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Abstract
The concept of average degree-eccentricity matrix ADE(G) of a con-

nected graph G is introduced. Some coefficients of the characteristic poly-
nomial of ADE(G) are obtained, as well as a bound for the eigenvalues of
ADE(G). We also introduce the average degree-eccentricity graph energy
and establish bounds for it.
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1. Introduction
Throughout this paper, all graphs are assumed to be simple, finite and connected.
Let G = (V,E) be such a graph, with vertex set V and edge set E. If |V| = p and
|E| = q, then G is said to be a (p, q)-graph. The degree of a vertex v, denoted by
d(v), is the number of edges of G incident with v. The distance d(u, v) between
two vertices u and v in a graph G is the length of a shortest path connecting them.
For a vertex v of G, the eccentricity of v is e(v) = max{d(v, u), u ∈ V(G)}. For
additional graph-theoretical terminologies we refer to [8].

The adjacency matrix of G, A(G) = (aij) is a p× p matrix, such that aij = 1
if vivj ∈ E and aij = 0 otherwise. The energy of G, denoted by E(G), is defined
as

E(G) =

p∑
i=1

|xi| (1)
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where x1, x2, . . . , xp are the eigenvalues of A(G). This concept was introduced al-
most 40 years ago [5] and has been extensively investigated [2,6,7,10]. Eventually,
numerous other graph energies have been invented, based on eigenvalues of ma-
trices different from the adjacency matrix; for more details see [1,6,7,9,11,13–17]
and the references cited therein.

One of these graph energies is the sum-eccentricity energy [15,17], based on the
eigenvalues of the sum-eccentricity matrix SE, whose elements are equal defined
as

seij =


e(vi) + e(vj) if vivj ∈ E

0 otherwise.
(2)

Another recently introduced graph energy is the first Zagreb energy [9], based on
the eigenvalues of the first Zagreb matrix ZG, whose elements are defined as

zgij =


d(vi) + d(vj) if vivj ∈ E

0 otherwise.
(3)

In this article, we introduce the concept of average degree-eccentricity matrix
ADE.

Definition 1.1. Let G = (V,E) be a simple connected graph with p vertices
v1, v2, . . . , vp and let di and e(vi) be, respectively, the degree and eccentricity of
vi , i = 1, 2, . . . , p. Then the average degree-eccentricity matrix ADE = ADE(G)
of G is the p× p matrix whose elements are given by

mij =


1
4 [d(vi) + d(vj) + e(vi) + e(vj)] if vivj ∈ E

0 otherwise.
(4)

Bearing in mind Equations (2) and (3), we see that ADE is conceived as a
linear combination of the sum-eccentricity and Zagreb matrices, i.e.,

ADE =
1

4

[
SE+ ZG

]
.

The eigenvalues λ1, λ2, . . . , λp of ADE(G) form the average degree-eccentricity
spectrum or the ADE-spectrum of G. As usual, the ADE-spectrum of G with
ni-fold degenerate eigenvalues λi is written as

Sp(G) = {(λ1)n1 , (λ2)
n2 , . . . , (λp)

np} .

ADE is a real symmetric matrix. Therefore, its eigenvalues are real numbers,

and
p∑

i=1

λi = 0.

The following result will be useful in the proof of our results.
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Theorem 1.2. [3] (Gershgorin’s Theorem) Every eigenvalue λ of a p× p matrix
M = (mij) satisfies:

|λ−mii| ≤
p∑

j=1
j 6=i

|mij |.

Corollary 1.3. [4] (Hadamard’s Inequality) If the entries of a p × p matrix M
are bounded by B, then |det(M)| ≤ Bp pp/2.

2. Average Degree-Eccentricity Energy
Definition 2.1. The average degree-eccentricity energy Eade(G) of a graph G is

Eade(G) =

p∑
i=1

|λi| . (5)

Evidently, the average degree-eccentricity energy is defined in analogy to the
ordinary graph energy, Equation (1).

