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Probabilistic Properties of F -Indices of Trees

Hadis Morovati, Ramin Kazemi ? and Akram Kohansal

Abstract

The aim of this paper is to introduce some results for the F -index of
the tree structures without any information on the exact values of vertex
degrees. Three martingales related to the first Zagreb index and F -index
are given.
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1. Introduction
A graph G is a collection of points and lines connecting some pairs of them. The
points and lines of a graph are called vertices and edges of that graph, respectively.
The vertex set and the edge set of G are denoted by V (G) and E(G), respectively.
Let G be a simple connected graph. Two vertices in G which are connected by
an edge are called adjacent vertices. The number of vertices adjacent to a given
vertex v is the degree of v and is denoted by d(v) (or dv).

A topological index for a (chemical) graph G is a numerical quantity invariant
under automorphisms of G. Topological indices and graph invariants based on the
vertex degrees are widely used for characterizing molecular graphs, establishing
relationships between structure and properties of molecules, predicting biologi-
cal activity of chemical compounds, and making their chemical applications. As
one of the well-known topological indices, the Zagreb index was introduced by the
chemists Gutman and Trinajstić [6]. This index is an important molecular descrip-
tor and has been closely correlated with many chemical properties. In chemistry,
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chemical graphs are generated from molecules by replacing atoms with vertices
and bonds with edges, or represent only bare molecular skeletons, that is, molec-
ular skeletons without hydrogen atoms. The Zagreb index of a graph G is defined
as the sum of the squares of the degrees of all vertices in G:

Z2(G) =
∑

v∈V (G)

d2v.

It was immediately recognized that this term increase with the increasing extent
of branching of the carbon-atom skeleton and this provide quantitative measure of
molecular branching. Ten years later, Z2 was included among topological indices
and was named as Zagreb group index. The name Zagreb group index was soon
abbreviated to Zagreb index, and nowadays Z2 indicates to the first Zagreb index.

Furtula and Gutman [4] introduced F -index (also called forgotten topological
index) which was defined as

Z3(G) =
∑

v∈V (G)

d3v.

This topological index has not been further studied till now. Furtula and Gutman
[4] raised that the predictive ability of F -index is almost similar to that of first
Zagreb index and for the acentric factor and entropy, and both of them obtain
correlation coefficients larger than 0.95. This facts show some reasons that why
F -index is useful for testing the chemical and pharmacological properties of drug
molecular structures. Sun et al. [8] deduced some basic nature of F -index and
reported that this index can reinforce the physico-chemical flexibility of Zagreb
indices. Gao et al. [5] computed the F -index of some significant drug molecular
structures. Che and Chen [2] provided new lower and upper bounds of the F -index
in terms of graph irregularity, Zagreb indices, graph size, and maximum/minimum
vertex degrees. They characterized all graphs that attain these new bounds of F -
index and they showed that their bounds are better than the bounds given in [4]
for all benzenoid systems with more than one hexagon. As corollaries, various
upper bounds of F -index easily follow. Moreover, upper bounds for connected
Kr+1-free graphs are also obtained.

Let F be a real valued function defined on non negative integers. Dos̆lić
et al. [3] studied a general relation for topological indices of the form T (G) =∑

v∈V (G) F (dv) as follows. Let G be a connected graph, F be a real valued func-
tion defined on non negative integers and T (G) =

∑
v∈V (G) F (dv) be a graph

invariant. Then

T (G) =
∑

uv∈E(G)

(F (du)

du
+
F (dv)

dv

)
,
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where E(G) is the edge set of G. Thus

Z3(G) =
∑

uv∈E(G)

(d2u + d2v).

Trees are defined as connected graphs without cycles, and their properties are
basics of graph theory. The structures of many molecules such as dendrimers,
alkanes and acyclic molecules are tree like. Trees have wide applications in chemi-
cal graph theory such as enumeration and coding problems of chemical structures.
Structures of chemical compounds can be synthesized and categorized through
mathematical means. Chemists have a long tradition of using atomic valences
(vertex degrees) to find molecular structures graphically. However, if two tree
structures (molecular graphs) have different values for F -indiex, then their struc-
tures are different and hence, they have some different physico-chemical properties.

Every tree structure of order n (or with n vertices) can be obtained uniquely
by attaching n-th vertex to one of the n − 1 vertices in a tree of order n − 1. It
is one of particular interests in applications to assume the random tree model and
to speak about a random tree with n vertices, which means that all trees of order
n are considered to appear equally likely. Equivalently, one may describe random
trees via the following tree evolution process, which generates random trees of
arbitrary order n. At step 1 the process starts with a vertex. At step i the i-th
vertex is attached to a previous vertex v of the already grown tree T of order i− 1
with probability pi(v) = 1

i−1 . For applicability of our own results and specially for
some connections with the chemical relevance, see [7].

