Average Degree-Eccentricity Energy of Graphs

Veena Mathad, Shadi Ibrahim Khalaf, Sultan Senan Mahde and Ivan Gutman^{*}

Abstract

The concept of average degree-eccentricity matrix ADE(G) of a connected graph G is introduced. Some coefficients of the characteristic polynomial of ADE(G) are obtained, as well as a bound for the eigenvalues of ADE(G). We also introduce the average degree-eccentricity graph energy and establish bounds for it.

Keywords: Average degree-eccentricity matrix, average degree-eccentricity eigenvalue, average degree-eccentricity energy.

2010 Mathematics Subject Classification: 05C50.

How to cite this article V. Mathad, S. I. Khalaf, S. S. Mahde, I. Gutman, Average degree– eccentricity energy of graphs, *Math. Interdisc. Res.* **3** (2018) 45–54.

1. Introduction

Throughout this paper, all graphs are assumed to be simple, finite and connected. Let G = (V, E) be such a graph, with vertex set **V** and edge set **E**. If $|\mathbf{V}| = p$ and $|\mathbf{E}| = q$, then G is said to be a (p, q)-graph. The degree of a vertex v, denoted by d(v), is the number of edges of G incident with v. The distance d(u, v) between two vertices u and v in a graph G is the length of a shortest path connecting them. For a vertex v of G, the eccentricity of v is $e(v) = \max\{d(v, u), u \in \mathbf{V}(G)\}$. For additional graph-theoretical terminologies we refer to [8].

The adjacency matrix of G, $\mathbf{A}(G) = (a_{ij})$ is a $p \times p$ matrix, such that $a_{ij} = 1$ if $v_i v_j \in \mathbf{E}$ and $a_{ij} = 0$ otherwise. The energy of G, denoted by E(G), is defined as

$$E(G) = \sum_{i=1}^{p} |x_i| \tag{1}$$

*Corresponding author (E-mail: gutman@kg.ac.rs)

Received 13 February 2018, Accepted 20 February 2018 DOI: 10.22052/mir.2018.119231.1090

O2018 University of Kashan

E This work is licensed under the Creative Commons Attribution 4.0 International License.

Academic Editor: Ali Reza Ashrafi

where x_1, x_2, \ldots, x_p are the eigenvalues of $\mathbf{A}(G)$. This concept was introduced almost 40 years ago [5] and has been extensively investigated [2,6,7,10]. Eventually, numerous other graph energies have been invented, based on eigenvalues of matrices different from the adjacency matrix; for more details see [1,6,7,9,11,13–17] and the references cited therein.

One of these graph energies is the sum-eccentricity energy [15,17], based on the eigenvalues of the sum-eccentricity matrix SE, whose elements are equal defined as

$$se_{ij} = \begin{cases} e(v_i) + e(v_j) & \text{if } v_i v_j \in \mathbf{E} \\ 0 & \text{otherwise.} \end{cases}$$
(2)

Another recently introduced graph energy is the *first Zagreb energy* [9], based on the eigenvalues of the *first Zagreb matrix* \mathbf{ZG} , whose elements are defined as

$$zg_{ij} = \begin{cases} d(v_i) + d(v_j) & \text{if } v_i v_j \in \mathbf{E} \\ 0 & \text{otherwise.} \end{cases}$$
(3)

In this article, we introduce the concept of *average degree-eccentricity matrix* **ADE**.

Definition 1.1. Let G = (V, E) be a simple connected graph with p vertices v_1, v_2, \ldots, v_p and let d_i and $e(v_i)$ be, respectively, the degree and eccentricity of $v_i, i = 1, 2, \ldots, p$. Then the average degree-eccentricity matrix ADE = ADE(G) of G is the $p \times p$ matrix whose elements are given by

$$m_{ij} = \begin{cases} \frac{1}{4} [d(v_i) + d(v_j) + e(v_i) + e(v_j)] & \text{if } v_i v_j \in \mathbf{E} \\ 0 & \text{otherwise.} \end{cases}$$
(4)

Bearing in mind Equations (2) and (3), we see that **ADE** is conceived as a linear combination of the sum-eccentricity and Zagreb matrices, i.e.,

$$\mathbf{ADE} = \frac{1}{4} \left[\mathbf{SE} + \mathbf{ZG} \right].$$

The eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_p$ of ADE(G) form the average degree-eccentricity spectrum or the ADE-spectrum of G. As usual, the ADE-spectrum of G with n_i -fold degenerate eigenvalues λ_i is written as

$$S_p(G) = \{(\lambda_1)^{n_1}, (\lambda_2)^{n_2}, \dots, (\lambda_p)^{n_p}\}$$

ADE is a real symmetric matrix. Therefore, its eigenvalues are real numbers, and $\sum_{i=1}^{p} \lambda_i = 0$.

