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Abstract

In this paper, numerical techniques are presented for solving system of
nonlinear integro-differential equations. The method is implemented by ap-
plying hybrid of Legendre polynomials and Block-Pulse functions. The op-
erational matrix of integration and the integration of the cross product of
two hybrid function vectors are derived in order to transform the system of
nonlinear integro-differential equations into a system of algebraic equations.
Finally, the accuracy of the method is illustrated through some numerical
examples and the corresponding results are presented.
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1. Introduction

Integral and differential equations play an important role in different branches
of sciences and engineering. A large class of initial and boundary value prob-
lems which are appeared in control, mechanics, economics, electrical engineer-
ing, medicine, etc., can be converted to integral, differential or specially integro-
differential equations [1].
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Many kinds of basic functions have been employed in numerical solutions of
different types of integral and integro-differential equations. Orthogonal functions
are a large class of these basic functions, which can be classified into three families
[4]:

i) Piecewise constant orthogonal functions, such as Block-Pulse, Haar, Walsh, etc.
[5, 6].

ii) Orthogonal polynomials, such as Legendre, Chebyshev, Hermite, etc. [13].

iii) Sine-Cosine (Fourier) functions [7].

In recent years, hybrid functions have been applied extensively by many authors,
such as hybrid of Taylor and block-pulse functions [14], hybrid of Chebyshev and
block-bulse functions [17], hybrid of Bernstein and block-bulse functions [2], etc.
The high accuracy of these basic functions in the numerical solutions of different
types of integral and integro-differential equations, is one of the biggest advantages
of hybrid functions.

Maleknejad and Tavassoli Kajani [11] were the first to use the Hybrid of Legen-
dre and Block-Pulse (HLBP) functions for the solution of integral equations. More
specifically, they used these basic functions to estimate the solution of the linear
Fredholm integral equations of the second kind. Afterward, the authors in [15]
used the HLBP functions for the solution of linear Fredholm Fuzzy integral equa-
tions, as well as these basic functions have been used in [8] for numerical solution
of Fredholm and Volterra integral equations. Also, numerical solution of nonlin-
ear integro-differential equations and system of nonlinear Fredholm-Hammerstein
integral equations, using HLBP functions, were considered in [12] and [16], respec-
tively.

In this paper, by using hybrid of Legendre polynomials and block-pulse func-
tions, we propose a numerical approach for solving a system of nonlinear integro-
differential equations of the second kind as in (1) below:

l∑
j=1

αijuj(x) +
l∑

j=1

βiju
′

j(x) = fi(x)

+
l∑

j=1

∫ 1

0

kij(x, t)φij(t, uj(t))dt, i = 1, 2, . . . , l,

uj(0) = uj0, j = 1, 2, . . . , l,

(1)

where the functions fi(x) ∈ L2[0, 1) and kij(x, t) and φij(t, uj(t)) belong to
L2 ([0, 1)× [0, 1)) are known for i, j = 1, 2, . . . , l. uj(x) are unknown functions
for j = 1, 2, . . . , l. The operational matrix of integration and the integration of the
cross product of two hybrid function vectors will be derived in order to transform
the nonlinear integro-differential equations into a system of algebraic equations.
Finally, some numerical examples and the corresponding results will be presented
to illustrate the accuracy of the method.
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2. Properties of Hybrid Functions

2.1 Hybrid of Legendre and Block-Pulse Functions

Block-pulse functions are a set of orthogonal functions with piecewise constant
values which are usually applied as a useful tool in the analysis, synthesis, identi-
fication and other problems of control and systems science. As proposed by many
authors, a set of block-pulse functions is usually defined as follows [10]:

Definition 2.1. A set of block-pulse functions are defined on the interval [0, 1)
for n = 1, 2, . . . N as in Equation (2) below:

bn(x) =

{
1 n−1

N ≤ x < n
N ,

0 otherwise.
(2)

These functions are disjoint on the interval [0, 1). It means for n,m =
1, 2, . . . , N , we have bn(x)bm(x) = δnmbn(x). Also, the block-pulse functions are
orthogonal and complete set in L2[0, 1).