2. Results
Let Z2,n =

∑n
i=1 d

2
vi be the first Zagreb index of a tree structure of order n. Also,

let Z3,n =
∑n

i=1 d
3
vi be the its F -index.

Theorem 2.1. For each random tree structure of order n ≥ 3,

E(Z2,n) = 6n+O(log n).

Proof. Let Un be a randomly chosen vertex belonging to a tree of order n. Let Fn

be the sigma-field generated by the first n stages of these trees [1]. By definition,

Z2,n = Z2,n−1 + (dUn−1
+ 1)2 − d2Un−1

+ 1 = Z2,n−1 + 2dUn−1
+ 2.

Hence,

E(Z2,n|Fn−1) = Z2,n−1 + 2E(dUn−1
|Fn−1) + 2

= Z2,n−1 + 2
1

n− 1

n−1∑
i=1

dvi
+ 2

= Z2,n−1 + 6− 4

n− 1
,
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because Z2,n−1 is Fn−1-measurable [1]. We have

E(Z2,n) = E(Z2,n−1) + 6− 4

n− 1

=

(
E(Z2,n−2) + 6− 4

n− 2

)
+ 6− 4

n− 1

...
= (n− 1)6− 4Hn−1,

note that Z2,1 = 0 and Hn is the n-th harmonic number.

Theorem 2.2. For each random tree structure of order n ≥ 3,

E(Z3,n) = 26n+O(log n),

E(Z4,n) = 150n+O(log n),

where Z4,n =
∑n

i=1 d
4
vi .

Proof. By stochastic growth role of the random tree structure,

Z3,n = Z3,n−1 + (dUn−1
+ 1)3 − d3Un−1

+ 1 = Z3,n−1 + 3d2Un−1
+ 3dUn−1

+ 2,

and

Z4,n = Z4,n−1 + (dUn−1
+ 1)4 − d4Un−1

+ 1

= Z4,n−1 + 4d3Un−1
+ 6d2Un−1

+ 4dUn−1 + 2.

This implies that

E(Z3,n|Fn−1) = Z3,n−1 + 3E(d2Un−1
|Fn−1) + 3E(dUn−1 |Fn−1) + 2

= Z3,n−1 +
3

n− 1

n−1∑
k=1

d2vk +
3

n− 1

n−1∑
k=1

dvk + 2

= Z3,n−1 +
3

n− 1
Z2,n−1 + 8− 6

n− 1
.

Thus,

E(Z3,n) = E(Z3,n−1) +
3

n− 1
E(Z2,n−1) + 8− 6

n− 1
.

From Theorem 2.1, E(Z3,n) = 26n + +O(log n) since Z3,1 = 0. With the same
approach we can obtain E(Z4,n) = 150n+O(log n).

Lemma 2.3. Let Cov(Z3,n, Z3,n−1) = E((Z3,n − E(Z3,n))(Z3,n−1 − E(Z3,n−1)))
be the covariance between Z3,n and Z3,n−1. Then

Cov(Z3,n−1, Z3,n) = V(Z3,n−1) + rn−1,



Probabilistic Properties of F -Indices of Trees 257

where
ri =

3

i
Cov(Z2,i, Z3,i), i = 1, 2, 3, . . . .

Proof. We have

E(Z3,n − E(Z3,n)|Fn−1) = Z3,n−1 − E(Z3,n−1) +
3

n− 1
(Z2,n−1 − E(Z2,n−1)).

Then

Cov(Z3,n, Z3,n−1) = E(E(Z3,n − E(Z3,n))(Z3,n−1 − E(Z3,n−1)))|Fn−1))

= E((Z3,n−1 − E(Z3,n−1))E(Z3,n − E(Z3,n)|Fn−1))

= V(Z3,n−1) + rn−1.

Set
bi :=

1

i
(9E(Z4,i) + 18E(Z3,i) + 9E(Z2,i)), i = 1, 2, . . . .

Theorem 2.4. For each random tree structure of order n ≥ 3,

V(Z3,n) =

n−1∑
i=1

(
bi +

3

i
Cov(Z2,i, Z3,i)−

(
26− 26

i
+ 4Hi−1

)2)
.