The following result will be useful in the proof of our results.

Theorem 1.2. [3] (Gershgorin's Theorem) Every eigenvalue λ of a $p \times p$ matrix $M = (m_{ij})$ satisfies:

$$|\lambda - m_{ii}| \le \sum_{\substack{j=1\\j \ne i}}^p |m_{ij}|$$

Corollary 1.3. [4] (Hadamard's Inequality) If the entries of a $p \times p$ matrix M are bounded by B, then $|\det(M)| \leq B^p p^{p/2}$.

2. Average Degree-Eccentricity Energy

Definition 2.1. The average degree-eccentricity energy $E_{ade}(G)$ of a graph G is

$$E_{ade}(G) = \sum_{i=1}^{p} |\lambda_i|.$$
(5)

Evidently, the average degree-eccentricity energy is defined in analogy to the ordinary graph energy, Equation (1).

Example 2.2. For a graph G_1 in Figure 1,

Figure 1: G_1 .

the average degree-eccentricity matrix of G_1 is

$$\mathbf{ADE}(G_1) = \begin{bmatrix} 0 & \frac{9}{4} & 0 & 0 & 0\\ \frac{9}{4} & 0 & \frac{9}{4} & 0 & \frac{9}{4}\\ 0 & \frac{9}{4} & 0 & \frac{9}{4} & 0\\ 0 & 0 & \frac{9}{4} & 0 & \frac{9}{4}\\ 0 & \frac{9}{4} & 0 & \frac{9}{4} & 0 \end{bmatrix}$$

The characteristic polynomial of $\mathbf{ADE}(G_1)$ is, $P(G_1, \lambda) = |\lambda I_p - \mathbf{ADE}(G_1)| = \lambda^5 - \frac{405}{16}\lambda^3 + \frac{6561}{128}\lambda$ and the average degree-eccentricity eigenvalues of G_1 are $\lambda_1 \approx 4.8, \lambda_2 \approx 1.5, \lambda_3 = 0, \lambda_4 \approx -1.5, \lambda_5 \approx -4.8$. Then the average degree-eccentricity energy of G_1 is $E_{ade}(G_1) = 4.8 + 1.5 + 1.5 + 4.8 = 12.6$.

We now calculate the coefficient c_i of $\lambda^{p-i}(i = 0, 1, 2, p)$ in the characteristic polynomial of the average degree-eccentricity matrix ADE(G). Clearly $c_0 = 1$, $c_1 = \text{trace}(ADE(G)) = 0$. Now

$$c_2 = \sum_{1 \le i < j \le p} \left| \begin{array}{c} 0 & m_{ij} \\ m_{ji} & 0 \end{array} \right| = \sum_{1 \le i < j \le p} -m_{ij}^2 \,.$$

In view of Equation (4) we get

$$c_2 = -\sum_{v_i v_j \in \mathbf{E}} \left[\frac{d(v_i) + e(v_i) + d(v_j) + e(v_j)}{4} \right]^2$$

For c_3 we have

$$c_3 = (-1)^3 \sum_{1 \le i < j < r \le n} \begin{vmatrix} m_{ii} & m_{ij} & m_{ir} \\ m_{ji} & m_{jj} & m_{jr} \\ m_{ri} & m_{rj} & m_{rr} \end{vmatrix}.$$

The number of non-zero terms in the above sum is equal to the number of triangles in G. Therefore, $c_3 = 0$ if G has no triangle.

Finally, $c_p = \det(\mathbf{ADE}(G))$.

Lemma 2.3. Let G be a connected (p,q)-graph and $uv \in \mathbf{E}$. Then

$$\frac{1}{4}[d(u) + d(v) + e(u) + e(v)] \le \frac{p}{2}.$$
(6)

Equality in (6) holds for all $uv \in \mathbf{E}$ only if $G \cong K_p$.

