to (t,x)* € R™™ is given by

5P t\  [bm HPY [t _ (bmt+c P 155
(P) x| \P by x| Pt +b,x ' (155)
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Hence, by (136)—(138), (154) and (155) we have the following chain of equations.

57 () 540 (5
bty + 2P\ (T Omn \ bt + ¢ 2P'xo
- ( Pty + buxy ) (()W —0_21n> < Pty + bpxo )
bmts + ¢ 2Ptxy
Pt + b, xo )
= tib?ntg + C*Qtimeth + c*2x§Pbmt2 + c*4x§PPth
— ¢ (L PP Pty + t! P'b,xo + x1b, Pty + x4 02 x5)
=t (I, + ¢ 2P P)ty + ¢ 2t1 b, P'xo + ¢ 2x{ Pbyty + ¢ 4%, PP'xy
— ¢ () PPty + t P'b,xo + x4\ b, Pto 4+ x4 (I, + ¢ 2 PP")x5)
=ti (I, + ¢ PPty + ¢ 2tib,, P'xy + ¢ 2x! Pb,pt
— 2 (tY Pt Pty 4 tt b, P'xy + X! Pbyto + xix0)

= (tibm + C_QX‘iP, - C_Q(tipt + Xibn)) <

= t’itg — C_2X§X2
_ [t [t
- X1 X9 ’

as desired. 0

(156)

11. Bi-Boost Product with the Parameter V/

The Lorentz transformation product law, expressed in terms of the old parameter
P € R™™ in Theorem 2.3, was derived in [46, Theorem 21]. Accordingly, an
important objective of the present article is to derive the Lorentz transformation
product law expressed in terms of the new parameter V € RI*™,

Let B.(V%), k = 1,2, be two bi-boosts parametrized by Vi, € R2*™,

Yl Vi
Bo(Vi) = [ Ve @ Tmut (157)
’yn,Vka ’yn,Vk

where we use the short notation in (102), p. 247.
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By matrix multiplication and the commuting relations (103),

1 t 1 .
B.(V1)B.(Va) = Ym, vy 2 Tm, 1 V1 V., Va =VYm, v, V2
,yn"vlvl Tn, vy ’Yn,VQ‘/Q T, Vs

1 1
_ <’ym,V1,ym,V2 + 2 Tm, i ‘/'115,}/”7‘/2‘/'2 c_Z(’ym,Vl’ym,VQVYQt + Ym, i ‘/lt’yn,VQ)>

1 t
Y, vi V1Y, Ve + Vovi Y, v V2 2V vi V1m v, V2 Yo vi Vv

o Ym,vi (Im + ci?‘/ltvé)’ym,\/g ci?’ym,Vl (Vl + ‘/Q)t’yn,Vg . Ev %El?
Yovi V1 +V2) Y v, Vovi(In + =ViVE ), v, Ey  Ea

(158)

As we see from (158), the product of two bi-boosts need not be a bi-boost.

However, it is a Lorentz transformation and, as such, it uniquely possesses the

bi-gyration decomposition (108). Hence, by (108), we can express the bi-boost
product B.(V1)B.(V2) as follows,

B (V1)Be(Va) =

rgyr[Vi,Val Omn\ ( Trivi,  @lmv,Vie\ (Im Oma
Onam In F’I’L{,V12 V12 F’I’L{,V12 On,m 1gyr[‘/1) VYQ]
 (revr[Vi, VeIDR v reyr[Vi VRO 4 Vibleyr(Vi, Vo
B TLy Vi Ik leyr[Vi, Vol

n,Vio n,Viz
En LE
11 gzl
Ey1  Ea

where the composite parameter Vio € R}2*™,

(159)

Vig =: ViV, (160)

and the bi-gyration (Igyr[Vi, Vo], rgyr[Vi, Va]) € SO(n) x SO(m) are to be deter-
mined in terms of V7 and V5.

The uniqueness of the Lorentz transformation bi-gyration decomposition, in-
sured by the Bi-gyration Decomposition Theorem 8.1, implies that the matrix
entries F;j, i,j = 1,2, defined in (158), and the matrix entries E;; defined in (159)
are identically equal.

Hence, the expressions

Vig =: V1@V, € Brx™
lgyr[V1, V2] € SO(n) (161)
rgyr[Vh, Vo] € SO(m)
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that appear in (159) are uniquely determined by the Bi-gyration Decomposition
Theorem 8.1. Employing (158)—(159), in the following Subsections — we determine
each of the expressions in (161) in terms of V; and V5.

