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Some Graph Polynomials of the Power Graph

and its Supergraphs
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Abstract

In this paper, exact formulas for the dependence, independence, vertex
cover and clique polynomials of the power graph and its supergraphs for
certain finite groups are presented.
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1. Introduction
Let Γ be an undirected simple graph with edge set E(Γ), and vertex set V (Γ). We
use |Γ| to denote the number of vertices of Γ. A set of vertices in a graph such
that no two of them are adjacent, is called an independent set. For the graph Γ,
a set S of vertices is a clique, if every two distinct vertices in S are adjacent. The
clique number of Γ, ω(Γ), is the size of the largest clique in Γ. A vertex cover of a
graph is a set S of vertices such that each edge of the graph is incident to at least
one vertex of S. The dependence polynomial is introduced by Fisher and Solow
in [3]. For a graph Γ this polynomial is defined as

fΓ(z) = 1− c1z + c2z
2 − c3z3 + · · ·+ (−1)ω(Γ)cω(Γ)z

ω(Γ),

where ck is the number of complete subgraphs of size k in Γ. The clique polynomial
of Γ, DΓ(z), is defined as DΓ(z) = 1+c1z+c2z

2 +c3z
3 + · · ·+cω(Γ)z

ω(Γ), where ck
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is the number of cliques with k vertices in Γ. The relation between the dependence
and clique polynomials can be described as DΓ(−z) = fΓ(z). The independence
polynomial of the graph Γ is defined as IΓ(z) =

∑n
k=0(−1)kikz

k, in which ik
is the number of independent vertex sets of size k of Γ. The dependence and
independence polynomials are in relation IΓ(z) = fΓ(z). Let ck be the number of
vertex covers of size k of Γ and let |Γ| = n. The vertex cover polynomial of Γ which
is denoted by ΨΓ(z) is defined as ΨΓ(z) = 1− c1z+ c2z

2− c3z3 + · · ·+ (−1)ncnz
n.

This polynomial is related to the independence polynomial by ΨΓ(z) = znIΓ(z−1).
Following Sabidussi [11, p. 396], the A−join of a set of graphs {Ga}a∈A is

defined as the graph H with the vertex and edge sets

V (H) = {(x, y) | x ∈ V (A) & y ∈ V (Gx)},
E(H) = {(x, y)(x′, y′) | xx′ ∈ E(A) or else x = x′ & yy′ ∈ E(Gx)}.

If A is labeled and has p points, then the A−join of H1, H2, . . . ,Hp is denoted by
A[H1, H2, . . . ,Hp].

If Γ1 and Γ2 are two graphs with disjoint vertex sets, then the graph union
Γ1∪Γ2 is a graph with V (Γ1∪Γ2) = V (Γ1)∪V (Γ2) and E(Γ1∪Γ2) = E(Γ1)∪E(Γ2).
The join of two graphs Γ1 and Γ2, denoted by Γ1 + Γ2, is a graph obtained from
Γ1 and Γ2 by joining each vertex of Γ1 to all vertices of Γ2. Following Došlić [1],
for given vertices y ∈ V (Γ1) and z ∈ V (Γ2), a splice of Γ1 and Γ2 by vertices y
and z, (Γ1.Γ2)(y.z), is defined by identifying the vertices y and z in the union of
Γ1 and Γ2.

Let G be a finite group. The order of x ∈ G is denoted by o(x). Moreover,
we use πe(G) to denote the set of all element orders of G and Ωi(G) stands for
the number of all elements of order i of G. The notation φ is used for the Euler’s
totient function. The power graph is introduced by Kelarev and Quinn in [7]. Two
vertices x and y are adjacent in the power graph if and only if one is a power of the
other. Following Feng et al. [2], let C(G) = {C1, . . . , Ck} be the set of all cyclic
subgroups of G and define LG to be the graph with vertex set C(G) in which two
cyclic subgroups are adjacent if one is contained in the other. For complete graph
Kbi , where bi = φ(|Ci|) and Ci ∈ C(G), the power graph P(G) is isomorphic to
LG[Kb1 ,Kb2 , . . . ,Kbk ].

Choose a finite group G. The cyclic graph ΓG is a simple graph with vertex
set G. Two elements x, y ∈ G are adjacent in the cyclic graph if and only if
〈x, y〉 is cyclic [8]. For C(G) = {C1, . . . , Ck}, define WG to be the graph with
vertex set C(G) in which two cyclic subgroups Ci and Cj are adjacent if one is
contained in the other or there exists a cyclic subgroup Ck such that Ci ⊆ Ck
and Cj ⊆ Ck. As a result, ΓG = WG[Kb1 ,Kb2 , . . . ,Kbk ] with bi = φ(|Ci|). Set
πe(G) = {a1, . . . , ak} and assume that ∆G is a graph with vertex set πe(G) and
edge set E(∆G) = {xy | x, y ∈ πe(G), x|y or y|x}. As defined in [4, 5], the main
supergraph S(G) is a graph with vertex set G in which two vertices x and y are
adjacent if and only if o(x)|o(y) or o(y)|o(x). In [5], the authors have proved
that S(G) = ∆G[KΩa1

(G), . . . ,KΩak
(G)]. Note that the graphs S(G) and ΓG are
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supergraphs of the power graph. We refer the reader to [10] for group theory and
to [13] for graph theoretical concepts and notations.