Example 2.2. For a graph G1 in Figure 1,

u3u4

u5 u2
u1

Figure 1: G1.

the average degree-eccentricity matrix of G1 is

ADE(G1) =



0 9
4 0 0 0

9
4 0 9

4 0 9
4

0 9
4 0 9

4 0

0 0 9
4 0 9

4

0 9
4 0 9

4 0


The characteristic polynomial of ADE(G1) is, P (G1, λ) = |λIp − ADE(G1)| =
λ5 − 405

16 λ
3 + 6561

128 λ and the average degree-eccentricity eigenvalues of G1 are
λ1 ≈ 4.8, λ2 ≈ 1.5, λ3 = 0, λ4 ≈ −1.5, λ5 ≈ −4.8. Then the average degree-
eccentricity energy of G1 is Eade(G1) = 4.8 + 1.5 + 1.5 + 4.8 = 12.6.
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We now calculate the coefficient ci of λp−i(i = 0, 1, 2, p) in the characteristic
polynomial of the average degree-eccentricity matrix ADE(G). Clearly c0 = 1,
c1 =trace(ADE(G)) = 0. Now

c2 =
∑

1≤i<j≤p

∣∣∣∣ 0 mij

mji 0

∣∣∣∣ = ∑
1≤i<j≤p

−m2
ij .

In view of Equation (4) we get

c2 = −
∑

vivj∈E

[
d(vi) + e(vi) + d(vj) + e(vj)

4

]2
.

For c3 we have

c3 = (−1)3
∑

1≤i<j<r≤n

∣∣∣∣∣∣
mii mij mir

mji mjj mjr

mri mrj mrr

∣∣∣∣∣∣ .
The number of non-zero terms in the above sum is equal to the number of triangles
in G. Therefore, c3 = 0 if G has no triangle.

Finally, cp = det(ADE(G)).

Lemma 2.3. Let G be a connected (p, q)-graph and uv ∈ E. Then

1

4
[d(u) + d(v) + e(u) + e(v)] ≤ p

2
. (6)

Equality in (6) holds for all uv ∈ E only if G ∼= Kp.

Proof. Without loss of generality, we may assume that e(u) ≤ e(v). So, we have

d(u) + d(v) + e(u) + e(v) ≤ d(u) + d(v) + 2e(v)

≤ d(u) + d(v) + 2[p− (d(u) + d(v)) + 1]

= 2p− (d(u) + d(v)) + 2 ≤ 2p .

If G ∼= Kp, then for any uv ∈ E we have d(u) = d(v) = p−1 and e(u) = e(v) =
1, implying that the left–hand side of (6) is equal to p/2. For all other (connected)
graphs, for some uv ∈ E the inequality in (6) will be strict.

Lemma 2.4. Let G be a connected (p, q)-graph. Then

traceADE2(G) ≤ traceADE2(Kp) =
(p− 1)p3

4
. (7)

Equality in (7) holds if and only if G ∼= Kp.
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Proof. Since

ADE(Kp)ij =


p

2
if vivj ∈ E

0 otherwise

we get that for i 6= j,

ADE2(Kp)ij = (p− 2)
(p
2

)2
whereas for i = j,

ADE2(Kp)ii = (p− 1)
(p
2

)2
implying that

traceADE2(Kp) = p× (p− 1)
(p
2

)2
=

(p− 1)p3

4
.

Bearing in mind Lemma 2.3 and formula (4), we immediately see thatADE(G)ij ≤
ADE(Kp)ij , and that if G 6∼= Kp, then the inequality is strict for at least some of
ij. Consequently, inequality (7) holds.

Theorem 2.5. For any (p, q)-graph, with average degree-eccentricity eigenvalue
λj,

|λj | ≤
p(p− 1)

2
. (8)

Proof. By Lemma 2.4, the trace of ADE2(Kp) is equal to
(p−1)p3

4 . Then for any
(p, q)-graph G with average degree-eccentricity eigenvalues λ1, λ2, . . . , λp, we have
p∑

i=1

|λi|2 ≤ (p−1)p3

4 . By the Cauchy–Schwarz inequality,

 p∑
i=1
i 6=j

λi


2

= (p− 1)

p∑
i=1
i 6=j

λ2i .

Since
p∑

i=1

λ2i = −2c2 and
p∑

i=1

λi = 0, we get

λ2j ≤ (p− 1)

[
(p− 1)p3

4
− λ2j

]
which implies (8).

Proposition 2.6. Let G be a graph of order p, and average degree-eccentricity
eigenvalue λi. Then

p∏
i=1

|λi| ≤
(p
2

)p
pp/2 .
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Proof. By Corollary 1.3 and by the definition of ADE, setting B = p/2.

Theorem 2.7. Let G be a (p, q)-graph. Then

Eade(G) ≤
(p− 1)p2

2
.

Proof. By Gershgorin’s Theorem and Lemma 2.3, we have

Eade(G) =

p∑
i=1

|λi| =
p∑

i=1

|λi − 0| ≤
p∑

i=1

p∑
j=1
j 6=i

mij

≤
p∑

i=1

p∑
j=1
j 6=i

p

2
=

(p− 1)p2

2
.

