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Abstract

Expressions for the Zagreb indices and coindices of the total graph, semi-
total point graph and of semi-total line graph of subdivision graphs in terms
of the parameters of the parent graph are obtained, thus generalizing earlier
existing results.
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1. Introduction

Topological indices are numerical quantities associated with a graph that are in-
variant under graph isomorphism. The interest in topological indices is due to their
applicability in quantitative structure–property relationship (QSPR) and quanti-
tative structure–activity relationship (QSAR) studies in chemistry [3, 12]. Many
of these topological indices are based on degrees of vertices [5].

Let G be a simple graph with the vertex set V (G) and the edge set E(G).
The number of vertices and number of edges of G will be denoted by n and m,
respectively. The edge connecting the vertices u and v is denoted by uv. The
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degree of a vertex v, denoted by dG(v), is the number of edges incident to it in G.
The first and second Zagreb index of G are defined as

M1(G) =
∑

u∈V (G)

dG(u)
2 =

∑
uv∈E(G)

[
dG(u) + dG(v)

]
and

M2(G) =
∑

uv∈E(G)

dG(u) dG(v) .

The Zagreb indices belong among the oldest degree–based molecular structure
descriptors and have been extensively studied. For details see the recent review [2]
and the references cited therein.

The first and second Zagreb coindices are defined as [1, 4]

M1(G) =
∑

uv/∈E(G)

u 6=v

[
dG(u) + dG(v)

]
and M2(G) =

∑
uv/∈E(G)

u 6=v

dG(u) dG(v) .

Details of their mathematical properties can be found in the survey [6].
Ranjini et al. [10] calculated the Zagreb indices and coindices of the line graph

of the subdivision graph of tadpole graph, wheel and ladder. Later Ramane et
al. [9] generalized these results by finding the Zagreb indices of the line graph of
the subdivision graph of any graph.

In [8], Mohanappriya and Vijayalakshmi obtained the Zagreb indices of the
total graph of the subdivision graph of tadpole graph, wheel and ladder.

In this paper we obtain the Zagreb indices and coindices of the total graph of
the subdivision graph of any graph, generalizing the results of Mohanappriya and
Vijayalakshmi [8]. In addition, we compute the Zagreb indices of semi-total point
graph and semi-total line graph of the subdivision graph of any graph in terms of
the parameters of the parent graph.

The subdivision graph S(G) is the graph obtained from G by inserting a new
vertex into each edge of G. The tadpole Tn,k is the graph obtained by joining one
vertex of the cycle Cn to the one end point of the path Pk. The wheel Wn+1 is
the graph obtained by joining all vertices of Cn to the new vertex.

The Cartesian product G1 × G2 of G1 and G2 is a graph with vertex set
V (G1)×V (G2) in which two vertices (u1, v1) and (u2, v2) are adjacent if and only
if either u1 = u2 and v1 is adjacent to v2 in G2 or v1 = v2 and u1 is adjacent to u2

in G1. The Ladder Ln is given by Ln = K2×Pn, where Pn is a path on n vertices
and Kn is the complete graph on n vertices.

2. Total Graph, Semi-Total Point Graph and
Semi-Total Line Graph

The vertices and edges of G are referred to as their elements. The total graph
of G, denoted by T (G), is a graph with vertex set V (T (G)) = V (G) ∪ E(G) in
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which two vertices are adjacent if and only if they are adjacent elements or they
are incident elements in G [7].

The semi-total point graph of G, denoted by T1(G), is a graph with vertex set
V (T1(G)) = V (G) ∪ E(G) in which two vertices are adjacent if they are adjacent
vertices in G or one is vertex and the other is an edge, incident to it [11].

The semi-total line graph of G, denoted by T2(G), is a graph with vertex set
V (T2(G)) = V (G) ∪ E(G) in which two vertices are adjacent if they are adjacent
edges in G or one is a vertex of G and the other is an edge, incident to it.

Observation 2.1. If u ∈ V (G), then dS(G)(u) = dG(u) and if v is a subdivision
vertex, then dS(G)(v) = 2.

Observation 2.2. If u ∈ V (G), then dT (G)(u) = 2dG(u), dT1(G)(u) = 2dG(u) and
dT2(G)(u) = dG(u).

Observation 2.3. If e = uv ∈ E(G), then dT (G)(e) = dG(u)+dG(v), dT1(G)(e) =
2 and dT2(G)(e) = dG(u) + dG(v).

