# Some Graph Polynomials of the Power Graph and its Supergraphs

### Asma Hamzeh \*

#### Abstract

In this paper, exact formulas for the dependence, independence, vertex cover and clique polynomials of the power graph and its supergraphs for certain finite groups are presented.

Keywords: Dependence polynomial, independence polynomial, vertex cover polynomial, clique polynomial, power graph.

2010 Mathematics Subject Classification: 05C31, 05C25.

#### How to cite this article

A. Hamzeh, Some graph polynomials of the power graph and its supergraphs, *Math. Interdisc. Res.* 5 (2020) 13 – 22.

## 1. Introduction

Let  $\Gamma$  be an undirected simple graph with edge set  $E(\Gamma)$ , and vertex set  $V(\Gamma)$ . We use  $|\Gamma|$  to denote the number of vertices of  $\Gamma$ . A set of vertices in a graph such that no two of them are adjacent, is called an independent set. For the graph  $\Gamma$ , a set S of vertices is a clique, if every two distinct vertices in S are adjacent. The clique number of  $\Gamma$ ,  $\omega(\Gamma)$ , is the size of the largest clique in  $\Gamma$ . A vertex cover of a graph is a set S of vertices such that each edge of the graph is incident to at least one vertex of S. The dependence polynomial is introduced by Fisher and Solow in [3]. For a graph  $\Gamma$  this polynomial is defined as

$$f_{\Gamma}(z) = 1 - c_1 z + c_2 z^2 - c_3 z^3 + \dots + (-1)^{\omega(\Gamma)} c_{\omega(\Gamma)} z^{\omega(\Gamma)}$$

where  $c_k$  is the number of complete subgraphs of size k in  $\Gamma$ . The clique polynomial of  $\Gamma$ ,  $D_{\Gamma}(z)$ , is defined as  $D_{\Gamma}(z) = 1 + c_1 z + c_2 z^2 + c_3 z^3 + \cdots + c_{\omega(\Gamma)} z^{\omega(\Gamma)}$ , where  $c_k$ 

 $\odot 2020$  University of Kashan

E This work is licensed under the Creative Commons Attribution 4.0 International License.

<sup>\*</sup>Corresponding author (E-mail: hamze2006@yahoo.com, hamzeh@irc.ac.ir)

Academic Editor: Janez Žerovnik

Received 3 March 2019, Accepted 7 October 2019

DOI: 10.22052/mir.2019.173747.1121

Asma Hamzeh

is the number of cliques with k vertices in  $\Gamma$ . The relation between the dependence and clique polynomials can be described as  $D_{\Gamma}(-z) = f_{\Gamma}(z)$ . The independence polynomial of the graph  $\Gamma$  is defined as  $I_{\Gamma}(z) = \sum_{k=0}^{n} (-1)^{k} i_{k} z^{k}$ , in which  $i_{k}$ is the number of independent vertex sets of size k of  $\Gamma$ . The dependence and independence polynomials are in relation  $I_{\overline{\Gamma}}(z) = f_{\Gamma}(z)$ . Let  $c_{k}$  be the number of vertex covers of size k of  $\Gamma$  and let  $|\Gamma| = n$ . The vertex cover polynomial of  $\Gamma$  which is denoted by  $\Psi_{\Gamma}(z)$  is defined as  $\Psi_{\Gamma}(z) = 1 - c_{1}z + c_{2}z^{2} - c_{3}z^{3} + \cdots + (-1)^{n}c_{n}z^{n}$ . This polynomial is related to the independence polynomial by  $\Psi_{\Gamma}(z) = z^{n}I_{\Gamma}(z^{-1})$ .

Following Sabidussi [11, p. 396], the A-join of a set of graphs  $\{G_a\}_{a \in A}$  is defined as the graph H with the vertex and edge sets

$$V(H) = \{(x,y) \mid x \in V(A) \& y \in V(G_x)\},\$$
  

$$E(H) = \{(x,y)(x',y') \mid xx' \in E(A) \text{ or else } x = x' \& yy' \in E(G_x)\}.$$

If A is labeled and has p points, then the A-join of  $H_1, H_2, \ldots, H_p$  is denoted by  $A[H_1, H_2, \ldots, H_p]$ .