Proof. Without loss of generality, we may assume that $e(u) \leq e(v)$. So, we have

$$\begin{aligned} d(u) + d(v) + e(u) + e(v) &\leq d(u) + d(v) + 2e(v) \\ &\leq d(u) + d(v) + 2[p - (d(u) + d(v)) + 1] \\ &= 2p - (d(u) + d(v)) + 2 \leq 2p. \end{aligned}$$

If $G \cong K_p$, then for any $uv \in \mathbf{E}$ we have d(u) = d(v) = p - 1 and e(u) = e(v) = 1, implying that the left-hand side of (6) is equal to p/2. For all other (connected) graphs, for some $uv \in \mathbf{E}$ the inequality in (6) will be strict. \Box

Lemma 2.4. Let G be a connected (p,q)-graph. Then

trace
$$\mathbf{ADE}^2(G) \le trace \mathbf{ADE}^2(K_p) = \frac{(p-1)p^3}{4}$$
. (7)

Equality in (7) holds if and only if $G \cong K_p$.

Proof. Since

$$\mathbf{ADE}(K_p)_{ij} = \begin{cases} \frac{p}{2} & \text{if } v_i v_j \in \mathbf{E} \\ \\ 0 & \text{otherwise} \end{cases}$$

we get that for $i \neq j$,

$$\mathbf{ADE}^2(K_p)_{ij} = (p-2)\left(\frac{p}{2}\right)^2$$

whereas for i = j,

$$\mathbf{ADE}^2(K_p)_{ii} = (p-1)\left(\frac{p}{2}\right)^2$$

implying that

trace
$$\mathbf{ADE}^2(K_p) = p \times (p-1) \left(\frac{p}{2}\right)^2 = \frac{(p-1)p^3}{4}$$

Bearing in mind Lemma 2.3 and formula (4), we immediately see that $ADE(G)_{ij} \leq ADE(K_p)_{ij}$, and that if $G \not\cong K_p$, then the inequality is strict for at least some of *ij*. Consequently, inequality (7) holds.

Theorem 2.5. For any (p,q)-graph, with average degree-eccentricity eigenvalue λ_j ,

$$|\lambda_j| \le \frac{p(p-1)}{2} \,. \tag{8}$$

Proof. By Lemma 2.4, the trace of $\mathbf{ADE}^2(K_p)$ is equal to $\frac{(p-1)p^3}{4}$. Then for any (p,q)-graph G with average degree-eccentricity eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_p$, we have $\sum_{i=1}^p |\lambda_i|^2 \leq \frac{(p-1)p^3}{4}$. By the Cauchy–Schwarz inequality,

$$\left(\sum_{\substack{i=1\\i\neq j}}^p \lambda_i\right)^2 = (p-1)\sum_{\substack{i=1\\i\neq j}}^p \lambda_i^2.$$

Since $\sum_{i=1}^{p} \lambda_i^2 = -2c_2$ and $\sum_{i=1}^{p} \lambda_i = 0$, we get

$$\lambda_j^2 \le (p-1) \left[\frac{(p-1)p^3}{4} - \lambda_j^2 \right]$$

which implies (8).

Proposition 2.6. Let G be a graph of order p, and average degree-eccentricity eigenvalue λ_i . Then

$$\prod_{i=1}^{p} |\lambda_i| \le \left(\frac{p}{2}\right)^p p^{p/2}$$

Proof. By Corollary 1.3 and by the definition of **ADE**, setting B = p/2. **Theorem 2.7.** Let G be a (p,q)-graph. Then

$$E_{ade}(G) \le \frac{(p-1)p^2}{2} \,.$$

Proof. By Gershgorin's Theorem and Lemma 2.3, we have

$$E_{ade}(G) = \sum_{i=1}^{p} |\lambda_i| = \sum_{i=1}^{p} |\lambda_i - 0| \le \sum_{i=1}^{p} \sum_{\substack{j=1\\j \neq i}}^{p} m_{ij}$$
$$\le \sum_{i=1}^{p} \sum_{j=1\atop j \neq i}^{p} \frac{p}{2} = \frac{(p-1)p^2}{2}.$$

Theorem 2.8. Let G be a connected (p,q)-graph. Then

$$E_{ade}(G) \ge \sqrt{2(q |\det(\mathbf{ADE})|^{2/p} - c_2)}.$$

Proof.

$$E_{ade}(G)^{2} = \left(\sum_{i=1}^{p} |\lambda_{i}|\right)^{2} = \sum_{i=1}^{p} \lambda_{i}^{2} + \sum_{\substack{i=1\\i\neq j}}^{p} |\lambda_{i}||\lambda_{j}| = -2c_{2} + \sum_{\substack{i=1\\i\neq j}}^{p} |\lambda_{i}||\lambda_{j}|.$$