Without loss of generality, referring to Figure 1, let e and f be adjacent edges
at v in G. Let e′ and e′′ be the subdivision edges of an edge e in S(G) and f ′ and
f ′′ be the subdivision edges of an edge f in S(G). Let ue and uf be the subdivision
vertices on edges e and f respectively in S(G).

Figure 1: A graph G and its congeners.
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The edge set E(T (S(G))) of the total graph of the subdivision graph can be
partitioned into sets E1, E2, E3, E4 and E5, so that

E1 = {uue}

where u ∈ V (G) and ue is the subdivision vertex in S(G),

E2 = {ue′}

where u ∈ V (G) and e′ is the subdivision edge in S(G),

E3 = {uee
′}

where ue is the subdivision vertex and e′ is the subdivision edge in S(G),

E4 = {e′e′′}

where e′ and e′′ are subdivision edges with common end vertex ue in S(G) and

E5 = {e′′f ′}

where e′′ and f ′ are subdivision edges with common end vertex v in S(G) where
v ∈ V (G).

We can easily check that, |E1| = 2m , |E2| = 2m , |E3| = 2m , |E4| = m , and

|E5| =
∑

v∈V (G)

dG(v)[dG(v)− 1]

2
= −m+

1

2

∑
v∈V (G)

dG(v)
2 .

Observation 2.4. If u ∈ V (G), then dT (S(G))(u) = 2dG(u), dT1(S(G))(u) =
2dG(u) and dT2(S(G))(u) = dG(u).

Observation 2.5. If ue is a subdivision vertex in S(G), then dT (S(G))(ue) = 4,
dT1(S(G))(ue) = 4 and dT2(S(G))(ue) = 2.

Observation 2.6. If e′ is a subdivision edge with one end vertex u ∈ V (G), then
dT (S(G))(e

′) = 2 + dG(u), dT1(S(G))(e
′) = 2 and dT2(S(G))(e

′) = 2 + dG(u).

3. Zagreb Indices
Theorem 3.1. Let G be a graph with n vertices, m edges and vertex set V (G).
Then

M1(T (S(G))) = 24m+ 8M1(G) +
∑

v∈V (G)

dG(v)
3 (1)

and

M2(T (S(G))) = 16m+ 18M1(G) +M2(G) +
7

2

∑
v∈V (G)

dG(v)
3 +

1

2

∑
v∈V (G)

dG(v)
4 .

(2)

Proof. By referring to Figure 1 and by Observations 2.4–2.6, we have
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M1(T (S(G))) =
∑

uv∈E(T (S(G)))

[
dT (S(G))(u) + dT (S(G))(v)

]
=

∑
uue∈E1

[
dT (S(G))(u) + dT (S(G))(ue)

]
+

∑
ue′∈E2

[
dT (S(G))(u) + dT (S(G))(e

′)
]

+
∑

uee′∈E3

[
dT (S(G))(ue) + dT (S(G))(e

′)
]

+
∑

e′e′′∈E4

[
dT (S(G))(e

′) + dT (S(G))(e
′′)
]

+
∑

e′′f ′∈E5

[
dT (S(G))(e

′′) + dT (S(G))(f
′)
]

=
∑

uv∈E(G)

[
2dG(u) + 4 + 2dG(v) + 4

]
+

∑
uv∈E(G)

[
2dG(u) + 2 + dG(u) + 2dG(v) + 2 + dG(v)

]
+

∑
uv∈E(G)

[
4 + 2 + dG(u) + 4 + 2 + dG(v)

]
+

∑
uv∈E(G)

[
2 + dG(u) + 2 + dG(v)

]
+

∑
e′′f ′∈E5

[
2 + dG(v) + 2 + dG(v)

]
=

[
8m+ 2M1(G)

]
+
[
4m+ 3M1(G)

]
+
[
12m+M1(G)

]
+

[
4m+M1(G)

]
+

∑
v∈V (G)

[
4 + 2dG(v)

] [dG(v)(dG(v)− 1)

2

]
from which Equation (1) follows.