If  $\Gamma_1$  and  $\Gamma_2$  are two graphs with disjoint vertex sets, then the graph union  $\Gamma_1 \cup \Gamma_2$  is a graph with  $V(\Gamma_1 \cup \Gamma_2) = V(\Gamma_1) \cup V(\Gamma_2)$  and  $E(\Gamma_1 \cup \Gamma_2) = E(\Gamma_1) \cup E(\Gamma_2)$ . The join of two graphs  $\Gamma_1$  and  $\Gamma_2$ , denoted by  $\Gamma_1 + \Gamma_2$ , is a graph obtained from  $\Gamma_1$  and  $\Gamma_2$  by joining each vertex of  $\Gamma_1$  to all vertices of  $\Gamma_2$ . Following Došlić [1], for given vertices  $y \in V(\Gamma_1)$  and  $z \in V(\Gamma_2)$ , a splice of  $\Gamma_1$  and  $\Gamma_2$  by vertices y and z,  $(\Gamma_1, \Gamma_2)(y.z)$ , is defined by identifying the vertices y and z in the union of  $\Gamma_1$  and  $\Gamma_2$ .

Let G be a finite group. The order of  $x \in G$  is denoted by o(x). Moreover, we use  $\pi_e(G)$  to denote the set of all element orders of G and  $\Omega_i(G)$  stands for the number of all elements of order *i* of G. The notation  $\phi$  is used for the Euler's totient function. The power graph is introduced by Kelarev and Quinn in [7]. Two vertices x and y are adjacent in the power graph if and only if one is a power of the other. Following Feng et al. [2], let  $C(G) = \{C_1, \ldots, C_k\}$  be the set of all cyclic subgroups of G and define  $L_G$  to be the graph with vertex set C(G) in which two cyclic subgroups are adjacent if one is contained in the other. For complete graph  $K_{b_i}$ , where  $b_i = \phi(|C_i|)$  and  $C_i \in C(G)$ , the power graph  $\mathcal{P}(G)$  is isomorphic to  $L_G[K_{b_1}, K_{b_2}, \ldots, K_{b_k}]$ .

Choose a finite group G. The cyclic graph  $\Gamma_G$  is a simple graph with vertex set G. Two elements  $x, y \in G$  are adjacent in the cyclic graph if and only if  $\langle x, y \rangle$  is cyclic [8]. For  $C(G) = \{C_1, \ldots, C_k\}$ , define  $W_G$  to be the graph with vertex set C(G) in which two cyclic subgroups  $C_i$  and  $C_j$  are adjacent if one is contained in the other or there exists a cyclic subgroup  $C_k$  such that  $C_i \subseteq C_k$ and  $C_j \subseteq C_k$ . As a result,  $\Gamma_G = W_G[K_{b_1}, K_{b_2}, \ldots, K_{b_k}]$  with  $b_i = \phi(|C_i|)$ . Set  $\pi_e(G) = \{a_1, \ldots, a_k\}$  and assume that  $\Delta_G$  is a graph with vertex set  $\pi_e(G)$  and edge set  $E(\Delta_G) = \{xy \mid x, y \in \pi_e(G), x \mid y \text{ or } y \mid x\}$ . As defined in [4, 5], the main supergraph  $\mathcal{S}(G)$  is a graph with vertex set G in which two vertices x and y are adjacent if and only if o(x)|o(y) or o(y)|o(x). In [5], the authors have proved that  $\mathcal{S}(G) = \Delta_G[K_{\Omega_{a_1}(G)}, \ldots, K_{\Omega_{a_k}(G)}]$ . Note that the graphs  $\mathcal{S}(G)$  and  $\Gamma_G$  are supergraphs of the power graph. We refer the reader to [10] for group theory and to [13] for graph theoretical concepts and notations.

## 2. Results

In this section, we first state some results that will be kept throughout this paper.

**Theorem 2.1.** [3] Assume H is a graph with k vertices and  $G_1, \ldots, G_k$  are k given graphs. Then the dependence polynomial of the graph  $H[G_1, \ldots, G_k]$  is

$$f_{H[G_1,\ldots,G_k]}(z) = \sum_{A \in C_H} (-1)^{|A|} \prod_{i \in A} (1 - f_{G_i}(z)),$$

where  $C_H$  is the set of all subsets of vertices of H that corresponds to complete subgraphs of H.

