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Abstract
Historically, mathematics and architecture have been associated with one

another. Ratios are good example of this interconnection. The origin of
ratios can be found in nature, which makes the nature so attractive. As
an example, consider the architecture inspired by flowers which seems so
harmonic to us. In the same way, the architectural plan of many well-known
historical buildings such as mosques and bridges shows a rhythmic balance
which according to most experts the reason lies in using the ratios. The
golden ratio has been used to analyze the proportions of natural objects as
well as building’s harmony. In this paper, after recalling the (mathematical)
definition of the golden ratio, its ability to describe the harmony in the nature
is discussed. When teaching mathematics in the schools, one may refer to
this interconnection to encourage students to feel better with mathematics
and deepen their understanding of proportion. At the end, the golden ratio
decimals as well as its binary digits has been statistically examined to confirm
their behavior as a random number generator.
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1. Introduction
Proportions in geometry, architecture, music and art express the harmonious re-
lationships between the whole and its parts, and within a whole system [27]. The
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selection and use of systems of proportions has always been a vital issue for artists
and architects, see [7] and [22]. Since that beautiful harmonious sounds depended
on ratios, the architects have been considered the ratios when designing a building,
see [4] and [12]. However, architects have fine senses of symmetry of visual forms
without considering a precise definition of this concept from the mathematical
point of view [18]. Muslim artists have indeed discovered all forms of symmetry
that could be represented on a two-dimensional surface. Their striking symmetry
suggests balance and serenity, [15] and [32].

One of the coolest facets of architecture is the ability to have buildings be
so different so varied in terms of size, shape, and style and yet so similar at
their core. One way to achieve this is to keep the proportion between the sizes
of elements constant. The so-called golden ratio has been applied for centuries to
assure a building’s harmony [14]. In the following sections, first the golden ratio
is defined mathematically and introduces later from geometrical point of view. Its
appearance in nature and architecture are reviewd very briefly. At the end, it is
shown that the digits of the golden ration behaves like a random sequence.

2. The History of the Golden Ratio

About 300 B.C., Euclid of Alexandria, the most prominent mathematician of an-
tiquity, gathered and arranged 465 propositions into thirteen books, entitled The
Elements [31], denote by [AB] and AB the closed line segment with endpoints A
and B and its length, respectively. In the Book VI, he defines that the segment
[AB] is divided in extreme and mean ratio by a point C ∈ [AB], if AC < CB and
CB
AC = AB

CB . While the proportion CB
AC known as the golden ratio has always existed

in mathematics, it is unknown exactly when it was first discovered and applied
by mankind. It is reasonable to assume that it has perhaps been discovered and
rediscovered throughout history, which explains why it goes under several names,
such as golden section, golden mean, golden number, divine proportion, divine
section and golden proportion. Its beautiful properties has won the interest of
many authors, to mentioned [21] and [28] among others. Many key architects in
history, such as, Le Corbusier [3], Pacioli, and Leonardo Da Vinci have used the
golden ratio in their works explicitly. Fra Luca Pacioli, an Italian mathematician
and painter entered some mathematical basis to painting, published the book De
Divina Proporzione and Leonardo da Vinci made the illustrations of his book. In
addition, many recent publications discussed the appearance of the golden ratio
in designing the historical buildings in Iran, see [12] and [23].

3. The Golden Ratio in Mathematics

In mathematics two quantities are in the golden ratio if their ratio is the same as
the ratio of their sum to the larger of the two quantities. Expressed algebraically,
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for quantities a and b with a > b > 0,

a+ b

a
=

a

b

def
= φ,

or
φ2 − φ− 1 = 0, (1)

where, the Greek letter phi (φ or ϕ) represents the golden ratio. where, the Greek
letter phi (φ or ϕ) represents the golden ratio, which was invented at the beginning
of the twentieth century by the American mathematician Mark Barr and derived
from the first three Greek letters in the name of the well-known Greek sculptor
Phidias (450 B.C.), who was long supposed to have used the golden ratio in his
sculptural works and his creations were considered to be the standard of beauty
and harmonious construction based on the human body [10].

It is an irrational number (meaning we cannot write it as a simple fraction),
with a value of:

φ =
1 +

√
5

2
≈ 1.6180339887.

Another interesting relationship involving the golden ratio may be obtained di-
rectly from:

φ =
√
1 + φ,

successive substituting the left hand side for φ on the right hand side gives:

φ =

√
1 +

√
1 +

√
1 + · · ·.