From relation between the arithmetic and geometric means, we get

$$\begin{split} \sum_{\substack{i=1\\i\neq j}}^{p} |\lambda_i| |\lambda_j| &\geq p(p-1) \left(\prod_{\substack{i=1\\i\neq j}}^{p} |\lambda_i| |\lambda_j| \right)^{\frac{1}{p(p-1)}} &= p(p-1) \left(\prod_{\substack{i=1\\i\neq j}}^{p} |\lambda_i|^{2(p-1)} \right)^{\frac{1}{p(p-1)}} \\ &= p(p-1) \left(\prod_{\substack{i=1\\i\neq j}}^{p} |\lambda_i| \right)^{2/p} \geq 2q \left(\prod_{\substack{i=1\\i\neq j}}^{p} |\lambda_i| \right)^{2/p} = 2q |\det(\mathbf{ADE})|^{2/p} \,. \end{split}$$

Then

$$E_{ade}(G)^2 \ge 2q |\det(\mathbf{ADE})|^{2/p} - 2c_2 = 2[q |\det(\mathbf{ADE})|^{2/p} - c_2]$$

and finally,

$$E_{ade}(G) \ge \sqrt{2[q|\det(\mathbf{ADE}|)^{2/p} - c_2]}.$$

Note that Theorem 2.8 and its proof are just a replica of the classical McClelland inequality for ordinary graph energy [12].

Corollary 2.9. Let G be a connected (p,q)-graph. Then

$$\sqrt{2(q|\det(\mathbf{ADE})|^{2/p} - c_2)} \le E_{ade}(G) \le \frac{(p-1)p^2}{2}$$

3. Average Degree-Energy of Some Classes of Graphs

In this section, we compute the average degree-eccentricity energies of some well-known graphs.

Example 3.1. Let G be a complete graph K_p . Then $S_p(ADE(K_p)) = \{(\frac{p}{2})^{p-1}, ((p-1)(\frac{p}{2}))^1\}$ and $E_{ade}(K_p) = 2(p-1)(\frac{p}{2})$.

Proof. Let G be the complete graph K_p . Then

$$\begin{aligned} |\lambda I - \mathbf{ADE}(K_p)| &= \begin{vmatrix} \lambda & -\frac{p}{2} & -\frac{p}{2} & \cdots & -\frac{p}{2} \\ -\frac{p}{2} & \lambda & -\frac{p}{2} & \cdots & -\frac{p}{2} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ -\frac{p}{2} & -\frac{p}{2} & -\frac{p}{2} & \cdots & \lambda \end{vmatrix} \\ &= \left(\lambda + \frac{p}{2}\right)^{p-1} \begin{vmatrix} \lambda & -\frac{p}{2} & -\frac{p}{2} & \cdots & -\frac{p}{2} \\ -1 & 1 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ -1 & 0 & 0 & \cdots & 1 \end{vmatrix} \\ &= \left(\lambda + \frac{p}{2}\right)^{p-1} \left[\lambda - (p-1)\frac{p}{2}\right]. \end{aligned}$$

Then the average degree-eccentricity energy of the complete graph is

$$E_{ade}(K_p) = 2(p-1)\frac{p}{2}.$$

Example 3.2. Let G be a complete bipartite graph $K_{m,n}$, $m, n \ge 2$. Then

$$S_p(\mathbf{ADE}(K_{m,n})) = \left\{ \left(\frac{p+4}{4}\sqrt{mn}\right)^1, (0)^{p-2}, \left(-\frac{(p+4)}{4}\sqrt{mn}\right)^1 \right\}$$
(9)

and

$$E_{ade}(K_{m,n}) = \frac{p+4}{2}\sqrt{mn}.$$
 (10)

Proof. Let the vertex set of $K_{m,n}$ be $V = \{v_1, v_2, \ldots, v_m, u_1, u_2, \ldots, u_n\}$. Then, p = m + n, q = mn, and

$$\begin{aligned} |\lambda I - \mathbf{ADE}(K_{m,n})| &= \begin{vmatrix} \lambda & 0 & \cdots & 0 & -\frac{p+4}{4} & \cdots & -\frac{p+4}{4} \\ 0 & \lambda & \cdots & 0 & -\frac{p+4}{4} & \cdots & -\frac{p+4}{4} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & \lambda & -\frac{p+4}{4} & \cdots & -\frac{p+4}{4} \\ -\frac{p+4}{4} & \cdots & -\frac{p+4}{4} & 0 & \lambda & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ -\frac{p+4}{4} & \cdots & -\frac{p+4}{4} & 0 & \cdots & 0 & \lambda \end{vmatrix} \\ &= \lambda^p - \left(\frac{p+4}{4}\right)^2 (mn)\lambda^{p-2} = \lambda^{p-2} \left[\lambda^2 - \left(\frac{p+4}{4}\right)^2 (mn)\right] \end{aligned}$$