**Theorem 2.2.** [3] Let  $\Gamma_1$  and  $\Gamma_2$  be two graphs. Then

$$\begin{aligned} f_{\Gamma_1 \bigcup \Gamma_2}(z) &= f_{\Gamma_1}(z) + f_{\Gamma_2}(z) - 1, \\ f_{\Gamma_1 + \Gamma_2}(z) &= f_{\Gamma_1}(z) f_{\Gamma_2}(z). \end{aligned}$$

**Theorem 2.3.** [12] If  $\Gamma_1$  and  $\Gamma_2$  are two graphs, then

$$f_{(\Gamma_1,\Gamma_2)(y,z)}(x) = f_{\Gamma_1}(x) + f_{\Gamma_2}(x) - (1-x).$$

By using Theorem 2.1 and this fact that  $f_{K_n}(z) = (1-z)^n$ , the following result holds:

**Corollary 2.4.** The dependence polynomials of graphs  $\mathcal{P}(G) = L_G[K_{b_1}, \ldots, K_{b_k}]$ ,  $\mathcal{S}(G) = \Delta_G[K_{\Omega_{a_1}(G)}, \ldots, K_{\Omega_{a_k}(G)}]$  and  $\Gamma_G = W_G[K_{b_1}, \ldots, K_{b_k}]$  are as follows:

$$\begin{split} f_{\mathcal{P}(G)}(z) &= \sum_{A \in C_{L_G}} (-1)^{|A|} \prod_{i \in A} (1 - (1 - z)^{b_i}), \\ f_{\mathcal{S}(G)}(z) &= \sum_{A \in C_{\Delta_G}} (-1)^{|A|} \prod_{i \in A} (1 - (1 - z)^{\Omega_{a_i}(G)}), \\ f_{\Gamma_G}(z) &= \sum_{A \in C_{W_G}} (-1)^{|A|} \prod_{i \in A} (1 - (1 - z)^{b_i}), \end{split}$$

where  $C_{L_G}$ ,  $C_{\Delta_G}$  and  $C_{W_G}$  are the set of all subsets of vertices of  $L_G$ ,  $\Delta_G$  and  $W_G$  corresponding to complete subgraphs of  $L_G$ ,  $\Delta_G$  and  $W_G$ , respectively.

By using the relationship between the dependence and independence, the vertex cover and the clique polynomials and also this fact that  $f_{\overline{K_n}}(z) = 1 - nz$ , we have the following result for the graph  $\mathcal{S}(G)$ .

**Corollary 2.5.** The independence, the vertex cover and the clique polynomials of the graph S(G) are:

$$D_{\mathcal{S}(G)}(z) = \sum_{A \in C_{\Delta_G}} (-1)^{|A|} \prod_{i \in A} (1 - (1 + z)^{\Omega_{a_i}(G)}),$$
  

$$I_{\mathcal{S}(G)}(z) = \sum_{A \in C_{\overline{\Delta_G}}} (-1)^{|A|} \prod_{i \in A} \Omega_{a_i}(G)z,$$
  

$$\Psi_{\mathcal{S}(G)}(z) = z^{|G|} \sum_{A \in C_{\overline{\Delta_G}}} (-1)^{|A|} \prod_{i \in A} \Omega_{a_i}(G)z^{-1},$$

where  $C_{\Delta_G}$  and  $C_{\overline{\Delta_G}}$  are defined similar to Theorem 2.1.

In the following results, we apply Theorems 2.1, 2.2 and 2.3 in order to compute the polynomials of the dihedral, semi-dihedral and dicyclic groups which can be presented as follows:

$$D_{2n} = \langle a, b | a^n = b^2 = 1, bab = a^{-1} \rangle,$$
  

$$SD_{8n} = \langle a, b | a^{4n} = b^2 = 1, bab = a^{2n-1} \rangle,$$
  

$$T_{4n} = \langle a, b | a^{2n} = 1, a^n = b^2, b^{-1}ab = a^{-1} \rangle.$$

**Theorem 2.6.** For any  $n \ge 0$ ,

$$f_{\Gamma_{D_{2n}}}(z) = (1-z)((1-z)^{n-1} - nz) - 1.$$

*Proof.* By the definition of a cyclic graph and also the structure of dihedral groups, we have  $\Gamma_{D_{2n}} = P_3[K_{n-1}, K_1, \overline{K_n}]$ . Now, applying Theorem 2.1 for the path  $P_3$  with vertex set  $V(P_3) = \{1, 2, 3\}$ , we deduce that  $C_{P_3} = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}\}$ . Therefore,