Similarly, replacing x = 1
φ in the equation (1) yields the quadratic equation x2 +

x− 1 = 0, which its positive root is 1
φ , i.e.,

1

φ
=

√
1− 1

φ
=

√
1−

√
1−

√
1− · · ·.

Again, another relationship may be obtained, by using φ = 1+ 1
φ = 1+ 1

1+ 1
1
φ

= · · ·

repeatedly, we find that golden ratio is related with the following continued fraction

φ = 1 +
1

1 +
1

1 +
1

1 +
1

1 + · · ·

.

Another combined nested square root and continued fraction for φ is derived by
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successive substituting the formula φ =
√
1 + φ =

√
2 +

1

φ
which yields:

φ =

√√√√√2 +
1√

2 +
1√

2 + · · ·

.

Furthermore, any power of φ is equal to the sum of the two immediately preceding
powers:

φn = φn−1 + φn−2,

thus, from computation cost point of view, having the first two values φ0 = 1
and φ1 ≈ 1.61803398, for calculating φn approximately, we can repeatedly apply
above recursion relation doing only a single subtraction, rather than a slower
multiplication by φ, at each step.

We now use the relationship φ2 = φ + 1 to inspect successive powers of φ by
writing them down to their component parts in the following way.

φ3 = φφ2 = φ(φ+ 1) = φ2 + φ = (φ+ 1) + φ = 2φ+ 1,

φ4 = φ2φ2 = (φ+ 1)(φ+ 1) = φ2 + 2φ+ 1 = (φ+ 1) + 2φ+ 1 = 3φ+ 2,

φ5 = φ3φ2 = (2φ+ 1)(φ+ 1) = 2φ2 + 3φ+ 1 = 2(φ+ 1) + 3φ+ 1 = 5φ+ 3,

φ6 = φ3φ3 = (2φ+ 1)(2φ+ 1) = 4φ2 + 4φ+ 1 = 4(φ+ 1) + 4φ+ 1 = 8φ+ 5,

φ7 = φ4φ3 = (3φ+ 2)(2φ+ 1) = 6φ2 + 7φ+ 2 = 6(φ+ 1) + 7φ+ 1 = 13φ+ 8,

and so on. By this point one should be able to see a pattern as further powers of
φ is taken. Actually, the end result of each power of φ is equal to a multiple of
φ plus a constant, in a linear form φn = anφ + an−1, n = 2, 3, . . ., where an and
an−1 are both special integers, the so-called Fibonacci numbers, [25]. Applying
this pattern enables us to write down the further powers of φ simply, for example
φ8 = 21φ+ 13 and φ9 = 34φ+ 21.

A similar recursive equation must also hold for the other root of φ2 = (φ+1),
namely χ = 1 − φ = 1−

√
5

2 , that is χn = anχ + an−1, n = 2, 3, . . .. Solving these
two equations for an yields:

an =
φn − χn

√
5

=
1√
5

((1 +√
5

2

)n −
(1−√

5

2

)n)
, n = 0, 1, 2, 3, . . . .

This relation is mainly of theoretical interest [19] and referred to as the Binet’s
formula, after the French mathematician Jacques Phillipe Marie Binet (1786-1856).
The formula allows one to find the value of any number in the Fibonacci sequence
{an}, see section 3.2.
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3.1 The Kepler Triangle

A Kepler triangle is a right triangle with edge lengths in geometric progression.
If we make one side of length 1 and the other side of length a, the hypotenuse
must be of length a2 where a is the geometric ratio. The Pythagorean theorem
implies a2 = φ which yields a =

√
φ, i.e. the ratio of the edges of a Kepler

triangle is linked to the golden ratio φ = 1+
√
5

2 . Therefore any Kepler triangle
must be simlilar to one of edges 1:

√
φ : φ, or approximately 1: 1.272: 1.618. The

smaller angle of a Kepler triangle, say α, is α = arctan( 1√
φ ) radians, for which the

interesting relation tanα = cosα = 1√
φ holds.