On the other hand, Legendre polynomials obey the following three-term recur-
rence relation known as Bonnet’s recursion formula on the interval [−1, 1]:

L0(x) = 1,

L1(x) = x,

Lm(x) =
2m− 1

m
xLm−1(x)−

m− 1

m
Lm−2(x), m = 2, 3, . . . .

The set of these polynomials is complete and orthogonal in the Hilbert space
L2[−1, 1]. However, the hybrid of Legendre polynomials and block-pulse functions
is defined as follows:

Definition 2.2. For m = 0, 1. . . . ,M − 1 and n = 1, 2, . . . , N , the hybrid of
Legendre polynomials and block-pulse functions are defined on the interval [0, 1)
as in (3) below:

bnm(x) =

{
Lm(2Nx− 2n+ 1) n−1

N ≤ x < n
N ,

0 otherwise.
(3)

Here, M and N are the order of Legendre polynomials and block-pulse func-
tions, respectively. The set of these hybrid functions is complete and orthogonal
in L2[0, 1).
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2.2 Function Approximation

Any function u(x) ∈ L2[0, 1) can be expanded by the hybrid of Legendre and
block-pulse functions as:

u(x) =
∞∑

n=1

∞∑
m=0

unmbnm(x), (4)

where,

unm =
(u(x), bnm(x))

(bnm(x), bnm(x))
=

∫ 1

0
u(x)bnm(x)dx∫ 1

0
bnm(x)bnm(x)dx

,

which (·, ·) denotes the inner product. If the infinite series in (4) is truncated at
some values of M and N , then this equation can be written as:

u(x) ≃ uNM (x) =
N∑

n=1

M−1∑
m=0

unmbnm(x) = BT (x)U, (5)

where U and B(x) are MN × 1 vectors in the form of:

U = [u10, u11, . . . , u1(M−1), u20, . . . , uN(M−1)]
T ,

B(x) = [b10(x), b11(x), . . . , b1(M−1)(x), b20(x), . . . , bN(M−1)(x)]
T . (6)

Similarly, bivariate function k(x, t) ∈ L2([0, 1) × [0, 1)), can be approximated by
the hybrid of Legendre and block-pulse functions as:

k(x, t) ≃ kNM (x, t) = BT (x)KB(t), (7)

where K is a MN ×MN matrix which its elements for i, j = 1, 2, . . . ,MN are
computed as in (8) below:

Kij =
(Bi(x), (k(x, t), Bj(t)))

(Bi(x), Bi(x))(Bj(t), Bj(t))
. (8)

2.3 Operational Matrix of Integration

Consider the MN × 1 vector B(t) on the interval [0, 1), defined in (6), which
its elements are Hybrid Legendre polynomials and block-pulse functions. The
integration of the vector is given by:∫ x

0

B(t)dt ≃ PB(x),
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where P is the MN ×MN and we call it operational matrix for integration of
hybrid Legendre polynomials and block-pulse functions. It appears as [3]:

P =


E H · · · H
0 E · · · H
...

...
. . .

...
0 0 · · · E

 ,

which H and E are M ×M matrices and defined as:

H =
1

N


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 .

E =
1

2N



1 1 0 0 · · · 0 0 0
−1

3 0 1
3 0 · · · 0 0 0

0 − 1
5 0 1

5 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · − 1

2M−3 0 1
2M−3

0 0 0 0 · · · 0 − 1
2M−1 0


.

Also we define the matrix D, the integration of the cross product of two hybrid
function vectors B(x) in (6), as follows:

D =

∫ 1

0

B(t)BT (t)dt. (9)

The matrix D can be obtained as:

D =


D1 0 · · · 0
0 D2 · · · 0
...

...
. . .

...
0 0 · · · DN

 ,

where Di is the M ×M diagonal matrix and independent of i, that is given by:

Di =
1

N


1 0 · · · 0
0 1

3 · · · 0
...

...
. . .

...
0 0 · · · 1

2M−1

 .