11.1. Ey,

In this subsection we study the consequences of the equality between Faq in (158)
and Fo; in (159).
With Via = V1@®Vs, we see from (159) that

Ey = Fﬁ,vl@w (VieVs). (162)

Hence, by (104), the binary operation @ in R?*™ is given by

-1 -1
‘/1@‘/2 = \/In + C_2E21E§1 E21 = E21\/Im + C_2E§1E21 s (163)

where, by (158),
En =Ty, (Vi + V2l (164)

W1, Va e RI*™,

Thus, the bi-gyrosum V1@V, is expressed in (163)—(164) in terms of Vi and
Va.

It is interesting to note that following (141), (163)—(164) and (147), we have
the limits

hm R?Xm — Rnxm
'C—>OO (165)
lim (Vi@Ve) = Vi + Vs

Thus, as expected, in the limit of large ¢, the binary operation @ in the eigenball
R2*™ tends to the common matrix addition, +, in the ambient space R™*™.

In the special case when m = 1, the binary operation @ in the eigenball R?*™
specializes to Einstein velocity addition of special relativity in the ball R7, as
indicated in Example 8.7. Einstein velocity addition in the ball R} is studied, for
instance, in [36,40].

Additionally, the equality between Ea; in (159) and in (158), along with the
first commuting relation in (103), yields the elegant equations

F’I’Ll/,vl@VQ (‘/1@‘/2) = Fﬁ,Vl (‘/1 + ‘/2)1—‘7’?7,,‘/2
(166)
(Vl@‘/Q)F’rI‘?L,Vi@VQ - F7LL/,V1 (‘/1 + ‘/2)1—‘71721,‘/2

which show how closely the binary operations ¢ and + are related to each other.
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Lemma 11.1. The expression E21 in (162) possesses the commuting relations

-1 -1
EQlE;l \/ In + 672E21E§1 =4/ In + 672E21E§1 EQlEél

(167)
-1 -1
E§1E21\/Im + C_2E§1E21 = \/Im + C_2E§1E21 EélEgl
and the identities
L — \/[ —2 7 -2 t
eV, = VI — c2(VioVa)(VidVs) =\/In+c?EnE;
(168)

—1
IR o, = VIn — c 2(VidVa) (VidVa) = \/Im + ¢ 2B By .

Proof. The commuting relations in (167) follow immediately from the commuting
relation in (163).
By (163) and (167) we have

(VieVo)(VieVa)' = /I, + c 2 Ex B, _1E21E§1\/In +c?En BYy B (169)
= (I, + ¢ ?EnEL)) ' By EL
Hence,
I, — c 2 (VieVa)(VieWa)t = I, — ¢ 2(I, + ¢ 2 Eo1 EL)) ' Ey Y,
= (In+ ¢ 2EnELY) (I, + ¢ 2EnEY) — ¢ (I, + ¢ 2By Eb)) ' By FY,
= (In+ ¢ 2EnEL)) (I, + ¢ 2En EY, — ¢ 2F9 EL)

= (I, +c 2By FEL) !
(170)

thus proving the first identity in (168). The proof of the second identity in (168)
is similar. O

11.2. E11 and E22

In this subsection we study the consequences of the equality between E1; (Ea2) in
(158) and Fy; (F22) in (159).
With Vis = V1®Va, we see from (159) that

Ey = rgyr[Vl, ‘/2]1—‘71317\/1@\/2

L (171)
E22 = Fn,Vl@Vglgyr[‘/la ‘/2] ’
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so that for all Vi, Vs € RIX™,

lgyr[V1, V] = (Fﬁ,vleavg)flEﬂ

i (172)
ngr[Vh V2] = Ell(ri,vl@vz) ! )
where, by (158),
1
B = T8 (1 + Svvrt
: (173)
By =Ty v, (In + ViV )T,
and where, by (101) and Lemma 11.1,
1 - 1
M on, =\l — SOASVIMEN) = /Lt Smamy,
1 (174)
1 - / 1
Iviev, = \/Im - C—Q(Vl@‘@)t(vl@‘@) =\/Im + C—2E§1E21 :
Following (172)- (174) we have
lgyr[V1, V3] =
~1 ~1 -1
[ 1. 1., 1,
I, + C—2E21E21 I, - C—2V1V1 (In + C—2V1V2) I, - C—2V2V2
rgyr[Vi, Vo] =
—1 -1 ~1
Lo Lot Loy Lo
I — C—2V1 Vi (Im+c—2V1V2) I — C—QVQVQ Im+c_2E21E21
(175)
Equations (171) and (173) yield the bi-gamma identities
1
rgyr[V7, ‘/2]1—‘7]721,‘/1@\/2 = F7I721,V1 (I + _2V1tV2)F§L,v2
¢ (176)