$$f_{\Gamma_{D_{2n}}}(z) = -(1 - f_{K_{n-1}}(z)) - (1 - f_{K_1}(z)) - (1 - f_{\overline{K_n}}(z)) + (1 - f_{K_{n-1}}(z))(1 - f_{K_1}(z)) + (1 - f_{K_1}(z))(1 - f_{\overline{K_n}}(z)) = -(1 - (1 - z)^{n-1}) - (1 - (1 - z)) - (1 - (1 - nz)) + (1 - (1 - z)^{n-1})(1 - (1 - z)) + (1 - (1 - z))(1 - (1 - nz)) = (1 - z)((1 - z)^{n-1} - nz) - 1.$$

Hence the result follows.

The following result is an immediate consequence of the previous theorem.

Corollary 2.7. For any  $n \ge 0$ ,

$$D_{\Gamma_{D_{2n}}}(z) = (1+z)((1+z)^{n-1} + nz) - 1.$$

**Theorem 2.8.** For any  $n \ge 0$ ,

$$I_{\Gamma_{D2n}}(z) = (1-z)^n (1-nz+z) - z - 1.$$

*Proof.* It is easy to see that  $\overline{\Gamma_{D_{2n}}} = \overline{P_3}[\overline{K_{n-1}}, K_1, K_n]$ . Applying Theorem 2.1 for the path  $\overline{P_3}$  with vertex set  $V(P_3) = \{1, 2, 3\}$ , we have  $C_{\overline{P_3}} = \{\{1\}, \{2\}, \{3\}, \{1, 3\}\}$ . Thus,

$$f_{\overline{\Gamma}_{D_{2n}}}(z) = -(1 - f_{\overline{K}_{n-1}}(z)) - (1 - f_{K_1}(z)) - (1 - f_{K_n}(z)) + (1 - f_{\overline{K}_{n-1}}(z))(1 - f_{K_1}(z)) + (1 - f_{K_1}(z))(1 - f_{K_n}(z)) = (1 - z)^n (1 - nz + z) - z - 1.$$

Now the result follows from  $I_{\Gamma_{D_{2n}}}(z) = f_{\overline{\Gamma_{D_{2n}}}}(z)$ .

By the relationship between the independence polynomial and the vertex cover polynomial, the following result holds.

**Corollary 2.9.**  $\Psi_{\Gamma_{D_{2n}}}(z) = z^{2n}(1-z^{-1})^n(1-nz^{-1}+z^{-1})-z^{2n-1}-z^{2n}.$ We now take the dicyclic group  $T_{4n}$  into account.

**Theorem 2.10.** For any  $n \ge 0$ ,

$$f_{\Gamma_{T_{4n}}}(z) = (1-z)^{2n} + nz(z-1)^2(z-2) - 1.$$

*Proof.* Assume that W is the graph depicted in Figure 1. Then, we can write  $\Gamma_{T_{4n}} = W[K_{2n-2}, K_2, K_2, K_2, \cdots, K_2]$ , where there are n+1 copies of the complete graph  $K_2$ . Therefore, by Theorem 2.1,

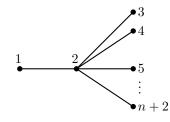


Figure 1: The graph W related to the cyclic graph of  $T_{4n}$ .

$$C_W = \{\{1\}, \{2\}, \{3\}, \cdots, \{n+2\}, \{1,2\}, \{2,3\}, \{2,4\}, \cdots, \{2,n+2\}\},\$$

and so

$$f_{\Gamma_{T_{4n}}}(z) = -(1 - f_{K_{2n-2}}(z)) - (1 - f_{K_2}(z)) \underbrace{-(1 - f_{K_2}(z)) - \dots - (1 - f_{K_2}(z))}_{n} + \underbrace{(1 - f_{K_2}(z))(1 - f_{K_2}(z)) + \dots + (1 - f_{K_2}(z))(1 - f_{K_2}(z))}_{n} \\ + (1 - f_{K_{2n-2}}(z))(1 - f_{K_2}(z)) \\ = (1 - z)^{2n} + nz(z - 1)^2(z - 2) - 1.$$

This completes the proof.