2. Results
In this section, we first state some results that will be kept throughout this paper.

Theorem 2.1. [3] Assume H is a graph with k vertices and G1, . . . , Gk are k
given graphs. Then the dependence polynomial of the graph H[G1, . . . , Gk] is

fH[G1,...,Gk](z) =
∑
A∈CH

(−1)|A|
∏
i∈A

(1− fGi(z)),

where CH is the set of all subsets of vertices of H that corresponds to complete
subgraphs of H.

Theorem 2.2. [3] Let Γ1 and Γ2 be two graphs. Then

fΓ1
⋃

Γ2
(z) = fΓ1(z) + fΓ2(z)− 1,

fΓ1+Γ2(z) = fΓ1(z)fΓ2(z).

Theorem 2.3. [12] If Γ1 and Γ2 are two graphs, then

f(Γ1.Γ2)(y,z)(x) = fΓ1
(x) + fΓ2

(x)− (1− x).

By using Theorem 2.1 and this fact that fKn(z) = (1−z)n, the following result
holds:

Corollary 2.4. The dependence polynomials of graphs P(G) = LG[Kb1 , . . . ,Kbk ],
S(G) = ∆G[KΩa1

(G), . . . ,KΩak
(G)] and ΓG = WG[Kb1 , . . . ,Kbk ] are as follows:

fP(G)(z) =
∑

A∈CLG

(−1)|A|
∏
i∈A

(1− (1− z)bi),

fS(G)(z) =
∑

A∈C∆G

(−1)|A|
∏
i∈A

(1− (1− z)Ωai
(G)),

fΓG
(z) =

∑
A∈CWG

(−1)|A|
∏
i∈A

(1− (1− z)bi),

where CLG
, C∆G

and CWG
are the set of all subsets of vertices of LG, ∆G and

WG corresponding to complete subgraphs of LG, ∆G and WG, respectively.

By using the relationship between the dependence and independence, the vertex
cover and the clique polynomials and also this fact that fKn

(z) = 1−nz, we have
the following result for the graph S(G).
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Corollary 2.5. The independence, the vertex cover and the clique polynomials of
the graph S(G) are:

DS(G)(z) =
∑

A∈C∆G

(−1)|A|
∏
i∈A

(1− (1 + z)Ωai
(G)),

IS(G)(z) =
∑

A∈C∆G

(−1)|A|
∏
i∈A

Ωai(G)z,

ΨS(G)(z) = z|G|
∑

A∈C∆G

(−1)|A|
∏
i∈A

Ωai(G)z−1,

where C∆G
and C∆G

are defined similar to Theorem 2.1.

In the following results, we apply Theorems 2.1, 2.2 and 2.3 in order to compute
the polynomials of the dihedral, semi-dihedral and dicyclic groups which can be
presented as follows:

D2n = < a, b|an = b2 = 1, bab = a−1 >,

SD8n = < a, b|a4n = b2 = 1, bab = a2n−1 >,

T4n = < a, b|a2n = 1, an = b2, b−1ab = a−1 > .

Theorem 2.6. For any n ≥ 0,

fΓD2n
(z) = (1− z)((1− z)n−1 − nz)− 1.

Proof. By the definition of a cyclic graph and also the structure of dihedral groups,
we have ΓD2n

= P3[Kn−1,K1,Kn]. Now, applying Theorem 2.1 for the path P3

with vertex set V (P3) = {1, 2, 3}, we deduce that CP3
= {{1}, {2}, {3}, {1, 2}, {2, 3}}.

Therefore,

fΓD2n
(z) = −(1− fKn−1

(z))− (1− fK1
(z))− (1− fKn

(z))

+ (1− fKn−1
(z))(1− fK1

(z)) + (1− fK1
(z))(1− fKn

(z))

= −(1− (1− z)n−1)− (1− (1− z))− (1− (1− nz))
+ (1− (1− z)n−1)(1− (1− z)) + (1− (1− z))(1− (1− nz))
= (1− z)((1− z)n−1 − nz)− 1.

Hence the result follows.

The following result is an immediate consequence of the previous theorem.

Corollary 2.7. For any n ≥ 0,

DΓD2n
(z) = (1 + z)((1 + z)n−1 + nz)− 1.



