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Abstract

Let G and H be two graphs. The strong product G � H of the graphs
G and H is the graph with vertex set V (G) × V (H), and u = (u1, v1) is
adjacent with v = (u2, v2) whenever (v1 = v2 and u1 is adjacent with u2)
or (u1 = u2 and v1 is adjacent with v2) or (u1 is adjacent with u2 and v1
is adjacent with v2). In this paper, some applications of this product are
presented. Finally, we pose one open problem related to this topic.
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1. Introduction

A topological index is a real number related to a graph. It must be a structural
invariant, i.e., it preserves by every graph automorphism. A topological index is
a graph invariant applicable in chemistry. Suppose G is a graph with the vertex
and edge sets of V (G) and E(G), respectively. If x, y ∈ V (G), then the distance
dG(x, y) (or d(x, y) for short) between x and y is defined as the length of a min-
imum path connecting x and y. The Wiener index of G, W (G), is defined as
the summation of distances between all pairs of vertices in G. In other words,
the Wiener index of a graph G is defined as W (G) =

∑
{u,v}⊆V (G) dG(u, v) [21].

A topological index is called distance-based if it can be defined by the distance
function d(−,−). It is worthy to mention here that Wiener did not consider the
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distance function d(−,−) in the seminal paper. Hosoya [12], presented a new sim-
ple formula for the Wiener index by using distance function. We encourage the
readers to consult [6, 7] for more information on Wiener index.

The hyper-Wiener index of acyclic graphs was introduced by Milan Randić
in 1993. Then Klein et al. [16], generalized Randić’s definition for all connected
graphs, as a generalization of the Wiener index. It is defined as

WW (G) =
1

2

∑
{u,v}⊆V (G)

(d(u, v) + d2(u, v))

or

WW (G) =
1

2
W (G) +

1

2

∑
{u,v}⊆V (G)

d2(u, v).

The mathematical properties and chemical meaning of this topological index are
reported in [4, 5, 9, 15,25].

As usual, the degree of a vertex u of G is denoted by deg(u) and it is defined as
the number of edges incident with u. The Zagreb indices have been introduced
more than thirty years ago by Gutman and Trinajstić, [10]. They are defined as:

M1(G) =
∑

u∈V (G)

deg(u)2,

M2(G) =
∑

uv∈E(G)

deg(u)deg(v).

We encourage the reader to consult [1,10,23] for historical background, computa-
tional techniques and mathematical properties of Zagreb indices.

The eccentricity εG(u) is defined as the largest distance between u and other
vertices of G. We will omit the subscript G when the graph is clear from the
context. The eccentric connectivity index of a graph G is defined as ξc(G) =∑

u∈V (G) degG(u)εG(u) [19]. We encourage the reader to consult the papers [2, 3]
for some applications and the papers [13,17,22,24] for the mathematical properties
of this topological index. For a given vertex u ∈ V (G) we define its distance
sum DG(u) as DG(u) =

∑
v∈V (G) dG(u, v). The eccentric distance sum of G is

summation of all quantity DG(u)εG(u) over all vertices of G [8]. In other words,
ξSD(G) =

∑
u∈V (G)DG(u)εG(u). The concept of eccentricity also gives rise to a

number of other topological invariants. For example, the total eccentricity ζ(G)
of a graph G is defined as ζ(G) =

∑
u∈V (G) εG(u).

The n-cube Qn(n ≥ 1) is the graph whose vertex set is the set of all n-tuples of
0s and 1s, where two n-tuples are adjacent if they differ in precisely one coordinate.
Qn has 2n vertices, 2n−1n edges, and is a regular graph with n edges touching each
vertex. A graph G is called nontrivial if |V (G)| > 1. Also, we denote the path
graph, the complete and the cycle of order n by Pn, Kn and Cn, respectively.
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Figure 1: Open and closed fences.

The Strong product G�H of the graphs G and H has the vertex set V (G�
H) = V (G)× V (H) and (a, x)(b, y) is an edge of G�H if a = b and xy ∈ E(H),
or ab ∈ E(G) and x = y, or ab ∈ E(G) and xy ∈ E(H). Occasionally one
also encounters the names strong direct product or symmetric composition for the
strong product [11]. As an example, see open and closed fences, Pn�K2, Cn�K2,
Figure 1.

2. Results

For a connected graph G, the radius r(G) and diameter D(G) are, respectively,
the minimum and maximum eccentricity among the vertices of G.