A triangles with such ratios are named after the German mathematician and
astronomer Johannes Kepler (1571-1630), who first demonstrated that this triangle
is characterized by a ratio between short side and hypotenuse equal to the golden
ratio. Kepler triangles combine two key mathematical concept, the Pythagorean
theorem and the golden ratio, that fascinated Kepler deeply, as he expressed in
this quotation by Kepler [8]:

“Geometry has two great treasures: one is the theorem of Pythagoras, the other
the division of a line into mean and extreme ratio. The first we may compare to
a mass of gold, the second we may call a precious jewel”. Some sources claim
that a triangle with dimensions closely approximating a Kepler triangle can be
recognized in the Great Pyramid of Giza [9].

3.2 More on the Fibonacci Sequence

The Fibonacci sequence, named after Leonardo Fibonacci an Italian born in 1175
AD, also a plot element in “The Da Vinci Code, provides yet another way to derive
φ mathematically. The series is quite simple. Start with 0 and add 1 to get 1.
Then repeat the process of adding each two numbers in the series to determine
the next one: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, and so on. This
pattern is also found in the diagonals of Pascals Triangle. The relationship to the
golden ratio or φ is found by dividing each number by the one before it. The
further you go in the series, the closer the result gets to φ, [29]. For example:
1
1 = 1, 2

2 = 2, 3
2 = 1.5, 5

3 = 1.666, 13
8 = 1.625, 21

13 = 1.615, if we go further into the
series, it will find that 233

144 = 1.61805. The golden number is not just the limit of
the sequence of (1

1
,
2

1
,
3

2
,
5

3
, ...

)
,

but the sequence of convergent is a sequence of best approximations to φ by
rational numbers, see ([11, Chapter 5]).

The relation between the Golden ratio formula and Fibonacci sequence is
known [6]. A Fibonacci sequence {an} is defined by second-order linear differ-
ence equation an+2 − an+1 − an = 0 with a0 = 0, a1 = 1, then we have the
following lemma [16].
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Lemma 3.1. The following relations hold:

φn = anφ+ an−1,

n = . . . ,−2,−1, 0, 1, 2, . . .

(φ− 1)n = a−nφ+ a−n−1.

The following shows also that the Fibonacci sequence has the analytic form.

Lemma 3.2. The following relation holds:

an =
1

2φ− 1
{φn − (1− φ)n}, n = . . . ,−2,−1, 0, 1, 2, . . . .

Lemma 3.3. The following relations hold:

(i) φ
1 = 1+φ

φ = 1+2φ
1+φ = 2+3φ

1+2φ = 3+5φ
2+3φ = · · · = an+an+1φ

an−1+anφ
≈ 1.61803,

(ii) an+an+1φ
an−1+anφ

= · · · = 2φ−3
5−3φ = 2−φ

2φ−3 = φ−1
2φ = 1

φ−1 = φ
1 ,

(iii) 0.236
0.146 ≈ 0.382

0.236 ≈ 0.618
0.382 ≈ 1

0.618 ≈ 1.618
1 ≈ 2618

1618 ≈ 4236
2618 ≈ · · · ≈ 1.618.

Plants, and especially their flowers, have captivated the imaginations of artists
and poets over the centuries. Plants show all the features of geometry from the
spiral of cactus spines, the fractal pattern of the branches and roots of a tree, or
the symmetry of the leaf arrangements on the pea plants. The leaf pattern and
number of petals on most plants include Fibonacci numbers. For example, white
Calla Lily having one petal, Euphorbia having two petals, Trillium with three
petals, Hibiscus having five petals, Bloodroot with eight petals, Black Eyed Susan
having thirteen petals, Shasta Daisy having 21 petals and Daisy with 34 petals,
[1].

3.3 The Golden Rectangle

The golden section (or proportion) is the basis of the golden rectangle, whose sides
are in golden proportion 1: φ to each other. The golden rectangle is considered as
one of the shape for representing φ in two dimensions and turned to be the most
visually pleasing of all rectangles. The followings successive rectangles approach
toward the golden rectangle in the limit. Starting from two 1×1 square one above
another, one first adjoins a square of side length 2 to their right. Then one adjoins
a square of side length 2 below and so on following a clockwise movement. The
ratios of width over height for the successive rectangles run through quotients of
the form an+1

an
, n = 0, 1, 2, . . ., where {an} is a Fibonacci sequence. Indeed, the

successive rectangles are not exact golden rectangles but they approach toward
the golden rectangle.
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A distinctive feature of rectangle is that when a square section is removed,
the remainder is another golden rectangle; that is, with the same aspect ratio as
the first. Square removal can be repeated infinitely, in which case corresponding
corners of the squares form an infinite sequence of points on the golden spiral,
the unique logarithmic spiral with this property. Applications appeared in all
kinds of design, art, architecture, advertising, packaging, and engineering; and
can therefore be found readily in everyday objects.