1
F£7V1®V21gyr[v1, Vo] = Fﬁ,vl (In + C_QVIVJ)FTLz,VZ .

For V € R™*™  the left (right) gamma factor FTLLV (Fﬁyv) is real if and only if
V € R*™ as we see from (99) and (101), p. 247. Hence, each of the two equations
in (176) yields the following implication: Vi, Vo € R2*™ = Vi@V, € R2*™, 5o
that @ is a binary operation in RI'*™ as expected.

Example 11.2. In the special case when m = 1, rgyr[V;, V5] € SO(1) = {1}, so
that rgyr[Vi, Vo] = 1. Hence, the first identity in (176) specializes to the gamma
identity,

1
Tiave = T M, (1 + C_QVI'V2)a (m=1), (177)
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which plays an important role in special relativity and its underlying hyperbolic
geometry [36,40,43].

In fact, The gamma identity (177) signaled the emergence of hyperbolic ge-
ometry in special relativity when it was first studied by Sommerfeld [30] and
Varicak [48,49] in terms of rapidities [40, p. 90].

11.3. Eyy

In this subsection we study the consequences of the equality between Ei2 in (158)
and Ejo in (159).
The equality between Fio in (159) and in (158) yields the equation

rgyr[V1, %]Fﬁ,vl@w(Vl@‘@)tlgyr[vh Vo] = Fﬁ,vl(vl + V2)tF7Lz.,V2 (178)
for all V1, Vo € R2*™ m,n € N. Transposing (178), noting that

(gyr[Vi, Va))' = (Igyr[V1, Va]) ™' = lgyr[Va, V4]

. . (179)
(rgyr[V1, Va])" = (rgyr[Vi, Va]) ™" = rgyr[Va, V4]
we obtain the equation
lgyr(Va, Vi](VieVa)T ) v, gy, reyr(Va, Vil = Tf v, (Vi + Va)TF 4 (180)

Manipulating the left side of (180) by means of the first commuting relation in
(103), and manipulating the right side of (180) by means of (166) we obtain the
equation

lgyr[Va, W]Fﬁ,vl@vz(vl@%)fgyr[‘@a Vi) = FTLL,\&@VI (VadV1) (181)
for all Vi,V € R2*™. The resulting elegant equation demonstrates that the
application of the bi-gyration (Igyr[Va, V1], rgyr[Va, V1]) takes Fﬁ,vlewz (V1@Vs) into

Ffm/z@vl (Va®V7). Equation (181) thus gives rise to a nice bi-gyrocommutative-like
law.

12. Product of Lorentz Transformations, V

Techniques have been developed in [46] enabling the product of Lorentz trans-
formations in the parameter P to be determined by Theorem 2.3, p. 233. By
similar techniques one can determine the product of Lorentz transformations in
the parameter V as well, obtaining the following theorem.

Theorem 12.1. (Lorentz Transformation Product Law, V) The product of
two generic Lorentz transformations
Al = (Vla On,la Om,l)t

182
AQ = (‘/27 On,27 Om,2)t ( )
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of order (m,n), m,n € N, in terms of parameter composition is given by

‘/1 ‘/2 ‘/10m,2@0n,1‘/2
MAs =] Opna Onz | = | lgyr[ViOm,2,0,.1V2]051002 | (183)
Om,l Om,Q Om,lOm,2rgyr[‘/lOm,27 On,l‘/Q]

where @, lgyr and rgyr are given by (163) —(164) and (175) in terms of the pa-
rameters Vi, Vo € RIX™,

Interestingly, the Lorentz transformation product laws in (183) and (8) of The-
orem 12.1 and of Theorem 2.3, p. 233, respectively, have the same form when we
interchange V; and P;, i = 1,2. Note, however, that the definitions of @, lgyr and
rgyr in Theorems 12.1 and 2.3 do not share the same form.

Similarly, as one can check, the gyrogroupoid (R?*™, @) possesses the same bi-
gyrocommutative law as that of the gyrogroupoid (R™*™, @), with the parameter
P € R"™ replaced by the parameter V' € R'*™. We thus obtain the following
Theorem 12.2 from its P-counterpart Theorem 2.7, p. 234, by replacing (Py, P)
by (Vi,Va).