We use the matrix D to convert the Fredholm part of integro-differential equations
to an algebraic equation.
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3. Solution of System of Nonlinear Integro-
Differential Equations

The set of hybrid Legendre polynomials and block-pulse functions is complete
and orthogonal in L2[0, 1). Hence, we should consider the systems of integro-
differential equations in the interval [0, 1). Nevertheless, if this assumption is
not satisfied, we can convert the system into the mentioned interval by a simple
change of variables. Consider the following system of nonlinear integro-differential
equations of the second kind:

l∑
j=1

αijuj(x) +
l∑

j=1

βiju
′

j(x) = fi(x)

+
l∑

j=1

∫ 1

0

kij(x, t)φij(t, uj(t))dt, i = 1, 2, . . . , l,

uj(0) = uj0, j = 1, 2, . . . , l,

(10)

where the functions fi(x) ∈ L2[0, 1) and kij(x, t) and φij(t, uj(t)) belong to
L2 ([0, 1)× [0, 1)) are known for i, j = 1, 2, . . . , l. uj(x) are unknown functions
for j = 1, 2, . . . , l.

Let’s suppose

φij(t, uj(t)) = ψij(t), 0 ≤ t < 1. (11)

Now by considering Equations (5) and (7), each function approximation in the set
defined as the following:

uj(x) ≃ BT (x)Uj ,

fi(x) ≃ BT (x)Fi,

kij(x, t) ≃ BT (x)KijB(t), (12)

ψij(t) ≃ BT (t)Ψij .

In above Equation (12), Uj and Ψij are MN × 1 vectors with unknown elements,
Fi are MN × 1 vectors and Kij are MN ×MN matrices with known elements,
for i, j = 1, 2, . . . , l.

Now, let us approximate u′j(x) as in (13) below:

u′j(x) ≃ U ′T
j B(x). (13)

We attempt to evaluate U ′
j in term of Uj . Hence,

uj(x)− uj(0) =

∫ x

0

u′j(t)dt ≃
∫ x

0

U ′T
j B(t)dt ≃ U ′T

j PB(x). (14)
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If we approximate uj(0) as a function by the hybrid functions, i.e. uj(0) =
UT
j0B(x), then Uj0 can be obtained as the following:

Uj0 =
[ M︷ ︸︸ ︷
uj(0), 0, . . . , 0,

M︷ ︸︸ ︷
uj(0), 0, . . . , 0, . . . ,

M︷ ︸︸ ︷
uj(0), 0, . . . , 0︸ ︷︷ ︸

NM

]T
.

Consequently, it follows from Equation (14) that,

UT
j B(x)− UT

j0B(x) ≃ U ′T
j PB(x),

and hence,

Uj − Uj0 ≃ PTU ′
j .

Now, substituting each of approximation functions (12) and (13) into the system
of integro-differential (10), we have:

l∑
j=1

αijB
T (x)Uj +

l∑
j=1

βijB
T (x)U ′

j = BT (x)Fi

+
l∑

j=1

∫ 1

0

BT (x)KijB(t)BT (t)Ψijdt,

(15)

Applying Equations (9) and (15) becomes:

BT (x)
l∑

j=1

αijUj +BT (x)
l∑

j=1

βijU
′
j = BT (x)Fi +BT (x)

l∑
j=1

KijDΨij ,

where i = 1, 2, . . . , l. Therefore,

l∑
j=1

αijUj +

l∑
j=1

βijU
′
j = Fi +

∑l
j=1KijDΨij , i = 1, 2, . . . , l. (16)

Finally, by multiplying PT in both sides of Equation (16) from the left and using
Equation (15) we get:

l∑
j=1

αijP
TUj +

l∑
j=1

βij(Uj − Uj0) = PTFi +
l∑

j=1

PTKijDΨij , i = 1, 2, . . . , l. (17)