Lemma 2.1. [20] Let G and H be two graphs. Then for every vertex (a, x) of
G�H, we have

εG�H((a, x)) = max{εG(a), εH(x)}.

Theorem 2.2. [20] Let G and H be nontrivial connected graphs. Then G�H is
eulerian if and only if G and H are eulerian.

By the above theorem, Cn � Cm and K2n+1 � Cm are eulerian.

Theorem 2.3. [20] Let G and H be nontrivial connected graphs. Then

W (G�H) ≥ (|V (G)|+ 2|E(G)|)W (H) + (|V (H)|+ 2|E(H)|)W (G)

+ |V (G)||V (H)|(|V (G)||V (H)| − |V (G)| − |V (H)|+ 1)

− 2|E(G)||V (H)|(|V (H)| − 1)− 2|E(H)|(|V (G)|2|V (G)| − |E(G)|),

with equality if and only if max{D(G), D(H)} ≤ 2, or G ∼= Kn, or H ∼= Kn.
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We apply Theorem 2.3 to compute the Wiener index of Kn�Cm and Kn�Pm.
We have

W (Kn � Cm) = (|V (Kn)|+ 2|E(Kn)|)W (Cm) + (|V (Cm)|+ 2|E(Cm)|)W (Kn)

+ |V (Kn)||V (Cm)|(|V (Kn)||V (Cm)| − |V (Kn)| − |V (Cm)|+ 1)

− 2|E(Kn)||V (Cm)|(|V (Cm)| − 1)

− 2|E(Cm)|(|V (Kn)|2 − |V (Kn)| − |E(Kn)|),

on the other hand, by [18],W (Cn) =


n3

8
2|n

n(n2 − 1)

8
2 - n

andW (Kn) =
n(n− 1)

2
.

Using a tedious calculation, we have:

W (Kn � Cm) =


1

8
n2m3 +

1

2
n2m− 1

2
nm 2|m,

1

8
n2m3 +

3

8
n2m− 1

2
nm 2 - m.

(1)

Also, by [18], W (Pn) =
n(n2 − 1)

6
, then

W (Kn � Pm) = (|V (Kn)|+ 2|E(Kn)|)W (Pm) + (|V (Pm)|+ 2|E(Pm)|)W (Kn)

+ |V (Kn)||V (Pm)|(|V (Kn)||V (Pm)| − |V (Kn)| − |V (Pm)|+ 1)

− 2|E(Kn)||V (Pm)|(|V (Pm)| − 1)

− 2|E(Pm)|(|V (Kn)|2 − |V (Kn)| − |E(Kn)|)

=
1

6
n2m3 +

1

3
n2m− 1

2
nm. (2)

By replacing n with 2 in the relations (1) and (2), we obtain W of open and closed
fences, as follow:

W (K2 � Cm) =


1

2
m3 + 2m−m 2|m,

1

2
m3 +

3

2
m−m 2 - m,

W (K2 � Pm) =
2

3
m3 +

4

3
m−m.
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Theorem 2.4. [20] Let G and H be nontrivial connected graphs. Then

W (G�H) 6 (|V (G)|+ 2|E(G)|)W (H) + (|V (H)|+ 2|E(H)|)W (G)

+ D
[ |V (G)||V (H)|

2
(|V (G)||V (H)| − |V (G)| − |V (H)|+ 1)

− 2|E(H)|
(
|V (G)|

2

)
− 2|E(G)|

(
|V (H)|

2

)]
+ 2|E(G)||E(H)|(D − 1),

where D = max{D(G), D(H)}. Moreover, the upper bound is attained if and only
if D 6 2, or G ∼= Kn, or H ∼= Kn.

Theorem 2.5. [20] Let G and H be nontrivial connected graphs. Then

WW (G�H) > (|V (G)|+ 2|E(G)|)WW (H) + (|V (H)|+ 2|E(H)|)WW (G)

+
3

2
|V (G)||V (H)|(|V (G)||V (H)| − |V (G)| − |V (H)|+ 1)

− 3|E(G)||V (H)|(|V (H)| − 1)

− 3|E(H)|(|V (G)|2 − |V (G)| − 4

3
|E(G)|),

with equality if and only if max{D(G), D(H)} 6 2, or G ∼= Kn, or H ∼= Kn.