Corollary 2.11.  $D_{\Gamma_{T_{4n}}}(z) = (1+z)^{2n} - nz(-z-1)^2(-z-2) - 1.$ 

**Theorem 2.12.** Let  $n \ge 0$ . Then

$$I_{\Gamma_{T_{4n}}}(z) = -4nz + (-1)^{n+1}(2nz - 2z)(2z)^n + \sum_{i=2}^n (-1)^i \frac{n(n-1)\cdots(n-(i-2))}{(i-1)!} (2nz - 2z)(2z)^{i-1} + \sum_{i=2}^n (-1)^i \frac{n(n-1)\cdots(n-(i-1))}{i!} (2z)^i.$$

*Proof.* According to the structure of W,  $\overline{W}$  is the graph union of a single vertex at node 2 and the graph  $K_{n+1}$ . Therefore, the set  $C_{\overline{W}}$  can be decomposed into singleton subsets, two-element subsets, ..., (n+1)-element subsets. We have

$$\overline{\Gamma_{T_{4n}}} = \overline{W}[\overline{K_{2n-2}}, \overline{K_2}, \overline{K_2}, \overline{K_2}, \cdots, \overline{K_2}].$$

By applying Theorem 2.1 for singleton subsets and also for (n + 1)-element subsets, the first and the second terms of the formula are obtained. Since the graph corresponding to the vertex 1 is different from those corresponding to the other vertices, we consider two different categories of subsets: subsets containing vertex 1, and those which do not contain vertex 1. We know that the number of subsets with *i* elements,  $1 \le i \le n + 1$ , is  $\binom{n+1}{i}$ . Moreover, the number of subsets containing vertex 1 is  $\frac{n(n-1)\cdots(n-(i-2))}{(i-1)!}$  and the number of subsets which do not contain vertex 1 is  $\frac{n(n-1)\cdots(n-(i-2))}{i!}$ . Now, the result follows from Theorem 2.1 and so  $I_{\Gamma_{T_{4n}}}(z) = f_{\overline{\Gamma_{T_{4n}}}}(z)$ .

The following result is an immediate consequence of the previous theorem.

Corollary 2.13. Let  $n \ge 0$ . Then,

$$\begin{split} \Psi_{\Gamma_{T_{4n}}}(z) &= z^{4n} [-4nz^{-1} + (-1)^{n+1}(2nz^{-1} - 2z^{-1})(2z^{-1})^n \\ &+ \sum_{i=2}^n (-1)^i \frac{n(n-1)\cdots(n-(i-2))}{(i-1)!} (2nz^{-1} - 2z^{-1})(2z^{-1})^{i-1} \\ &+ \sum_{i=2}^n (-1)^i \frac{n(n-1)\cdots(n-(i-1))}{i!} (2z^{-1})^i]. \end{split}$$

We now consider cyclic groups. Suppose  $d_i$ ,  $1 \leq i \leq t$ , are all divisors of n different from n. Then  $\mathcal{P}(Z_n) = K_{\phi(n)+1} + \Delta_n[K_{\phi(d_1)}, K_{\phi(d_2)}, \cdots, K_{\phi(d_t)}]$ , where  $\Delta_n$  is the graph with vertex and edge sets  $V(\Delta_n) = \{d_i \mid 1, n \neq d_i \mid n, 1 \leq i \leq t\}$  and  $E(\Delta_n) = \{d_i d_j \mid d_i \mid d_j, 1 \leq i < j \leq t\}$ , respectively [9].

**Theorem 2.14.** Let  $n \ge 0$ . Then

$$f_{\mathcal{P}(Z_n)}(x) = (1-x)^{\phi(n)+1} \sum_{A \in C_{\Delta_n}} (-1)^{|A|} \prod_{i \in A} (1-(1-x)^{\phi(d_i)}),$$

where  $C_{\Delta_n}$  is defined similar to Theorem 2.1.

*Proof.* The proof follows from Theorem 2.1 and Theorem 2.2.

In what follows, we compute all polynomials for the power graph of groups  $D_{2n}$ ,  $T_{4n}$  and  $SD_{8n}$ .