Theorem 12.2. (Bi-Gyrocommutative Law in (R?*™ @)). The binary op-
eration @ in R™*™ possesses the bi-gyrocommutative law

Vi@V = lgyr[Vi, Va](Va@ Vi )rgyr[Vi, V] (184)
for all Vi, Vo € R2X™,

Similarly, as one can check, the gyrogroupoid (R?*™, @) possesses the same
bi-gyroassociative law as that of the gyrogroupoid (R**™, @), with the parameter
P e R""™ replaced by the parameter V' € R'*™. We thus obtain the following
Theorem 12.3 from its P-counterpart Theorem 2.8, p. 235, by replacing (Py, P)
by (V1,Va).

Theorem 12.3. (Bi-Gyroassociative Law in (R?*™,®)). The binary opera-
tion @ in RIX™ possesses the bi-gyroassociative law

(Vi Va)@lgyr[Vh, Va|Vs = Virgyr[Va, Vs]®(VadVs) (185)

for all Vi, Vo € R2*™,

13. Bi-Gyrogroups

As in Section 3 with the parameter P € R™*"™ it proves useful with the parameter
V e RI*™, as well, to replace the binary operation @ in R}*™ by a new binary
operation, @', according to the following definition.
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Definition 13.1. (Bi-Gyrogroup Operation, Bi-Gyrogroups). Let (R?*" @)
be a bi-gyrogroupoid. A new bi-gyrogroup binary operation @’ in R?*™ is given
by

Vi@V = (VigVa)rgyr[Va, Vi) (186)

for all V1, Vo € R*™. The resulting groupoid (R?*™, @') is called a bi-gyrogroup.

Having the form of Def. 3.1, Def. 13.1 defines the bi-gyrogroup (R?*™, &') in
terms of the bi-gyrogroupoid (RZ*™ @).

Remark 1. In the special case when m = 1, the binary operations @’ and &
coincide since rgyr[Va, V2] = 1, as noted in Example 11.2. Accordingly, when
m = 1, the two binary operations &’ and & in R?*! = R” coincide with Einstein
velocity addition of special relativity.

It is shown in [46] that (186) implies the following four identities that exhibit
an interesting symmetry between the binary operations @ and @' in R?*™,

Vi®'Va = (Vi®Va)rgyr[Va, Vi
VieVy = (Vi@ Va)rgyr[Vi, V5]
Vi®'Va = lgyr[Vi, Va](Va@Vh)
VieVy = lgyr[Vi, Vo] (Va®'V1)

(187)

for all Vq, Vo € RIX™.

Bi-gyrogroups (R7?*™ @') possess a commutative-like and an associative-like
law. Indeed, by [46, Theorems 42, 41] with P replaced by V' we have the following
two theorems.

Theorem 13.2. (Bi-Gyrocommutative Law in (R?*™ &')). The binary op-
eration @' in RI*™ possesses the bi-gyrocommutative law

V10 Vo = lgyr[Vi, Vo] (Va@' Vi )rgyr(Va, Vi (188)
for all V1, Vo € RIX™,

Theorem 13.3. (Bi-Gyrogroup Left and Right Bi-Gyroassociative Law
of @"). The binary operation &' in RT*™ possesses the left bi-gyroassociative law

i (Vae' X) = (Vie' V)& ey (VA Va] Xrgyr(Va, Vi) (189)
and the right bi-gyroassociative law
(V' Va)®' X = V1@ (Vod'lgyr[Va, V1] Xrgyr[Vi, Va]) (190)

for all Vi, Vo, X € RZ*™,
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14. Gyrogroup Gyrations

The bi-gyroassociative laws (189)—(190) and the bi-gyrocommutative law (188)
suggest the following definition of gyrations in terms of left and right gyrations.

Definition 14.1. (Gyrogroup Gyrations) ( [46, Definition 43]). The gyrator
gyr,
gyr : R x R — Aut(R2™, @) (191)

generates automorphisms called gyrations, gyr[Vi, V2| € Aut(R2*™ @'), given by
the equation

gyr[Vi, Vo] X = lgyr[V1, Vo] Xrgyr[Va, Vi] (192)

for all V1, V5, X € R?*™ where left gyrations, lgyr[V4, V2], and right gyrations,
rgyr[Va, V1], are given in (175). The gyration gyr[V1, V2] is said to be the gyration
generated by V1,V € R*™. Being automorphisms of (R?*™, @'), gyrations are
also called gyroautomorphisms.