M2(T (S(G))) =
∑

uv∈E(T (S(G)))

dT (S(G))(u) dT (S(G))(v)

=
∑

uue∈E1

dT (S(G))(u) dT (S(G))(ue)

+
∑

ue′∈E2

dT (S(G))(u) dT (S(G))(e
′)

+
∑

uee′∈E3

dT (S(G))(ue) dT (S(G))(e
′)

+
∑

e′e′′∈E4

dT (S(G))(e
′) dT (S(G))(e

′′)
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+
∑

e′′f ′∈E5

dT (S(G))(e
′′) dT (S(G))(f

′)

=
∑

uv∈E(G)

[
2dG(u)(4) + 2dG(v)(4)

]
+

∑
uv∈E(G)

[
2dG(u)(2 + dG(u)) + 2dG(v)(2 + dG(v))

]
+

∑
uv∈E(G)

[
(4)(2 + dG(u)) + (4)(2 + dG(v))

]
+

∑
uv∈E(G)

[
(2 + dG(u))(2 + dG(v))

]
+

∑
e′′f ′∈E5

[
(2 + dG(v))(2 + dG(v))

]

=
[
8M1(G)

]
+

4M1(G) + 2
∑

uv∈E(G)

[
dG(u)

2 + dG(v)
2
]

+
[
16m+ 4M1(G)

]
+ [4m+ 2M1(G) +M2(G)]

+
∑

v∈V (G)

[
2 + dG(v)

]2 [dG(v)(dG(v)− 1)

2

]

which directly implies Equation (2).

Corollary 3.2. [8] Let Tn,k be the tadpole graph, Wn+1 be the wheel and Ln be
the ladder. Then

M1(T (S(Tn,k))) = 64(n+ k) + 28,

M1(T (S(Wn+1))) = 147n+ 8n2 + n3,

M1(T (S(Ln))) = 270n− 284 .

Theorem 3.3. Let G be a graph with n vertices and m edges. Then

M1(T1(S(G))) = 24m+ 4M1(G) (3)

and

M2(T1(S(G))) = 16m+ 12M1(G) . (4)

Proof. By referring to Figure 1 we see that the edge set E(T1(S(G))) = E1 ∪E2 ∪
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E3. Therefore by Observations 2.4–2.6, we have

M1(T1(S(G))) =
∑

uv∈E(T1(S(G)))

[
dT1(S(G))(u) + dT1(S(G))(v)

]
=

∑
uue∈E1

[
dT1(S(G))(u) + dT1(S(G))(ue)

]
+

∑
ue′∈E2

[
dT1(S(G))(u) + dT1(S(G))(e

′)
]

+
∑

uee′∈E3

[
dT1(S(G))(ue) + dT1(S(G))(e

′)
]

=
∑

uv∈E(G)

[
2dG(u) + 4 + 2dG(v) + 4

]
+

∑
uv∈E(G)

[
2dG(u) + 2 + 2dG(v) + 2

]
+

∑
uv∈E(G)

[
4 + 2 + 4 + 2

]
=
[
8m+ 2M1(G)

]
+

[
4m+ 2M1(G)

]
+ 12m

from which Equation (3) immediately follows.

M2(T1(S(G))) =
∑

uv∈E(T1(S(G)))

dT1(S(G))(u) dT1(S(G))(v)

=
∑

uue∈E1

dT1(S(G))(u) dT1(S(G))(ue)

+
∑

ue′∈E2

dT1(S(G))(u) dT1(S(G))(e
′)

+
∑

uee′∈E3

dT1(S(G))(ue) dT1(S(G))(e
′)

=
∑

uv∈E(G)

[
2dG(u)(4) + 2dG(v)(4)

]
+

∑
uv∈E(G)

[
2dG(u)(2) + 2dG(v)(2)

]
+

∑
uv∈E(G)

[
(4)(2) + (4)(2)

]
resulting in Equation (4).

Theorem 3.4. Let G be a graph with n vertices, m edges and vertex set V (G).
Then
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M1(T2(S(G))) = 12m+ 5M1(G) +
∑

v∈V (G)

dG(v)
3 (5)

and

M2(T2(S(G))) = 8m+6M1(G)+M2(G)+
5

2

∑
v∈V (G)

dG(v)
3+

1

2

∑
v∈V (G)

dG(v)
4. (6)

Proof. For the edge set of T2(S(G)) it holds E(T2(S(G))) = E2 ∪ E3 ∪ E4 ∪ E5.
Therefore by Observations 2.4–2.6,

M1(T2(S(G))) =
∑

uv∈E(T2(S(G)))

[
dT2(S(G))(u) + dT2(S(G))(v)

]
=

∑
ue′∈E2

[
dT2(S(G))(u) + dT2(S(G))(e

′)
]

+
∑

uee′∈E3

[
dT2(S(G))(ue) + dT2(S(G))(e

′)
]

+
∑

e′e′′∈E4

[
dT2(S(G))(e

′) + dT2(S(G))(e
′′)
]