**Theorem 2.15.** Let  $n \ge 0$ . Then

$$f_{\mathcal{P}(D_{2n})}(x) = (1-x)[-x(n-1) + (1-x)^{\phi(n)} \sum_{A \in C_{\Delta_n}} (-1)^{|A|} \prod_{i \in A} (1-(1-x)^{\phi(d_i)})],$$

where  $C_{\Delta_n}$  is defined similar to Theorem 2.1.

*Proof.* Note that  $\mathcal{P}(D_{2n})$  can be written as  $\mathcal{P}(D_{2n}) = S_n \mathcal{P}(Z_n)$ , where  $S_n$  is the star graph with root vertex of degree n-1 and  $\mathcal{P}(Z_n)$  is an induced subgraph of  $\mathcal{P}(D_{2n})$  obtained from  $\langle a \rangle$ . Hence, by Theorems 2.3 and 2.14,

$$\begin{aligned} f_{\mathcal{P}(D_{2n})}(x) &= f_{S_n}(x) + f_{\mathcal{P}(Z_n)}(x) - (1-x) \\ &= (1-x)(1+(n-1)(-x)) - (1-x) \\ &+ (1-x)^{\phi(n)+1} \sum_{A \in C_{\Delta_n}} (-1)^{|A|} \prod_{i \in A} (1-(1-x)^{\phi(d_i)}) \\ &= (1-x)[-x(n-1) \\ &+ (1-x)^{\phi(n)} \sum_{A \in C_{\Delta_n}} (-1)^{|A|} \prod_{i \in A} (1-(1-x)^{\phi(d_i)})], \end{aligned}$$

which completes the proof.

The dependence polynomial of  $\mathcal{P}^*(T_{4n})$  is the subject of our next result.

**Theorem 2.16.** For any  $n \ge 0$ ,

$$f_{\mathcal{P}^*(T_{4n})}(x) = (1-x)[nx^2 - 2nx + (1-x)^{\phi(2n)-1} \sum_{A \in C_{\Delta_{2n}}} (-1)^{|A|} \prod_{i \in A} (1-(1-x)^{\phi(d_i)})].$$

Asma Hamzeh

Proof. Following Hamzeh and Ashrafi [6], we define the rooted graph B to be  $B = K_1 + (\bigcup_{i=1}^n K_2)$  with root vertex at node r, where  $V(K_1) = \{r\}$ . We consider  $\mathcal{P}^*(Z_{2n})$  as a rooted graph with root vertex at node a such that a is adjacent to all vertices of this graph. Moreover, we construct  $\mathcal{P}^*(T_{4n})$  by identifying the vertex a in  $\mathcal{P}^*(Z_{2n})$  and the vertex r in B, i.e.  $\mathcal{P}^*(T_{4n}) = \mathcal{P}^*(Z_{2n}).B$ . By the graph structure of B,  $\omega(B) = 3$  and so  $f_B(z) = 1 - (2n+1)z + 3nz^2 - nz^3$ . Now by Theorems 2.3 and 2.14 and the dependence polynomial of the graph B,

$$\begin{aligned} f_{\mathcal{P}^*(T_{4n})}(x) &= f_{\mathcal{P}^*(Z_{2n})}(x) + f_B(x) - (1-x) \\ &= (1-x)[nx^2 - 2nx \\ &+ (1-x)^{\phi(2n)-1} \sum_{A \in C_{\Delta_{2n}}} (-1)^{|A|} \prod_{i \in A} (1-(1-x)^{\phi(d_i)})]. \end{aligned}$$

Consequently, the proof is completed.

We now compute the dependence polynomial of  $\mathcal{P}^*(SD_{8n})$ .