We apply Theorem 2.5 to compute the hyper-Wiener index of Kn � Cm and
Kn � Pm. We have:

WW (Kn � Cm) = (|V (Kn)|+ 2|E(Kn)|)WW (Cm)

+ (|V (Cm)|+ 2|E(Cm)|)WW (Kn)

+
3

2
|V (Kn)||V (Cm)|(|V (Kn)||V (Cm)| − |V (Kn)| − |V (Cm)|+ 1)

− 3|E(Kn)||V (Cm)|(|V (Cm)| − 1)

− 3|E(Cm)|(|V (Kn)|2 − |V (Kn)| −
4

3
|E(Kn)|).

On the other hand, by [14],

WW (Cn) =


n2(n+ 1)(n+ 2)

48
2|n,

n(n2 − 1)(n+ 3)

48
2 - n.

Using a tedious calculation, we have:

WW (Kn � Cm) =


1

48
n2m2(m2 + 3m+ 2) +

1

2
mn(n− 1) 2|m,

1

48
n2m2(m2 + 3m− 1) +

1

2
mn(

7

8
n− 1) 2 - m.

(3)
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Also, by [14], WW (Pn) =
1

24
(n4 + 2n3 − n2 − 2n), then

WW (Kn � Pm) = (|V (Kn)|+ 2|E(Kn)|)WW (Pm)

+ (|V (Pm)|+ 2|E(Pm)|)WW (Kn)

+
3

2
|V (Kn)||V (Pm)|(|V (Kn)||V (Pm)| − |V (Kn)| − |V (Pm)|+ 1)

− 3|E(Kn)||V (Pm)|(|V (Pm)| − 1)

− 3|E(Pm)|(|V (Kn)|2 − |V (Kn)| −
4

3
|E(Kn)|)

=
1

24
m2n2(m2 + 2m− 1) +

1

2
mn(

5

6
n− 1). (4)

If n = 2 in the relations (3) and (4), we have the hyper-Wiener index of open and
closed fences, as follow:

WW (K2 � Cm) =


1

12
m2(m2 + 3m+ 2) +m 2|m,

1

12
m2(m2 + 3m− 1) +

3

4
m 2 - m,

WW (K2 � Pm) =
1

6
m2(m2 + 2m− 1) +

2

3
m.

Theorem 2.6. [20] Let G and H be nontrivial connected graphs. Then

WW (G�H) 6 (|V (G)|+ 2|E(G)|)WW (H) + (|V (H)|+ 2|E(H)|)WW (G)

+
1

2
D(D + 1)

[ |V (G)||V (H)|
2

(|V (G)||V (H)|

− |V (G)| − |V (H)|+ 1)

− 2|E(H)|
(
|V (G)|

2

)
− 2|E(G)|

(
|V (H)|

2

)]
+ |E(G)||E(H)|(D2 +D − 2),

where D = max{D(G), D(H)}. Moreover, the upper bound is attained if and only
if D 6 2, or G ∼= Kn, or H ∼= Kn.

Theorem 2.7. [20] For graphs G and H, we have

M1(G�H) = (|V (H)|+ 4|E(H)|)M1(G) + (|V (G)|+ 4|E(G)|)M1(H)

+ M1(G)M1(H) + 8|E(G)||E(H)|.

By the previous theorem, we have
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M1(Pn � Cm) = (|V (Cm)|+ 4|E(Cm)|)M1(Pn) + (|V (Pn)|+ 4|E(Pn)|)M1(Cm)

+M1(Pn)M1(Cm) + 8|E(Pn)||E(Cm)| = 64mn− 78m, (5)
M1(Pn � Pm) = 64mn− 78n− 78m+ 92, (6)
M1(Cn � Cm) = 64nm.

If n = 2 in the relations (5) and (6), we have M1 of open and closed fences, as
follow:

M1(P2 � Cm) = 128m− 78m = 50m,

M1(P2 � Pm) = 50m− 64.

Consider Qn on n ≥ 1, then

M1(Qn) =
∑

u∈V (Qn)

deg(u)2 = n2
∑

u∈V (Qn)

1 = n22n,

M2(Qn) =
∑

uv∈E(Qn)

deg(u)deg(v) = n2
∑

uv∈E(Qn)

1 = n32n−1.

Therefore,

M1(Qn � Pm) = (|V (Pm)|+ 4|E(Pm)|)M1(Qn) + (|V (Qn)|+ 4|E(Qn)|)M1(Pm)

+M1(Qn)M1(Pm) + 8|E(Qn)||E(Pm)|
= 2n(9n2m− 10n2 + 4m− 6 + 12nm− 16n),

M1(Qn � Cm) = (|V (Cm)|+ 4|E(Cm)|)M1(Qn) + (|V (Qn)|+ 4|E(Qn)|)M1(Cm)

+M1(Qn)M1(Cm) + 8|E(Qn)||E(Cm)|
= m2n(9n2 + 12n+ 4).