Def. 14.1 will turn out rewarding, leading to the elegant result that any bi-
gyrogroup (R2*™ @'), m,n € N, is a gyrocommutative gyrogroup.

Theorem 14.2. (Gyrogroup Gyroassociative and Gyrocommutative Laws).
The binary operation &' in R2*™ obeys the left and the right gyroassociative law

Vie' (Vod' X) = (V@' Vo) gyr [V, Vo] X (193)

and
(Vi@'V2)e' X = Vi&' (Vo@'gyr[V2, V1] X) (194)

and the gyrocommutative law
Vig'Va = gyr[V1, Vo] (Va&' V1) . (195)

Proof. Identities (193)—(194) follow immediately from Def. 14.1 and the left and
right bi-gyroassociative law (189) - (190). Similarly, (195) follow immediately from
Def. 14.1 and the bi-gyrocommutative law (188). O

Lemma 14.3. ( [46, Lemma 45]). For any Vi,V2 € (RI*™, &), the relation
(192) between bi-gyrations (gyr[Vy, Val,rgyr[Va, Vi]) and gyrations gyr[Vi, Va] is
bijective.

It is obvious from (192) that a gyration gyr[V1, V5] is determined uniquely by
the bi-gyration (Igyr[Vi, Vo], rgyr[Vi, V2]). It follows from Lemma 14.3 that also
the converse is true, that is, a bi-gyration (Igyr[Vi, Vo], rgyr[V1, V5]) is determined
uniquely by the gyration gyr[Vy, V3.

It is anticipated in Def. 14.1 that gyrations are automorphisms. The following
theorem asserts that this is indeed the case.
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Theorem 14.4. (Gyroautomorphism) ( [46, Like Theorem 46]). For all Vi, Vs €
R2*™ - gyrations gyr[V1, Va] of a bi-gyrogroup (RZ*™ &') are automorphisms of the
bi-gyrogroup.

Theorem 14.5. (Left Gyration Reduction Properties) ( [46, Like Theorem
47)). Left gyrations of a bi-gyrogroup (RZ*™ @') possess the left gyration left
reduction property

lgyr[Vi, Vo] = lgyr[Vi®'Va, V3] (196)
and the left gyration right reduction property
lgyr[V1, V2] = lgyr[V1, Vo@' V1] . (197)

Theorem 14.6. (Right Gyration Reduction Properties) ( [46, Like Theorem
48]). Right gyrations of a bi-gyrogroup (RT*™ &') possess the right gyration left
reduction property

rgyr[V1, Va] = rgyr[V1&'Va, V2] (198)

and the right gyration right reduction property
rgyr[Vi, Vo] = rgyr[Vi, V26'V1] . (199)

Theorem 14.7. (Gyration Reduction Properties) ( [46, Like Theorem 49]).
The gyrations of any bi-gyrogroup (RZ*™ @), m,n € N, possess the left and right
reduction property

gyr[V1, Vo] = gyr[Vi@'Va, V2] (200)
and

gyr(V1, Vo] = gyr[Vi, Va®' V1] (201)
Proof. Identities (200) and (201) follow from Def. 14.1 of gyr in terms of lgyr and
rgyr, and from Theorems 14.5 and 14.6. o

Finally, we have the most important theorem, which is the V-counterpart of
Theorem 5.3..

Theorem 14.8. (Gyrocommutative Gyrogroup) ( [46, Like Theorem 52]).
Any bi-gyrogroup (RZ*™ @'), n,m € N, is a gyrocommutative gyrogroup.
15. Scalar Multiplication for the Parameter V

Let M; and M> be two square matrices such that the inverse, My L of M, exists.
If the two matrices satisfy the commuting relation

MMy = MMy, (202)

then we may use the convenient notation

— = MMyt = My M, . (203)
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We are motivated by the scalar multiplication in (R?*™ @), with m = 1, which
is the scalar multiplication in (R?, &, ) studied, for instance, in [37, Eq. (6.267),
p. 195]. We wish to extend it from m = 1 to all m > 1. Accordingly, we de-
fine scalar multiplication in (R7*™ &), m,n € N, by each of the following two
equations, which are mutually equivalent.

r

2
L, - Pk, =\ JCE )2 -1 ) Ik,

reV = o
Lo+ (Thy =\ JCE )2 =1 ) /(5 = 1

. (204)
b (08— TP ) pn,

I + (Ff}%v ~J°E )2 -1, ) (TR V)2 -1,

for all r € R and V € R?*™. In the special case when m = 1, the scalar multipli-
cation in (204) specializes to the one in [37, Eq. (6.267), p. 195].
As expected, the scalar multiplication in (204) satisfies the equation

B.(r®V) = B.(V)" (205)

so that V € R¥™ = rV € R*™. In fact, (204) is derived from (205) by
calculating the matrix B.(V)" for r € N and then analytically continuing r off the
positive integers.