Golden rectangles can be found in the shape of playing cards, windows, book
covers, file cards, ancient buildings, and modern skyscrapers. Many artists have
incorporated the golden rectangle in to their works because of its aesthetic appeal.
It is believed by some researchers that classical Greek sculptures of the human
body were proportioned so that the ratio of the total height to the height of the
navel was the golden ratio.

4. The Golden Ratio in the Nature
The golden ratio manifests throughout living things such as plants, animals and
throughout the human body and considered as an important part of human beauty
[24], [30]. For example, the golden the relationship lies in the balance between a
person’s height and the height at the navel, in the human face, in the ratio of the
length of the arm to section formed by the forearm and hand [5].

Geometric proportions are the fundamental part of the nature which act as the
key part of the observed order in the structure of beautiful patterns. Consider, for
example, the study of pattern observed in leaf-arrangement, on which the leaves
spread all around the stem, so that new leaves don’t block sun from older leaves,
or so that the maximum amount of rain absorbed down to the roots. This regular
arrangement is an important aspect of plant form, known as spiral phyllotaxis and
is common in arrangement of seeds, scales on a cone axis, sunflower heads, etc.
[17] and [26]. Since nature has many different methods of survival, we do not see
this kind of spiral growth in all plants. A spiral is a curve starts from the origin
and moves away from this point as it turn around it. A simple way to rearrange
circular (x, y) pints having the same distance from the center into a spiral form is
to multiply x and y by a factor t which increases for each point and then rotate
the point (tx, ty) by angle θ, see Figure 1. To see the difference, three values has
been used as rotation parameter for generating the patterns, two of which looks
not successful to mimic the sunflowers spirals.

5. The Golden Ratio in Architecture
Looking beautiful is an interesting and challenging problem when designing a
good structural system. The relationship of smaller parts to the whole can affect
whether such system seems threatening, welcoming or impressive. The interrela-
tion between proportion and good looking has been employed since the beginning
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(a) The rotation value
each time is π

16
(3−

√
5).

(b) The rotation value
each time is π

2
(3−

√
5).

(c) The rotation value
each time is π(3−

√
5).

Figure 1: Simulated spirals in a sunflower with different rotation values, source
author own programming.

of history in many works of art and architecture. Geometrical analysis of many
Persian historical building has proven that a complete of proportions, in particu-
lar the golden ratio, was widely used in Persian architecture and it was the basis
of Persian aesthetics. In many Persian building, the plan and elevation were set
out in a framework of squares and equilateral triangles, whose intersections gave
all the important fixed points, such as the width and height of doors; the width,
length and height of galleries. A building was not, therefore a collection of odd
components, but a harmonious configuration of proportionally related element,
which gave movement to space and satisfied the eye. The golden ratio has been
masterly used in the design of the Taj-al-Mulk dome date 1088 A. D., in Jami
mosque in Isfahan. The dome has an outer diameter of 11.7 m and height of 20 m
from the ground level. Its thickness decreases from the base to the apex [13].

6. Digits of the Golden Ratio as a Random Sequence
Compare for example the following sequences of heads and tails generated by a
fair coin, which have the same ( 12 )

20 probability of occurring:

TTHHHTHHTTHHHTHTTTHT
TTHHTTHHTTHHTTHHTTHH,

based on the definition of the ’randomness’ as being unable to ’predict’ future
events based on past events, most people would probably agree with the random-
ness of the second sequence while the first is not.

A sequence of independent random numbers with a specified distribution means
that each number was obtained just by chance, have no effect on the observed value
of the other sequence numbers, and that each number has a specified probability
of falling in any given range of values. A uniform distribution on a finite set of
numbers is one in which each possible number is equally probable. In a sequence
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of (uniform) random digits, each of the ten digits 0 through 9 will occur about 1
10

of the time.
There are many computer aided algorithm developed to produce random num-

bers that could be either a binary sequences or an integer sequences. This random
number generators are actually deterministic algorithms which produce numbers
which we expect to resemble truly random ones in some sense. Since fixing the
starting point of these deterministic algorithms make it possible to predict the sub-
sequently generated numbers perfectly, none of these algorithm can produce truly
random numbers. This explains why such numbers are called ’pseudo-random
numbers’. Random number are used by many practical applications including
computer simulations, random sampling, numerical analysis, cryptography and
communications industry [20].