Theorem 2.8. [20] For the graphs G and H, we have

M2(G�H) = 3|E(H)|M1(G) + 3|E(G)|M1(H)

+ 3M1(G)M1(H) + 2M2(G)M2(H)

+ (6|E(H)|+ 3M1(H) + |V (H)|)M2(G)

+ (6|E(G)|+ 3M1(G) + |V (G)|)M2(H).

By the previous theorem,

M2(Pn � Cm) = 3|E(Cm)|M1(Pn) + 3|E(Pn)|M1(Cm)

+ 3M1(Pn)M1(Cm) + 2M2(Pn)M2(Cm)

+ (6|E(Cm)|+ 3M1(Cm) + |V (Cm)|)M2(Pn)

+ (6|E(Pn)|+ 3M1(Pn) + |V (Pn)|)M2(Cm)

= 256mn− 414m, (m > 2).
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Consider Qn on n ≥ 1, then

M2(Qn � Pm) = 3|E(Pm)|M1(Qn) + 3|E(Qn)|M1(Pm)

+ 3M1(Qn)M1(Pm) + 2M2(Qn)M2(Pm)

+ (6|E(Pm)|+ 3M1(Pm) + |V (Pm)|)M2(Qn)

+ (6|E(Qn)|+ 3M1(Qn) + |V (Qn)|)M2(Pm)

= 2n(27mn2 − 45n2 + 18mn− 33n+
27

2
n3m− 20n3 + 4m− 8),

(7)

M2(Qn � Cm) = 3|E(Cm)|M1(Qn) + 3|E(Qn)|M1(Cm)

+ 3M1(Qn)M1(Cm) + 2M2(Qn)M2(Cm)

+ (6|E(Cm)|+ 3M1(Cm) + |V (Cm)|)M2(Qn)

+ (6|E(Qn)|+ 3M1(Qn) + |V (Qn)|)M2(Cm)

= m2n(
27

2
n3 + 27n2 + 18n+ 4). (8)

By replacing Qn with Q1 in the relations (7) and (8), we have M2 of open and
closed fences, as follow:

M2(Q1 � Pm) =M2(K2 � Pm) = 2(21m− 36 + 24m− 42

+
27

2
m− 20 + 4m− 8) = 125m− 212,

M2(Q1 � Cm) =M2(K2 � Cm) = 2m(
27

2
+ 27 + 18 + 4) = 125m.

A connected graph is called a self-centered graph if all of its vertices have
the same eccentricity. Then a connected graph G is self-centered if and only if
r(G) = D(G).

Theorem 2.9. [20] Let G and H be self-centered graphs that D(H) 6 D(G).
Then

ξc(G�H) = 2r(G)(|E(G)||V (H)|+ |E(H)||V (G)|+ 2|E(G)||E(H)|).

One can see that r(Cn) = [
n

2
]. So, if n ≥ m, then

ξc(Cn � Cm) = 2r(Cn)(|E(Cn)||V (Cm)|+ |E(Cm)||V (Cn)|+ 2|E(Cn)||E(Cm)|)

= 8nm[
n

2
].
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Clearly, r(Qn) = n, |E(Qn)| = n2n−1. Therefore,

ξc(Qn � Cm) = 2r(Qn)(|E(Qn)||V (Cm)|+ |E(Cm)||V (Qn)|+ 2|E(Qn)||E(Cm)|)

= n2n(3mn+ 2m) if n ≥ bm
2
c, (9)

ξc(Qn � Cm) = 2r(Cm)(|E(Qn)||V (Cm)|+ |E(Cm)||V (Qn)|+ 2|E(Qn)||E(Cm)|)

= bm
2
c2n(3mn+ 2m) if n ≤ bm

2
c. (10)

By replacing n with 1 in the relations (9) and (10), we have ξc of closed fence, as
follow:

ξc(Q1 � Cm) = ξc(K2 � Cm) =

{
10m if

[
m
2

]
≤ 1,

10m
[
m
2

]
if
[
m
2

]
≥ 1.

3. Open Problem
We found the exact value of ξc(G�H), where G and H are self-centered graphs.
A natural question arises here is if G and H are arbitrary graphs, then what is
the value of ξc(G � H). If someone can find the answer, can calculate values of
ξc(Qn � Pm), ξc(Pn � Pm) and ξc(Pn � Cm) as a result.
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