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Some Graph Polynomials of the Power Graph
and its Supergraphs
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Abstract

In this paper, exact formulas for the dependence, independence, vertex
cover and clique polynomials of the power graph and its supergraphs for
certain finite groups are presented.
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1. Introduction

Let T' be an undirected simple graph with edge set E(T'), and vertex set V(T"). We
use |I'| to denote the number of vertices of I'. A set of vertices in a graph such
that no two of them are adjacent, is called an independent set. For the graph T,
a set S of vertices is a clique, if every two distinct vertices in S are adjacent. The
clique number of I, w(I"), is the size of the largest clique in I". A vertex cover of a
graph is a set S of vertices such that each edge of the graph is incident to at least
one vertex of S. The dependence polynomial is introduced by Fisher and Solow
in [3]. For a graph I' this polynomial is defined as

fr(z)=1—-crz+cz® —c32> + -+ (—l)w(r)cw(p)z‘”(r),

where ¢, is the number of complete subgraphs of size k in I'. The clique polynomial
of T, Dr(z), is defined as Dr(z) = 1+c12+coz? +c323 +- - ~+cw(p)z“(r), where ¢y,
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is the number of cliques with £ vertices in I'. The relation between the dependence
and clique polynomials can be described as Dr(—z) = fr(z). The independence
polynomial of the graph I' is defined as Ir(z) = Y ,_o(=1)*ixz¥, in which iy
is the number of independent vertex sets of size k of I The dependence and
independence polynomials are in relation Ix(z) = fr(z). Let ¢ be the number of
vertex covers of size k of I and let |I'| = n. The vertex cover polynomial of I" which
is denoted by Wr(z) is defined as Ur(2) =1 —c12+c22% — 323 + -+ -+ (—1)"c, 2™
This polynomial is related to the independence polynomial by ¥ (z) = 2" Ir(271).

Following Sabidussi [11, p. 396], the A—join of a set of graphs {Gg}aca is
defined as the graph H with the vertex and edge sets

VH) = {(z,y) [zeV(A) &yecV(Ga)},
EH) = {(z,y)(@,y) | xz’ € E(A) or else x =2’ & yy' € F(G,)}.

If A is labeled and has p points, then the A—join of Hy, Ho, ..., H), is denoted by
A[Hy,H,, ..., Hp,).

If I'; and I's are two graphs with disjoint vertex sets, then the graph union
F1UF2 isa graph with V(F1UF2) = V(Fl)UV(F2) and E(Fl UFQ) = E(Fl)UE(Fg)
The join of two graphs I'y and I's, denoted by I'y + I'g, is a graph obtained from
I'; and T’y by joining each vertex of T'; to all vertices of I'y. Following Doglié [1],
for given vertices y € V(I'1) and z € V(I'2), a splice of 'y and T's by vertices y
and z, (I'1.T2)(y.2), is defined by identifying the vertices y and z in the union of
Fl and Fg.

Let G be a finite group. The order of x € G is denoted by o(x). Moreover,
we use T.(G) to denote the set of all element orders of G and Q;(G) stands for
the number of all elements of order i of G. The notation ¢ is used for the Euler’s
totient function. The power graph is introduced by Kelarev and Quinn in [7]. Two
vertices x and y are adjacent in the power graph if and only if one is a power of the
other. Following Feng et al. [2], let C(G) = {C1,...,Ck} be the set of all cyclic
subgroups of G and define L¢ to be the graph with vertex set C(G) in which two
cyclic subgroups are adjacent if one is contained in the other. For complete graph
Ky, where b; = ¢(|C;]) and C; € C(G), the power graph P(G) is isomorphic to
La[Ky, Ky,, ..., Ky,