Theorem 2.8. Let G be a connected (p, q)-graph. Then

Eade(G) ≥
√
2(q|det(ADE)|2/p − c2) .

Proof.

Eade(G)
2 =

(
p∑

i=1

|λi|

)2

=

p∑
i=1

λ2i +

p∑
i=1
i 6=j

|λi||λj | = −2c2 +
p∑

i=1
i 6=j

|λi||λj | .

From relation between the arithmetic and geometric means, we get

p∑
i=1
i 6=j

|λi||λj | ≥ p(p− 1)

 p∏
i=1
i6=j

|λi||λj |


1

p(p−1)

= p(p− 1)

 p∏
i=1
i 6=j

|λi|2(p−1)


1

p(p−1)

= p(p− 1)

 p∏
i=1
i6=j

|λi|


2/p

≥ 2q

 p∏
i=1
i 6=j

|λi|


2/p

= 2q|det(ADE)|2/p .

Then

Eade(G)
2 ≥ 2q|det(ADE)|2/p − 2c2 = 2

[
q|det(ADE)|2/p − c2

]
and finally,

Eade(G) ≥
√
2
[
q|det(ADE|)2/p − c2

]
.



Average Degree-Eccentricity Energy 51

Note that Theorem 2.8 and its proof are just a replica of the classical McClel-
land inequality for ordinary graph energy [12].

Corollary 2.9. Let G be a connected (p, q)-graph. Then√
2(q|det(ADE)|2/p − c2) ≤ Eade(G) ≤

(p− 1)p2

2
.

3. Average Degree-Energy of Some Classes of Graphs

In this section, we compute the average degree-eccentricity energies of some well-
known graphs.

Example 3.1. LetG be a complete graphKp. Then Sp(ADE(Kp)) = {(p2 )
p−1, ((p−

1)(p2 ))
1} and Eade(Kp) = 2(p− 1)(p2 ).

Proof. Let G be the complete graph Kp. Then

|λI −ADE(Kp)| =

∣∣∣∣∣∣∣∣
λ −p

2 −p
2 · · · −p

2
−p

2 λ −p
2 · · · −p

2
· · · · · · · · · · · · · · ·
−p

2 −p
2 −p

2 · · · λ

∣∣∣∣∣∣∣∣
=

(
λ+

p

2

)p−1 ∣∣∣∣∣∣∣∣
λ −p

2 −p
2 · · · −p

2
−1 1 0 · · · 0
· · · · · · · · · · · · · · ·
−1 0 0 · · · 1

∣∣∣∣∣∣∣∣
=

(
λ+

p

2

)p−1 [
λ− (p− 1)

p

2

]
.

Then the average degree-eccentricity energy of the complete graph is

Eade(Kp) = 2(p− 1)
p

2
.

Example 3.2. Let G be a complete bipartite graph Km,n, m,n ≥ 2. Then

Sp(ADE(Km,n)) =

{(
p+ 4

4

√
mn

)1

, (0)p−2,

(
− (p+ 4)

4

√
mn

)1
}

(9)

and

Eade(Km,n) =
p+ 4

2

√
mn . (10)
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Proof. Let the vertex set of Km,n be V = {v1, v2, . . . , vm, u1, u2, . . . , un}. Then,
p = m+ n, q = mn, and

|λI −ADE(Km,n)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ 0 · · · 0 −p+4
4 · · · −p+4

4

0 λ · · · 0 −p+4
4 · · · −p+4

4
· · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 λ −p+4

4 · · · −p+4
4

−p+4
4 · · · −p+4

4 0 λ · · · 0
· · · · · · · · · · · · · · · · · · · · ·
−p+4

4 · · · −p+4
4 0 · · · 0 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= λp −

(
p+ 4

4

)2

(mn)λp−2 = λp−2

[
λ2 −

(
p+ 4

4

)2

(mn)

]
.

Then, λp−2
[
λ2−(p+4

4 )2(mn)
]
= 0 implies λp−2 = 0, or λ2 = (p+4

4 )2(mn), resulting
in (9) and (10).

Example 3.3. For the star graph K1,p−1,

Sp(ADE(K1,p−1)) =

{(
p+ 3

4

√
p− 1

)1

, (0)p−2,

(
− (p+ 3)

4

√
p− 1

)1
}

and
Eade(K1,p−1) =

p+ 3

2

√
p− 1 .
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