Different statistical test are designed to test the null hypothesis (H0) which
states a given pseudo-random number generator produces ’sufficiently’ random
sequence of numbers for their intended use [2]. These randomness tests are proba-
bilistic and involve two types of errors. If the data is random and (H0) is rejected,
type I error is occurred and if the data is non-random and H0 is accepted, type II
error is occurred.

In the following, the first 100,000 of decimal digits of golden ratio has been ex-
amined to answer the question of whether these digits form a sequence of random
digits. These digits were obtained using PhiCalculator, an easy-to-download-and-
use program that compute the golden ratio up to 1 million decimal digits, devel-
oped by Alireza Shafaei, which is available for download through https://alireza-
shafaei.software.informer.com.

First of all, Table 1 shows the frequency of the digits 0 through 9 for the first
100,000 decimal digits of the golden ratio, confirming these digits are uniformly
distributed.

Table 1: Counts of the first 100,000 decimal digits of golden ratio.

digits 0 1 2 3 4
frequency 9986 9963 9950 10079 10041

digits 5 6 7 8 9
frequency 10016 9975 9988 1008 9994

The result of the chi-square test (χ2=1.3112, df=9, p-value= 0.9983) applied
on the counts obtained in Table 1 do not reject the null hypothesis that each of
the ten digits 0 through 9 has been occurred with probability 1

10 .
Then the Durbin-Watson (DW) test, is used for testing the null hypothesis

claiming the specific lag k autocorrelation in the sequence of the first 100,000
decimal digits of the golden ratio is zero. Autocorrelation means that the data
has correlation with its lagged value. Table 2 shows the results of conducting the
Durbin-Watson (DW) tests for the first through fifth-order autocorrelation of this
sequence, which shows no significant autocorrelation through fifth order. The same
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results are obtained for higher orders of k. Therefore, according to the results of
both chi-square and DW tests the digits of the first 100,000 decimal digits of the
golden ratio are indistinguishable from a random sequence, i.e. each element of
the sequence is uncorrelated of each other. We conclude that there is no specific

Table 2: Durbin-Watson test applied on the first 100,000 decimal digits of golden
ratio.

lag Autocorrelation D-W Statistic p-value
1 +0.002 1.996 0.476
2 −0.002 2.003 0.578
3 +0.001 1.999 0.692
4 +0.002 1.995 0.408
5 −0.000 2.000 0.776

pattern in the decimal digits of the golden ratio.
In the following it is shown that the binary digits of the golden ratio behaves

like a random binary sequence, as well. For this aim, the first 45098 bits excluding
the very first of the golden ration are examined. The observed frequencies of the
numbers of 0s and 1s in this binary sequence are 22529 and 22569, respectively.
While half-and-half frequencies is expected under the randomness hypothesis. The
result of the chi-square test (χ2=0.035, df=1, p-value= 0.8506) confirms that the
observed versus expected discrepancy is not significant from statistical point of
view. Furthermore, applying the DW tests reveals no autocorrelation of this binary
sequence for the first through arbitrary higher order k. The WaldWolfowitz runs
test on the first 45098 golden ratio bit sequence (p-value= 0.4513) indicates that
the corresponding bit generating process is random, i.e. the rest of the sequence
can not be predicted from any previous sequence.

Conflicts of Interest. The author declares that there are no conflicts of interest
regarding the publication of this article.

References

[1] Md. Akhtaruzzaman and Amir A. Shafie, Geometrical substantiation of Phi,
the golden ratio and the baroque of nature, architecture, design and engineer-
ing, Int. J. Arts 1 (1) (2011) 1− 22.

[2] D. Biebighauser, Testing random number generators, unpublished re-
search paper, University of Minnesota, (2000). www- users.math.umn.edu/

garrett/students/reu/pRNGs.pdf.

[3] L. Corbusier, Modulor I and II, Translated by P. de Francia and R. A. Bostock,
Harvard University Press, Cambridge, 1980.



Golden Ratio: The Mathematics of Beauty 169

[4] L. M. Dabbour, Geometric proportions, The underlying structure of design
process for Islamic geometric patterns, Front. Archit. Res. 1 (4) (2012) 380−
391.