Choose a finite group G. The cyclic graph I'g is a simple graph with vertex
set G. Two elements z,y € G are adjacent in the cyclic graph if and only if
(x,y) is cyclic [8]. For C(G) = {C4,...,Ck}, define Wg to be the graph with
vertex set C(G) in which two cyclic subgroups C; and C; are adjacent if one is
contained in the other or there exists a cyclic subgroup Cj such that C; C Cj
and C; C Cy. As aresult, I'q = Wg[Ky,, Kp,, ..., Ky, | with b; = ¢(|Ci]). Set
7e(G) = {a1,...,a;} and assume that Ag is a graph with vertex set 7.(G) and
edge set E(Ag) = {zy | z,y € m.(G), x|y or y|z}. As defined in [4, 5], the main
supergraph S(G) is a graph with vertex set G in which two vertices x and y are
adjacent if and only if o(z)|o(y) or o(y)|o(x). In [5], the authors have proved
that S(G) = Ag[Kq, (), - Ka,, (c)]- Note that the graphs S(G) and I'c are
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supergraphs of the power graph. We refer the reader to [10] for group theory and
to [13] for graph theoretical concepts and notations.

2. Results

In this section, we first state some results that will be kept throughout this paper.

Theorem 2.1. [5] Assume H is a graph with k vertices and G1,...,Gy are k
given graphs. Then the dependence polynomial of the graph H[G1,...,Gy] is

frie,cn(z) = Y ()]0 - fa,(2))
AeCpy i€EA

where Cy is the set of all subsets of vertices of H that corresponds to complete
subgraphs of H.

Theorem 2.2. [9] Let I'y and T'y be two graphs. Then

frigra(2) = fri(2) + fr.(2) — 1,
fF1+F2(Z) = fF1(Z)fF2(z)'

Theorem 2.3. [12] IfT'y and Ty are two graphs, then
f(F1~F2)(y,Z) ('T) = fF1 (.f) + fF2 (J?) - (1 - I)

By using Theorem 2.1 and this fact that fx, (2) = (1—2)", the following result
holds:

Corollary 2.4. The dependence polynomials of graphs P(G) = Lg[Kp,, - .., Kp,],
S(G) = AglKo, (), - Ka, (@) and ' = We[Ky,, ..., Ky,] are as follows:

frez) = > )AT[a-0-2)°

AGCLG I€EA

fs@)(z) = Z \AIH (1= 2)2:lD),
AeChaq i€A

fol) = % (oM T[a-a- ey
A€Cw, ieA

where Cr,, Ca, and Cyy,, are the set of all subsets of vertices of La, Ag and
Wg corresponding to complete subgraphs of Lo, Ag and Wq, respectively.

By using the relationship between the dependence and independence, the vertex
cover and the clique polynomials and also this fact that fK—n(z) =1—nz, we have
the following result for the graph S(G).
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Corollary 2.5. The independence, the vertex cover and the clique polynomials of
the graph S(G) are:

Dsiey(z) = Y. (DT =@+ 2)2:9),
A€Ca, i€A
Is(2) = Y ()] 2. (G,
AECQ €A
Usioy(z) = 29 Y )] (@)=,
AGCQ €A

where Ca,, and Cx_; are defined similar to Theorem 2.1.

In the following results, we apply Theorems 2.1, 2.2 and 2.3 in order to compute
the polynomials of the dihedral, semi-dihedral and dicyclic groups which can be
presented as follows:

Dy, = <a,bla" =b*>=1,bab=a"" >,
SDg, = <a,bla’™ =b®=1,bab=0a’""1 >,
Ty = <a,bla® =1,a"=b*btab=0a""'>.

Theorem 2.6. For anyn >0,

fro, (2) =1 =2)((1—2)""' —nz) — 1.

Proof. By the definition of a cyclic graph and also the structure of dihedral groups,
we have I'p, = P3[K,_1, K1, K,|. Now, applying Theorem 2.1 for the path P3
with vertex set V(P3) = {1, 2,3}, we deduce that Cp, = {{1}, {2}, {3}, {1, 2},{2,3}}.
Therefore,

fro,, (2) = —(1=fk,.(2)) = (1 = fx,(2)) = (1 = f(2))
+ (1= fr, ()1 =, (2)) + (1= [ry (2)) (X = S (2))
= —(1-(1-2"1H=(1-(1-2)-(1-(1-n2)
+ 1-1=2"H1-(1=-2)+(1-(1-2)1~-(1-n2)
= 1-2)(A-2)""1=nz) -1
Hence the result follows. O

The following result is an immediate consequence of the previous theorem.