Some Graph Polynomials of the Power Graph and its Supergraphs 17

Theorem 2.8. For any n ≥ 0,

IΓD2n
(z) = (1− z)n(1− nz + z)− z − 1.

Proof. It is easy to see that ΓD2n = P3[Kn−1,K1,Kn]. Applying Theorem 2.1 for
the path P3 with vertex set V (P3) = {1, 2, 3}, we have CP3

= {{1}, {2}, {3}, {1, 3}}.
Thus,

fΓD2n
(z) = −(1− fKn−1

(z))− (1− fK1
(z))− (1− fKn

(z))

+ (1− fKn−1
(z))(1− fK1(z)) + (1− fK1(z))(1− fKn(z))

= (1− z)n(1− nz + z)− z − 1.

Now the result follows from IΓD2n
(z) = fΓD2n

(z).

By the relationship between the independence polynomial and the vertex cover
polynomial, the following result holds.

Corollary 2.9. ΨΓD2n
(z) = z2n(1− z−1)n(1− nz−1 + z−1)− z2n−1 − z2n.

We now take the dicyclic group T4n into account.

Theorem 2.10. For any n ≥ 0,

fΓT4n
(z) = (1− z)2n + nz(z − 1)2(z − 2)− 1.

Proof. Assume that W is the graph depicted in Figure 1. Then, we can write
ΓT4n

= W [K2n−2,K2,K2,K2, · · · ,K2], where there are n+1 copies of the complete
graph K2. Therefore, by Theorem 2.1,

1 2

3

4

5

n+ 2

...

Figure 1: The graph W related to the cyclic graph of T4n.

CW = {{1}, {2}, {3}, · · · , {n+ 2}, {1, 2}, {2, 3}, {2, 4}, · · · , {2, n+ 2}} ,
and so

fΓT4n
(z) = −(1− fK2n−2

(z))− (1− fK2
(z))−(1− fK2

(z))− · · · − (1− fK2
(z))︸ ︷︷ ︸

n

+ (1− fK2
(z))(1− fK2

(z)) + · · ·+ (1− fK2
(z))(1− fK2

(z))︸ ︷︷ ︸
n

+ (1− fK2n−2
(z))(1− fK2

(z))

= (1− z)2n + nz(z − 1)2(z − 2)− 1.
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This completes the proof.

Corollary 2.11. DΓT4n
(z) = (1 + z)2n − nz(−z − 1)2(−z − 2)− 1.

Theorem 2.12. Let n ≥ 0. Then

IΓT4n
(z) = −4nz + (−1)n+1(2nz − 2z)(2z)n

+

n∑
i=2

(−1)i
n(n− 1) · · · (n− (i− 2))

(i− 1)!
(2nz − 2z)(2z)i−1

+

n∑
i=2

(−1)i
n(n− 1) · · · (n− (i− 1))

i!
(2z)i.

Proof. According to the structure of W , W is the graph union of a single vertex
at node 2 and the graph Kn+1. Therefore, the set CW can be decomposed into
singleton subsets, two-element subsets, ..., (n+ 1)−element subsets. We have

ΓT4n = W [K2n−2,K2,K2,K2, · · · ,K2].

By applying Theorem 2.1 for singleton subsets and also for (n+ 1)−element sub-
sets, the first and the second terms of the formula are obtained. Since the graph
corresponding to the vertex 1 is different from those corresponding to the other
vertices, we consider two different categories of subsets: subsets containing vertex
1, and those which do not contain vertex 1. We know that the number of sub-
sets with i elements, 1 ≤ i ≤ n + 1, is

(
n+1
i

)
. Moreover, the number of subsets

containing vertex 1 is n(n−1)···(n−(i−2))
(i−1)! and the number of subsets which do not

contain vertex 1 is n(n−1)···(n−(i−1))
i! . Now, the result follows from Theorem 2.1

and so IΓT4n
(z) = fΓT4n

(z).

The following result is an immediate consequence of the previous theorem.

Corollary 2.13. Let n ≥ 0. Then,

ΨΓT4n
(z) = z4n[−4nz−1 + (−1)n+1(2nz−1 − 2z−1)(2z−1)n

+

n∑
i=2

(−1)i
n(n− 1) · · · (n− (i− 2))

(i− 1)!
(2nz−1 − 2z−1)(2z−1)i−1

+

n∑
i=2

(−1)i
n(n− 1) · · · (n− (i− 1))

i!
(2z−1)i].