[5] G. Dóczi, The Power of Limits: Proportional Harmonies in Nature, Art, and
Architecture, Shambhala publications, Buenos Aires, 1996

[6] R. A. Dunlap, The Golden Ratio and Fibonacci Numbers, World Scientific
Publishing Co., New Jersey, 1997.

[7] U. Eco, Art and Beauty in the Middle Ages, Translated by H. Bredin, Yale
University Press, New Haven, 2002.

[8] K. Fink, W. W. Beman and D. E. Smith, A Brief History of Mathemat-
ics: An Authorized Translation of Dr. Karl Fink’s Geschichte der Elementar-
Mathematik, The Open Court Pub. Co., Chicago, 1900.

[9] R. H. Fischler, The Shape of the Great Pyramid, Wilfrid Laurier University
Press, Waterloo, 2000.

[10] R. Fletcher, Golden proportions in a great house: Palladios Villa Emo. In M.
J. Ostwald (eds.) Architecture and Mathematics from Antiquity to the Future:
Volume II: The 1500s to the Future, chapter 55, 131− 138, Birkhäuser Basel,
New York, 2015.

[11] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers,
Fifth edition. The Clarendon Press, Oxford University Press, New York, 1979.

[12] M. Hejazi, Geometry in nature and Persian architecture, Build. Environ. 40
(2005) 1413− 1427.

[13] M. Hejazi and F. Mehdizadeh Saradj, Persian Architectural Heritage: Archi-
tecture, Structure and Conservation, WIT Press, Southampton, 2014.

[14] G. L. Hersey, Architecture and Geometry in the Age of the Baroque, The
University of Chicago Press, Chicago, 2002.

[15] R. Hillenbrand, Islamic Art and Architecture, Thames and Hudson, Ltd., New
York, 1999.

[16] S. Iwamoto and K. Akifumi, On golden inequalities, 1504 (2006) 168− 176.

[17] R. V. Jean, Phyllotaxis: A Systemic Study in Plant Morphogenesis, Cam-
bridge University Press, Cambridge, 1994.

[18] J. Kappraff, A course in the mathematics of design, Comput. Math. Appl. 12
(3-4) (Part 2) (1986) 913− 948.



170 H. Ghorbani

[19] E. Kilic, The Binet formula, sums and representations of generalized Fi-
bonacci p-numbers, Eur. J. Comb. 29 (3) (2008) 701− 711.

[20] D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical
Algorithms, Addison-Wesley Professional Press, Massachusetts, 1997.

[21] M. Livio, The Golden Ratio: The Story of Phi, the World’s Most Astonishing
Number, Broadway Press, New York, 2008.

[22] N. A. Megahed, Towards math-based architectural education in Egyptian
engineering faculties, Nexus Netw. J. 15 (3) (2013) 565− 581.

[23] F. Nabavi and Y. Ahmad, Is there any geometrical golden ratio in traditional
Iranian courtyard houses, Int. J. Architectural Res. 10 (1) (2016) 143− 154.

[24] D. Persaud-Sharma and J. P ÓLeary, Fibonacci series, golden proportions,
and the human biology , Austin J. Surgery 2 (5) (2015) 1066− 1073.

[25] A. S. Posamentier and I. Lehmann, The Fabulous Fibonacci Numbers,
Prometheus Books publisher, New York, 2007.

[26] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of Plants,
Springer-Verlag, New York, 2004.

[27] A. Samalavičius, Ideas and Structures: Essays in Architectural History, Eu-
gene, Oregon: Resource Publications/An Imprint of Wipf and Stock Publish-
ers, Portland, 2011.

[28] S. K. Sen and R. P. Agarwal, Golden ratio in science, as random sequence
source, its computation and beyond, Comput. Math. Appl. 56 (2) (2008)
469− 498.

[29] I. Stewart, Nature’s Numbers: The Unreal Reality of Mathematics, Basic
Books Press, New York, 2008.

[30] A. F. Vico-Prieto, A. Cagigas, J. M. Rosas and J. E. Callejas-Aguilera, Ex-
perimental approach to the study of beauty: The role of golden proportion,
Psicológica 37 (2) (2016) 187207.

[31] Wikipedia contributors, Euclid-Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/wiki/Euclid.

[32] K. Williams (eds.), Persian Architecture and Mathematics, Birkhäuser Basel,
Turin, 2012.

Hamid Ghorbani
Department of Statistics,
University of Kashan,
Kashan, I. R. Iran
E-mail: hamidghorbani@kashanu.ac.ir