Corollary 2.7. For any n > 0,

Dr,, (2)=(1+2)((1+ 2" nz) 1.
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Theorem 2.8. For anyn >0,
Irp, (2)=(1-2)"1-nz+2)—2z—1
Proof. Tt is easy to see that I'p, = P3[K,_1, K1, K,]. Applying Theorem 2.1 for

the path P3 with vertex set V/(P3) = {1,2, 3}, we have C; = {{1}, {2}, {3}, {1,3}}.
Thus,

fro () = (1= fr(2) = (1= [k () = (1 = [, (2))
+ (= fr (@) = fr (2) + (1= [k, (2)) (1 =[x, (2))
= 1-2"1-nz+z2)—2z—-1.
Now the result follows from Ir,, (2)= fFDzn (2). O

By the relationship between the independence polynomial and the vertex cover
polynomial, the following result holds.

Corollary 2.9. U, (2) =2*"(1—2z"1)"(1 —nz ' +271) = 2271 — 22",
We now take the dicyclic group T}, into account.
Theorem 2.10. For anyn >0,
fre, (2)=(01- 2)?" +nz(z —1)%(z - 2) — 1.

Proof. Assume that W is the graph depicted in Figure 1. Then, we can write
Ir,, = W[Kan—2, Ko, Ko, K, -+ , Ks], where there are n+1 copies of the complete
graph K5. Therefore, by Theorem 2.1,

n+2
Figure 1: The graph W related to the cyclic graph of T},.

CW:{{l}’{2}7{3}"" ,{7’L+2},{1,2},{2,3},{2,4},-~- ,{2,7’L+2}},

and so

fFT4n (Z)

(1= fR202(2) = (1= [, (2)) =(1 = [k, (2)) = -+ = (L = [, (2))
+ (1= [k, (2)) (1 = [, (2)) + -+ (1 = [k, (2)) (1 = [, (2))

n

+ (1 _sznfz(Z))(l_sz(Z))
= (1-2"4nz(z-1)3*2-2) - 1.
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This completes the proof. O
Corollary 2.11. Dr,, (z) = (1+2)** —nz(—z—-1)*(—z-2) - 1.

Theorem 2.12. Let n > 0. Then

Ir,, (2) = —dnz+ (=) (2nz — 22)(22)"
+ Z(—l)in(n ) _(n '_ (i=2)) (2nz — 22)(22)"!
prs (i—1)!
B AL L R U ) P

Proof. According to the structure of W, W is the graph union of a single vertex
at node 2 and the graph K, ;. Therefore, the set Cj; can be decomposed into
singleton subsets, two-element subsets, ..., (n + 1)—element subsets. We have

FTM,, = W[K271—27Ea Ey 727 e 772]

By applying Theorem 2.1 for singleton subsets and also for (n 4 1)—element sub-
sets, the first and the second terms of the formula are obtained. Since the graph
corresponding to the vertex 1 is different from those corresponding to the other
vertices, we consider two different categories of subsets: subsets containing vertex
1, and those which do not contain vertex 1. We know that the number of sub-
sets with ¢ elements, 1 < i < n+1, is (";H) Moreover, the number of subsets
containing vertex 1 is W and the number of subsets which do not

contain vertex 1 is w Now, the result follows from Theorem 2.1

and so Irp, (2) = fFT4" (2). O

The following result is an immediate consequence of the previous theorem.

Corollary 2.13. Letn > 0. Then,

Up,, (2) = 2"[—4nz7'+ (-1)" (227t — 2271 (227 )"
+ Z(il)zn(n — 1)(Z _(le)'— (i—2)) (2nz' — 257 1y(2- 1y~
=2 '
+ Z(_l)ln(n - 1) .. Z('n — (Z - 1)) (2271)1-].