Furthermore, (205) implies the scalar distributive law and the scalar associative
law

(r1 +1r2)QV = Ve eV

(206)
(T17’2)®V = T1®(7’2®V)
and, hence, the monodistributive law
r@(reVe'neV) = ra(rneV)e re(ra@V) (207)

for all r,r1,72 € R and all V € RP>*™.
Naturally in gyrolanguage, the triple (R?*™, &', ®) is said to be a bi-gyrovector
space. Here @' is the binary operation in R?*™ given by (186).

16. Scalar Multiplication for the Parameter P

In this section we continue using the notation in (202) - (203).
We introduce the following [-notation,

L -1 nxn
wp = VI +c PPt €R

R _ -1 mxm
e =V Ipm+c2PtP R ,

(208)
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in analogy with the I'-notation in (140).

We are motivated by the scalar multiplication in (R"*™, @') with m = 1, which
is the scalar multiplication in (R",®,) studied, for instance, in [37, Eq. (6.285),
p. 200]. We wish to extend it from m = 1 to all m > 1. Accordingly, we de-
fine scalar multiplication in (R™*™ @’), m,n € N, by each of the following two
equations, which are mutually equivalent.

(In + In - (ﬂ#,PP )T - (In - In - ( r%,P)Q )TP

1
2 (BE p)r =14 /1 — (BE p)?

P (Im + \ Im - (@%,PP )T - (Im - Im - (@%,P)Q )T
(@%,P)T_l I — (57]}1,13)2

for all r € R and P € R™™ ™. In the special case when m = 1, the scalar multipli-
cation in (209) specializes to the one in [37, Eq. (6.285), p. 200].
As expected, the scalar multiplication in (209) satisfies the equation

B.(r®P) = B.(P)" (210)

where B.(P) is the bi-boost in (134). In fact, (209) is derived from (210) by
calculating the matrix B.(P)" for r € N and then analytically continuing r off the
positive integers.

Identity (210) implies the scalar distributive law and the scalar associative law

(209)

N | =

(r1 + 72)@P = r@Pd ro@P

(211)
(r172)Q@P = ri®@(ra®@P)
and, hence, the monodistributive law
r®@(r1@P®'r@P) = r@(ri@P)®'r@(ra@P) (212)

for all ;71,72 € R and all P € R™*™,
Hence, the triple (R™*™ &', ®) is a bi-gyrovector space. Here & is the binary
operation in R™*™ given by (15).

17. Paving the Road to the Eigenball Geometry

We have exposed the structure of the bi-gyrovector space (R?*™ &', ®) of the

eigenball R?*™ of the ambient space R"*™ of all rectangular real matrices of order

n x m, m,n € N. The bi-gyrovector space structure forms the algebraic setting

for the non-Euclidean geometry that underlies the eigenball, just as the vector

space structure forms the algebraic setting for the standard model of Euclidean

geometry [41]. Indeed, in the special case when m = 1 the situation is well-known:
In this special case, when m = 1,
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1. the eigenball R?*™ specializes to the ball R?*! = R” of the Euclidean n-
space R™, as shown in Example 8.2, p. 249; and

2. the binary operation &’ in R?*! = R” specializes to the binary operation
given by Einstein’s velocity addition law of relativistically admissible veloc-
ities in special relativity, as indicated in Example 8.7, p. 252.

Thus, when m = 1 the bi-gyrovector space (R7*™, &', ®) specializes to the
gyrovector space (R?, @', ®). The latter, in turn, forms the algebraic setting for
the Beltrami-Klein ball model of hyperbolic geometry that underlies the ball R?,
where @ in R?*™ specializes to Einstein addition in R?. The resulting analytic
hyperbolic geometry has been studied since 2001 in the seven books [36,37,40-43,
45] and in many articles.

It is, therefore, expected that the bi-gyrovector space structure, studied in [46]
and in the present article, paves the road to to the discovery of the extended
analytic hyperbolic geometry that regulates the eigenball R?*™ of the ambient
space R™ ™ for any m,n € N.
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