+
∑

e′′f ′∈E5

[
dT2(S(G))(e

′′) + dT2(S(G))(f
′)
]

=
∑

uv∈E(G)

[
dG(u) + 2 + dG(u) + dG(v) + 2 + dG(v)

]
+

∑
uv∈E(G)

[
2 + 2 + dG(u) + 2 + 2 + dG(v)

]
+

∑
uv∈E(G)

[
2 + dG(u) + 2 + dG(v)

]
+

∑
e′′f ′∈E5

[
2 + dG(v) + 2 + dG(v)

]
=

[
4m+ 2M1(G)

]
+
[
8m+M1(G)

]
+
[
4m+M1(G)

]
+

∑
v∈V (G)

(4 + 2dG(v))

[
dG(v)(dG(v)− 1)

2

]
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implying Equation (5).

M2(T2(S(G))) =
∑

uv∈T2(S(G))

dT2(S(G))(u) dT2(S(G))(v)

=
∑

ue′∈E2

dT2(S(G))(u) dT2(S(G))(e
′)

+
∑

uee′∈E3

dT2(S(G))(ue) dT2(S(G))(e
′)

+
∑

e′e′′∈E4

dT2(S(G))(e
′) dT2(S(G))(e

′′)

+
∑

e′′f ′∈E5

dT2(S(G))(e
′′) dT2(S(G))(f

′)

=
∑

uv∈E(G)

[
dG(u) (2 + dG(u)) + dG(v) (2 + dG(v))

]
+

∑
uv∈E(G)

[
2 (2 + dG(u)) + 2 (2 + dG(v))

]
+

∑
uv∈E(G)

(2 + dG(u))(2 + dG(v))

+
∑

e′′f ′∈E5

(2 + dG(v))(2 + dG(v))

=
∑

uv∈E(G)

[
2 (dG(u) + dG(v)) +

(
dG(u)

2 + dG(v)
2
) ]

+
∑

uv∈E(G)

[
8 + 2 (dG(u) + dG(v))

]
+

∑
uv∈E(G)

[
4 + 2 (dG(u) + dG(v)) + dG(u) dG(v)

]
+

∑
v∈V (G)

[
4 + 4dG(v) + dG(v)

2
] [dG(v)(dG(v)− 1)

2

]
=

[
2M1(G) +

∑
v∈V (G)

(dG(v))
3
]
+
[
8m+ 2M1(G)

]
+

[
4m+ 2M1(G) +M2(G)

]
+
[
2M1(G)− 4m

+ 2
∑

v∈V (G)

dG(v)
3 − 2M(G) +

1

2

∑
v∈V (G)

dG(v)
4 − 1

2

∑
v∈V (G)

dG(v)
3
]

which after rearrangements yields Equation (6).
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4. Zagreb Coindices
In [6] the following results were established:

Let G be a graph with n vertices and m edges. Then

M1(G) = 2m(n− 1)−M1(G),

M2(G) = 2m2 − 1

2
M1(G)−M2(G) .

In addition,
T (S(G)) has n+ 3m vertices and 6m+ 1

2M1(G) edges.
T1(S(G)) has n+ 3m vertices and 6m edges.
T2(S(G)) has n+ 3m vertices and 4m+ 1

2M1(G) edges.
Taking the above in mind, along with the results of Section 3, we get:

Theorem 4.1. Let G be a graph with n vertices, m edges and vertex set V (G).
Then

M1(T (S(G))) = 12m(n+ 3m− 3) + (n+ 3m− 9)M1(G)−
∑

v∈V (G)

dG(v)
3,

M2(T (S(G))) = m(72m− 28) +

[
12m− 22 +

1

2
M1(G)

]
M1(G)−M2(G)

− 4
∑

v∈V (G)

dG(v)
3 − 1

2

∑
v∈V (G)

dG(v)
4 ,

M1(T1(S(G))) = 12m(n+ 3m− 3)− 4M1(G),

M2(T1(S(G))) = 72m2 − 28m− 14M1(G),

M1(T2(S(G))) = 4m(2n+ 6m− 5) + (n+ 3m− 6)M1(G)−
∑

v∈V (G)

dG(v)
3,

M2(T2(S(G))) = m(32m− 14) +

[
8m+

1

2
M1(G)− 17

2

]
M1(G)−M2(G),

− 3
∑

v∈V (G)

dG(v)
3 − 1

2

∑
v∈V (G)

dG(v)
4 .
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