We now consider cyclic groups. Suppose d;, 1 < i < ¢, are all divisors of n
different from n. Then P(Z,) = K¢(n)+1 + An[K¢(d1)7K¢(d2)7 e ,K¢(dt)], where
A, is the graph with vertex and edge sets V(A,) ={d; | 1,n # d;|n,1 < i <t}
and E(A,) = {did; | di|d;,1 <i < j <t}, respectively [9].
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Theorem 2.14. Let n > 0. Then

Iz (@) = (L =a)* ™+ 3 ()T - (L= a)?),

AECAn i€A
where Ca,, s defined similar to Theorem 2.1.

Proof. The proof follows from Theorem 2.1 and Theorem 2.2. O

In what follows, we compute all polynomials for the power graph of groups
Dgn, T4n and SDgn

Theorem 2.15. Let n > 0. Then

frwon (@) = (1=2z)[-x(n 1)
+ (1—2)%™ Z 1)1l H ) ?dd)],
AeCa,, i€A

where Ca,, s defined similar to Theorem 2.1.

Proof. Note that P(Da,,) can be written as P(Day,) = S, . P(Z,), where S, is the
star graph with root vertex of degree n — 1 and P(Z,,) is an induced subgraph of
P(Day,) obtained from (a). Hence, by Theorems 2.3 and 2.14,

fray (@) = fs.(@)+ fpz,(z) — (1 —2)
= (I-2)1+n-1)(-2)-(1-2)
+ (1= g)tmHt Z 1Al H 1— ) ?(di))
AECa, icA

= (-a)-a(n-1)
D LRED DRCEE | (ENEF

A€Ca, icA
which completes the proof. O
The dependence polynomial of P*(Ty,) is the subject of our next result.
Theorem 2.16. For anyn > 0,

fremn(@) = (1-2)[na® —2nax

+ (1—z)PCm-t Z Al H x)?dd)].

AECA2 n i€A



20 Asma Hamzeh
|

Proof. Following Hamzeh and Ashrafi [6], we define the rooted graph B to be
B = K; + (U, K3) with root vertex at node r, where V(K;) = {r}. We consider
P*(Z2y) as a rooted graph with root vertex at node a such that a is adjacent to all
vertices of this graph. Moreover, we construct P*(7Ty,) by identifying the vertex
a in P*(Za,) and the vertex r in B, i.e. P*(Ty,) = P*(Zapn).B. By the graph
structure of B, w(B) = 3 and so fp(z) = 1 — (2n + 1)z + 3nz? — nz3. Now by
Theorems 2.3 and 2.14 and the dependence polynomial of the graph B,

frerny(®) = fpe(zo0) (@) + fB(2) — (1 —2)

= (1-2z)na®—2nz

+ (1 —z)PCm-t Z Al H x)? )],

A€Ca,, i€A
Consequently, the proof is completed. O

We now compute the dependence polynomial of P*(SDsg,,).

Theorem 2.17. Let n > 0. Then

fre(speny(@) = —na®+3na? — dna
+ (1 _ m)¢(4n) Z |A\ H ¢(d ))
AGCA4n i€A

Proof. Similar to the proof of Theorem 2.16, we define the rooted graph B to be
B = K; + (U, K2) with root vertex at node r, where V(K;) = {r}. We also
consider P*(Z,,) as a rooted graph with root vertex at node a such that a is
connected to all other vertices of P*(Zy,,). Moreover, we construct another graph
A by identifying the vertex a in P*(Z4,) and the vertex r in B, i.e. A = P*(Zyy,).B.
By the graph structure of P*(SDg,,), it can be seen that P*(SDg,) = A U Ka,,.
Thus by Theorem 2.2,

fa(@) + fry () =1
= fa(z)+1-(2n)x -1
falz) —2n.

fpe(sDgn) ()

Next, we compute the dependence polynomial of the graph A. By Theorem 2.3
and the dependence polynomial of B,

falz) = fpr(z,) (@) + f(2) — (1 —2)

= (1—x)%¢n Z il H 2)?(di))

AeCa,, i€EA

+ 1—2n+ 1)z +3n2® —na® — (1-2).
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As a consequence,

fp(spsy(x) = —na®+3nz® —dna
S Z (—1)Al H(1 — (1 — z)?()),
A€Cay, €A
The proof is completed. O
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