The above Equation (17) is a system of NMl equations and NM(l2+l) unknowns.
These unknowns are the elements of Uj and Ψij vectors defined in Equation (12).
To calculate the other NMl2 required equations, we use the relationship between
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Uj and Ψij , which can be obtained from Equation (11). Actually, substituting the
collocation points

xs =
2s− 1

2NM
, s = 1, 2, . . . , NM,

into equation

φij(xs, X
T
j B(xs)) = ΨT

ijB(xs), i, j = 1, 2, . . . , l, (18)

another NMl2 required equations can be obtained. Combining Equations (17) and
(18), we get a system of nonlinear algebraic equations with NM(l2 + l) equations
an the same number of unknowns. The unknown vectors Uj can be obtained
by solving this system and consequently the solution of the system of integral
Equation (10) will be obtained by uj(x) = UT

j B(x), for j = 1, 2, . . . , l.

4. Numerical Examples
In this section, three examples are presented to illustrate the accuracy of the
proposed method. In each case, the absolute error of method with different values
of N and M , which have been computed by Maple 16, are tabulated and the
absolute error functions are plotted.

Example 4.1. Consider the following system of integro-differential equations:

u1(x) + u′2(x) =
93

35
x+

∫ 1

0

xt2u21(t)dt+

∫ 1

0

xt2u22(t)dt,

u2(x) + u′1(x) =
11

12
x2 + 1 +

∫ 1

0

x2tu21(t)dt−
∫ 1

0

x2tu22(t)dt,

with the initial conditions u1(0) = u2(0) = 0. The exact solutions of this system
are u1(x) = x and u2(x) = x2. The corresponding values of absolute errors with
N = 2 and M = 3 as well as N = 3 and M = 4 are given in Table 1. Also, the
absolute error functions with N = 2 and M = 3 are plotted in Figure 1, and with
N = 3 and M = 4 are plotted in Figure 2.

Example 4.2. Consider the following system of integro-differential equations:

u1(x) + 3u2(x)− u′2(x) = −1

9
x(1 + 2e3) +

∫ 1

0

ex−2tu21(t)dt+

∫ 1

0

xtu2(t)dt

u2(x) + 2u′1(x) + u′2(x) = 4e3x +
15

7
ex − x− 1

7
ex+7 +

∫ 1

0

xe−3tu31(t)dt

+

∫ 1

0

ex+tu22(t)dt
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Table 1: The corresponding values of absolute errors for Example 4.1.

Absolute error of (u1(x), u2(x)) Absolute error of (u1(x), u2(x))
x with N = 2 and M = 3 with N = 3 and M = 4

0.0 (2.239×10−6,5.486×10−7) (7.481×10−11,2.568×10−10)
0.1 (4.477×10−7,2.763×10−6) (5.700×10−9,3.491×10−8)
0.2 (2.131×10−6,1.159×10−5) (4.630×10−8,1.412×10−7)
0.3 (9.977×10−6,2.703×10−5) (1.567×10−7,3.243×10−7)
0.4 (2.309×10−5,4.909×10−5) (3.732×10−7,5.930×10−7)
0.5 (4.652×10−5,8.009×10−5) (7.319×10−7,9.591×10−7)
0.6 (7.496×10−5,1.156×10−4) (1.272×10−6,1.439×10−6)
0.7 (1.205×10−4,1.633×10−4) (2.032×10−6,2.054×10−6)
0.8 (1.832×10−4,2.231×10−4) (3.057×10−6,2.827×10−6)
0.9 (2.631×10−4,2.950×10−4) (4.389×10−6,3.787×10−6)

Figure 1: The absolute error functions of u1(x) (left figure) and u2(x) (right figure)
for Example 4.1 with N = 2 and M = 3.

with the initial conditions u1(0) = u2(0) = 1. The exact solutions of this system
are u1(x) = ex and u2(x) = e3x. The corresponding values of absolute errors with
N =M = 3 as well as N = 3 and M = 4 are given in Table 2. Also, the absolute
error functions with N = M = 3 are plotted in Figure 3, and with N = 3 and
M = 4 are plotted in Figure 4.
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Figure 2: The absolute error functions of u1(x) (left figure) and u2(x) (right figure)
for Example 4.1 with N = 3 and M = 4.