**Theorem 2.17.** Let  $n \ge 0$ . Then

$$f_{\mathcal{P}^*(SD_{8n})}(x) = -nx^3 + 3nx^2 - 4nx + (1-x)^{\phi(4n)} \sum_{A \in C_{\Delta_{4n}}} (-1)^{|A|} \prod_{i \in A} (1-(1-x)^{\phi(d_i)}).$$

*Proof.* Similar to the proof of Theorem 2.16, we define the rooted graph B to be  $B = K_1 + (\bigcup_{i=1}^n K_2)$  with root vertex at node r, where  $V(K_1) = \{r\}$ . We also consider  $\mathcal{P}^*(Z_{4n})$  as a rooted graph with root vertex at node a such that a is connected to all other vertices of  $\mathcal{P}^*(Z_{4n})$ . Moreover, we construct another graph A by identifying the vertex a in  $\mathcal{P}^*(Z_{4n})$  and the vertex r in B, i.e.  $A = \mathcal{P}^*(Z_{4n}).B$ . By the graph structure of  $\mathcal{P}^*(SD_{8n})$ , it can be seen that  $\mathcal{P}^*(SD_{8n}) = A \cup K_{2n}$ . Thus by Theorem 2.2,

$$f_{\mathcal{P}^*(SD_{8n})}(x) = f_A(x) + f_{\overline{K_{2n}}}(x) - 1$$
  
=  $f_A(x) + 1 - (2n)x - 1$   
=  $f_A(x) - 2n.$ 

Next, we compute the dependence polynomial of the graph A. By Theorem 2.3 and the dependence polynomial of B,

$$f_A(x) = f_{\mathcal{P}^*(Z_{4n})}(x) + f_B(x) - (1-x)$$
  
=  $(1-x)^{\phi(4n)} \sum_{A \in C_{\Delta_{4n}}} (-1)^{|A|} \prod_{i \in A} (1-(1-x)^{\phi(d_i)})$   
+  $1 - (2n+1)x + 3nx^2 - nx^3 - (1-x).$ 

As a consequence,

$$f_{\mathcal{P}^*(SD_{8n})}(x) = -nx^3 + 3nx^2 - 4nx + (1-x)^{\phi(4n)} \sum_{A \in C_{\Delta_{4n}}} (-1)^{|A|} \prod_{i \in A} (1 - (1-x)^{\phi(d_i)}).$$

The proof is completed.

**Conflicts of Interest.** The author declares that there are no conflicts of interest regarding the publication of this article.

# References

- T. Došlić, Splices, links, and their degree-weighted Wiener polynomials, Graph Theory Notes N. Y. 48 (2005) 47 – 55.
- [2] M. Feng, X. Ma and K. Wang, The structure and metric dimension of the power graph of a finite group, *European J. Combin.* 43 (2015) 82 – 97.
- [3] D. C. Fisher and A. E. Solow, Dependence polynomial, Discrete Math. 82 (1990) 251 - 258.
- [4] A. Hamzeh and A. R. Ashrafi, The order supergraph of the power graph of a finite group, *Turkish J. Math.* 42 (2018) 1978 – 1989.
- [5] A. Hamzeh and A. R. Ashrafi, Automorphism group of supergraphs of the power graph of a finite group, *European J. Combin.* 60 (2017) 82 – 88.
- [6] A. Hamzeh and A. R. Ashrafi, Spectrum and L-spectrum of the power graph and its main supergraph for certain finite groups, *Filomat* **31**(16) (2017) 5323 - 5334.
- [7] A. V. Kelarev and S. J. Quinn, A combinatorial property and power graphs of groups, *Contributions to general algebra* 12 (Vienna, 1999), 229-235, Heyn, Klagenfurt, 2000.
- [8] X. L. Ma, H. Q. Wei and G. Zhong, The cyclic graph of a finite group, Algebra 2013 (2013) 7 pp.
- [9] Z. Mehranian, A. Gholami and A. R. Ashrafi, A note on the power graph of a finite group, Int. J. Group Theory 5(1) (2016) 1 − 10.
- [10] J. S. Rose, A Course on Group Theory, Cambridge University Prees, Cambridge, New York- Melbourne, 1978.
- [11] G. Sabidussi, Graph derivatives, Math. Z. 76 (1961) 385 401.

- [12] Z. Shiri, A. R. Ashrafi, Dependence polynomials of some graph operations, *Vietnam J. Math.* 43 (2015) 755 – 769.
- [13] D. B. West, Introduction to Graph Theory, Second Edition, Prentice Hall, Inc., Upper Saddle River, NJ, 2001.

Asma Hamzeh Property and Casualty (Non-life) Insurance Research Group, Insurance Research Center, Tehran, Iran E-mail: hamze2006@yahoo.com, hamzeh@irc.ac.ir