Then, $\lambda^{p-2} \left[\lambda^2 - \left(\frac{p+4}{4}\right)^2 (mn) \right] = 0$ implies $\lambda^{p-2} = 0$, or $\lambda^2 = \left(\frac{p+4}{4}\right)^2 (mn)$, resulting in (9) and (10).

Example 3.3. For the star graph $K_{1,p-1}$,

$$S_p(\mathbf{ADE}(K_{1,p-1})) = \left\{ \left(\frac{p+3}{4}\sqrt{p-1}\right)^1, (0)^{p-2}, \left(-\frac{(p+3)}{4}\sqrt{p-1}\right)^1 \right\}$$

and

$$E_{ade}(K_{1,p-1}) = \frac{p+3}{2}\sqrt{p-1}.$$

Acknowledgement. The authors thank the anonymous referee for useful comments and suggestion.

Conflicts of Interest. The authors declare that there is no conflicts of interest regarding the publication of this article.

References

- C. Adiga, M. Smitha, On maximum degree energy of a graph, Int. J. Contemp. Math. Sci. 4 (2009) 385–396.
- [2] R. Balakrishnan, The energy of a graph, *Linear Algebra Appl.* 387 (2004) 287–295.
- [3] H. E. Bell, Gerschgorin's theorem and the zeros of polynomials, Am. Math. Monthly 72 (1965) 292–295.
- [4] D. J. H. Garling, Inequalities A Journey Into Linear Analysis, Cambridge Univ. Press, Cambridge, 2007.

- [5] I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forsch. Graz 103 (1978) 1–22.
- [6] I. Gutman, B. Furtula, Survey of graph energies, Math. Interdisc. Res. 2 (2017) 85–129.
- [7] I. Gutman, B. Furtula, The total π-electron energy saga, Croat. Chem. Acta 90 (2017) 359–368.
- [8] F. Harary, Graph Theory, Addison Wesley, Reading, 1969.
- [9] N. Jafari Rad, A. Jahanbani, I. Gutman, Zagreb energy and Zagreb Estrada index of graphs, *MATCH Commun. Math. Comput. Chem.* 79 (2018) 371– 386.
- [10] X. Li, Y. Shi, I. Gutman, *Graph Energy*, Springer, New York, 2012.
- [11] V. Mathad, S. S. Mahde, The minimum hub energy of a graph, Palest. J. Math. 6 (2017) 247–256.
- [12] B. J. McClelland, Properties of the latent roots of a matrix: The estimation of π-electron energies, J. Chem. Phys. 54 (1971) 640–643.
- [13] M. A. Naji, N. D. Soner, The maximum eccentricity energy of a graph, Int. J. Sci. Engin. Res. 7 (2016) 5–13.
- [14] H. S. Ramane, I. Gutman, J. B. Patil, R. B. Jummannaver, Seidel signless Laplacian energy of graphs, *Math. Interdisc. Res.* 2 (2017) 181–192.
- [15] D. S. Revankar, M. M. Patil, H. S. Ramane, On eccentricity sum eigenvalue and eccentricity sum energy of a graph, Ann. Pure Appl. Math. 13 (2017) 125–130.
- [16] B. Sharada, M. I. Sowaity, I. Gutman, Laplacian sum-eccentricity energy of a graph, *Math. Interdisc. Res.* 2 (2017) 209–219.
- [17] M. I. Sowaity, B. Sharada, The sum-eccentricity energy of a graph, Int. J. Rec. Innovat. Trends Comput. Commun. 5 (2017) 293–304.

Veena Mathad Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysuru – 570 006, India E-mail: veena_mathad@rediffmail.com

Shadi Ibrahim Khalaf Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysuru – 570 006, India E-mail: shadikhalaf1989@hotmail.com

Sultan Senan Mahde Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysuru – 570 006, India E-mail: sultan.mahde@gmail.com

Ivan Gutman Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia E-mail: gutman@kg.ac.rs