We now consider cyclic groups. Suppose di, 1 ≤ i ≤ t, are all divisors of n
different from n. Then P(Zn) = Kφ(n)+1 + ∆n[Kφ(d1),Kφ(d2), · · · ,Kφ(dt)], where
∆n is the graph with vertex and edge sets V (∆n) = {di | 1, n 6= di|n, 1 ≤ i ≤ t}
and E(∆n) = {didj | di|dj , 1 ≤ i < j ≤ t}, respectively [9].
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Theorem 2.14. Let n ≥ 0. Then

fP(Zn)(x) = (1− x)φ(n)+1
∑

A∈C∆n

(−1)|A|
∏
i∈A

(1− (1− x)φ(di)),

where C∆n is defined similar to Theorem 2.1.

Proof. The proof follows from Theorem 2.1 and Theorem 2.2.

In what follows, we compute all polynomials for the power graph of groups
D2n, T4n and SD8n.

Theorem 2.15. Let n ≥ 0. Then

fP(D2n)(x) = (1− x)[−x(n− 1)

+ (1− x)φ(n)
∑

A∈C∆n

(−1)|A|
∏
i∈A

(1− (1− x)φ(di))],

where C∆n
is defined similar to Theorem 2.1.

Proof. Note that P(D2n) can be written as P(D2n) = Sn.P(Zn), where Sn is the
star graph with root vertex of degree n− 1 and P(Zn) is an induced subgraph of
P(D2n) obtained from 〈a〉. Hence, by Theorems 2.3 and 2.14,

fP(D2n)(x) = fSn
(x) + fP(Zn)(x)− (1− x)

= (1− x)(1 + (n− 1)(−x))− (1− x)

+ (1− x)φ(n)+1
∑

A∈C∆n

(−1)|A|
∏
i∈A

(1− (1− x)φ(di))

= (1− x)[−x(n− 1)

+ (1− x)φ(n)
∑

A∈C∆n

(−1)|A|
∏
i∈A

(1− (1− x)φ(di))],

which completes the proof.

The dependence polynomial of P∗(T4n) is the subject of our next result.

Theorem 2.16. For any n ≥ 0,

fP∗(T4n)(x) = (1− x)[nx2 − 2nx

+ (1− x)φ(2n)−1
∑

A∈C∆2n

(−1)|A|
∏
i∈A

(1− (1− x)φ(di))].
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Proof. Following Hamzeh and Ashrafi [6], we define the rooted graph B to be
B = K1 + (∪ni=1K2) with root vertex at node r, where V (K1) = {r}. We consider
P∗(Z2n) as a rooted graph with root vertex at node a such that a is adjacent to all
vertices of this graph. Moreover, we construct P∗(T4n) by identifying the vertex
a in P∗(Z2n) and the vertex r in B, i.e. P∗(T4n) = P∗(Z2n).B. By the graph
structure of B, ω(B) = 3 and so fB(z) = 1 − (2n + 1)z + 3nz2 − nz3. Now by
Theorems 2.3 and 2.14 and the dependence polynomial of the graph B,

fP∗(T4n)(x) = fP∗(Z2n)(x) + fB(x)− (1− x)

= (1− x)[nx2 − 2nx

+ (1− x)φ(2n)−1
∑

A∈C∆2n

(−1)|A|
∏
i∈A

(1− (1− x)φ(di))].

Consequently, the proof is completed.

We now compute the dependence polynomial of P∗(SD8n).

Theorem 2.17. Let n ≥ 0. Then

fP∗(SD8n)(x) = −nx3 + 3nx2 − 4nx

+ (1− x)φ(4n)
∑

A∈C∆4n

(−1)|A|
∏
i∈A

(1− (1− x)φ(di)).

Proof. Similar to the proof of Theorem 2.16, we define the rooted graph B to be
B = K1 + (

⋃n
i=1K2) with root vertex at node r, where V (K1) = {r}. We also

consider P∗(Z4n) as a rooted graph with root vertex at node a such that a is
connected to all other vertices of P∗(Z4n). Moreover, we construct another graph
A by identifying the vertex a in P∗(Z4n) and the vertex r inB, i.e. A = P∗(Z4n).B.
By the graph structure of P∗(SD8n), it can be seen that P∗(SD8n) = A ∪K2n.
Thus by Theorem 2.2,

fP∗(SD8n)(x) = fA(x) + fK2n
(x)− 1

= fA(x) + 1− (2n)x− 1

= fA(x)− 2n.

Next, we compute the dependence polynomial of the graph A. By Theorem 2.3
and the dependence polynomial of B,

fA(x) = fP∗(Z4n)(x) + fB(x)− (1− x)

= (1− x)φ(4n)
∑

A∈C∆4n

(−1)|A|
∏
i∈A

(1− (1− x)φ(di))

+ 1− (2n+ 1)x+ 3nx2 − nx3 − (1− x).
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As a consequence,

fP∗(SD8n)(x) = −nx3 + 3nx2 − 4nx

+ (1− x)φ(4n)
∑

A∈C∆4n

(−1)|A|
∏
i∈A

(1− (1− x)φ(di)).

The proof is completed.
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