Table 2: The corresponding values of absolute errors for Example 4.2.

Absolute error of (u1(x), u2(x)) Absolute error of (u1(x), u2(x))
x with N = M = 3 with N = 3 and M = 4

0.0 (1.802×10−4,1.410×10−2) (5.860×10−6,9.993×10−4)
0.1 (5.282×10−4,5.794×10−3) (1.438×10−4,3.770×10−4)
0.2 (5.612×10−4,4.171×10−3) (3.528×10−4,2.522×10−4)
0.3 (1.083×10−3,1.169×10−3) (6.243×10−4,1.135×10−3)
0.4 (1.967×10−3,9.716×10−3) (9.874×10−4,2.473×10−3)
0.5 (2.821×10−3,1.370×10−3) (1.474×10−3,9.290×10−4)
0.6 (3.873×10−3,1.984×10−2) (2.066×10−3,3.753×10−3)
0.7 (6.119×10−3,2.069×10−2) (2.823×10−3,5.144×10−3)
0.8 (7.734×10−3,2.421×10−2) (3.816×10−3,3.399×10−3)
0.9 (8.969×10−3,5.602×10−2) (5.028×10−3,6.929×10−3)

Example 4.3. Consider the following system of integral equations:

u1(x) = − sin(5x) + x

(
23

125
cos(5)− 2

25
sin(5) +

2

125

)
+ x

(
4

9
e−3 − 1

9

)∫ 1

0

(
−xt2u1(t) + xtu2(t)

)
dt

u2(x) = e−3x + x

(
−2

5
cos(5) +

1

25
sin(5) +

1

5

)
+ x2

(
4

9
e−3 − 1

9

)
+

∫ 1

0

(
x(t+ 1)u1(t) + x2tu2(t)

)
dt
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Figure 3: The absolute error functions of u1(x) (left figure) and u2(x) (right figure)
for Example 4.2 with N =M = 3.

Figure 4: The absolute error functions of u1(x) (left figure) and u2(x) (right figure)
for Example 4.2 with N = 3 and M = 4.

with the exact solution u1(x) = sin(−5x) and u2(x) = e−3x. The maximum
absolute errors are reported in Table 3 for different values of M and N . As one
observes, the approximate solutions converge to exact solution rapidly when M
and N increase.

Also, the comparison among the Bessel polynomials method (BPM) for N = 15
[18], modified homotopy perturbation method (MHPM) for N = 10 [9], and the
presented method for N = 2 and M = 15 is shown in Table 4. Moreover, the
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absolute error functions with N = 2 and M = 15 are plotted in Figure 5.

Table 3: Maximum absolute errors for Example 4.3.

Maximum absolute error Maximum absolute error
N M of u1(x) of u2(x)

2 3 4.70×10−2 5.85×10−3

2 5 1.13×10−3 4.28×10−5

2 10 3.58×10−9 1.09×10−11

2 15 1.56×10−15 3.21×10−14

3 3 1.39×10−2 1.76×10−3

3 5 9.49×10−5 6.93×10−6

3 10 8.64×10−11 8.94×10−11

Table 4: The corresponding values of absolute errors of (u1(x), u2(x)) for Example
4.3.

Presented method for
x BPM [18] for N = 15 MHPM [9] for N = 10 N = 2 and M = 15

0.1 (6.85×10−12,9.41×10−13) (8.78×10−7,6.35×10−6) (1.63×10−16,1.86×10−15)
0.4 (5.84×10−13,4.23×10−12) (3.51×10−6,2.86×10−5) (1.75×10−16,1.84×10−15)
0.7 (1.15×10−12,8.24×10−12) (6.14×10−6,5.58×10−5) (6.75×10−17,2.05×10−14)
1 (1.49×10−12,1.30×10−11) (8.78×10−6,8.78×10−5) (2.16×10−15,6.30×10−14)

Figure 5: The absolute error functions of u1(x) (left figure) and u2(x) (right figure)
for Example 4.3 with N = 2 and M = 15.
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