%0 Journal Article
%T Seidel Signless Laplacian Energy of Graphs
%J Mathematics Interdisciplinary Research
%I University of Kashan
%Z 2538-3639
%A Ramane, Harishchandra S.
%A Gutman, Ivan
%A Patil, Jayashri B.
%A Jummannaver, Raju B.
%D 2017
%\ 12/01/2017
%V 2
%N 2
%P 181-191
%! Seidel Signless Laplacian Energy of Graphs
%K Seidel Laplacian eigenvalues
%K Seidel Laplacian energy
%K Seidel signless Laplacian matrix
%K Seidel signless Laplacian eigenvalues
%K Seidel signless Laplacian energy
%R 10.22052/mir.2017.101641.1081
%X Let S(G) be the Seidel matrix of a graph G of order n and let DS(G)=diag(n-1-2d1, n-1-2d2,..., n-1-2dn) be the diagonal matrix with d_i denoting the degree of a vertex v_i in G. The Seidel Laplacian matrix of G is defined as SL(G)=D_S(G)-S(G) and the Seidel signless Laplacian matrix as SL+(G)=DS(G)+S(G). The Seidel signless Laplacian energy ESL+(G) is defined as the sum of the absolute deviations of the eigenvalues of SL+(G) from their mean. In this paper, we establish the main properties of the eigenvalues of SL+(G) and of ESL+(G).
%U https://mir.kashanu.ac.ir/article_53998_01ab0ae77936bf1f5161db2349204526.pdf