Proof. We have

E(Z3,n − Z3,n−1 − 2)2

= E(Z3,n − E(Z3,n)− Z3,n−1 + E(Z3,n−1) + E(Z3,n)− E(Z3,n−1)− 2)2

= E(Z3,n − E(Z3,n)− Z3,n−1 + E(Z3,n−1))2

+ E(E(Z3,n)− E(Z3,n−1)− 2)2

+ 2E(Z3,n − E(Z3,n)− Z3,n−1 + E((Z3,n−1))(E(Z3,n)− E(Z3,n−1)− 2))

= E(Z3,n − E(Z3,n))2 + E(Z3,n−1 − E(Z3,n−1))2

− 2E((Z3,n − E(Z3,n))(Z3,n−1 − E(Z3,n−1)))

+ E(E(Z3,n)− E(Z3,n−1)− 2)2,

since

E(Z3,n − E(Z3,n)− Z3,n−1 + E(Z3,n−1))(E(Z3,n)− E(Z3,n−1)− 2)) = 0.

From Theorem 2.2,

E(E(Z3,n)− E(Z3,n−1)− 2)2 =
( 3

n− 1
E(Z2,n−1) + 8− 6

n− 1

)2
=

( 3

n− 1
(6(n− 2) + 4Hn−2) + 8− 6

n− 1

)2
=

(
26− 26

n− 1
+ 4Hn−2

)2
.
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By definition of the variance and Lemma 2.3,

E(Z3,n − Z3,n−1 − 2)2 = V(Z3,n) + V(Z3,n−1)

− 2E((Z3,n − E(Z3,n))(Z3,n−1 − E(Z3,n−1)))

+
(

26− 26

n− 1
+ 4Hn−2

)2
= V(Z3,n)− V(Z3,n−1)− rn−1

+
(

26− 26

n− 1
+ 4Hn−2

)2
. (1)

Also,

E(Z3,n − Z3,n−1 − 2)2 = 9E(d2Un−1
+ dUn−1

)2

= 9E(d4Un−1
+ 2d3Un−1

+ d2Un−1
)

= 9

n−1∑
i=1

E(d4i )

n− 1
+ 18

n−1∑
i=1

E(d3i )

n− 1
+ 9

n−1∑
i=1

E(d2i )

n− 1
(2)

=
9

n− 1
E(Z4,n−1) +

18

n− 1
E(Z3,n−1) +

9

n− 1
E(Z2,n−1).

Now, from (1) and (2),

V(Z3,n) = cn−1 + V(Z3,n−1),

where

ci = bi +
3

i
Cov(Z2,i, Z3,i)−

(
26− 26

i
+ 4Hi−1

)2
, i = 1, 2, . . . .

By iteration, V(Z3,n) =
∑n−1

i=1 ci and proof is completed.

The sequence (Xn)n≥1 of random variables is said to be a martingale relative
to the sigma-field Fn if and only if for all n = 1, 2, . . ., E(Xn+1|Fn) = Xn (a.e.) [1].
From Theorem 2.1, the sequence (Z2,n −E(Z2,n))n≥1 is a martingale. Also, From
Theorem 2.2, the sequence (Z3,n−E(Z3,n))n≥1 is not a martingale. In passing, we
introduce three martingale structures related to Z2,n and Z3,n. These martingales
can be important to study the asymptotic normality of these indices.

Theorem 2.5. Assume

Z∗n = Z3,n − 3Hn−1Z2,n + 18nHn−1 + 6Hn−1 − 6(H2
n−1 + 3H

(2)
n−1)− 26(n− 1),

whereH(2)
n is the n-th harmonic number of order 2. Then, the process {Z∗n,Fn}n≥1

is a martingale.
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Proof. Set
Mn = Z3,n − αnZ2,n + βn

for yet-to-be computed deterministic functions that will render Mn a martingale.
Recall that we also denote the sigma-field generated by the first n evolutionary
steps by Fn. According to the fundamental property of martingales, we want to
have

E(Mn|Fn−1) = E(Z3,n|Fn−1)− αnE(Z2,n|Fn−1) + βn

= Mn−1

= Z3,n−1 − αn−1Z2,n−1 + βn−1.

This is possible, if we equate the coefficients of Z2,n−1 and also the constant
terms. Equating the coefficients of Z2,n−1 gives the recurrence for αn. For n ≥ 2,
we obtain

αn =
3

n− 1
+ αn−1,

which has the solution αn = 3Hn−1 if α1 = 0. Equating the constant terms gives

βn = βn−1 − 8 + 18Hn−1 +
6

n− 1
− 12Hn−1

n− 1
.

Setting β1 = 0,

βn = −8(n− 1) + 18

n−1∑
i=1

Hj + 6Hn−1 − 12

n−1∑
i=1

Hj

j
.

Since
n−1∑
i=1

Hj = n(Hn − n),

n−1∑
i=1

Hj

j
=

1

2
(H2

n−1 +H
(2)
n−1),

proof is completed.

Corollary 2.6. If

W ∗n = Z2,n − 3Hn−1Z3,n − 18nHn−1 − 6Hn−1 + 6(H2
n−1 + 3H

(2)
n−1) + 26(n− 1),

then, the process {W ∗n ,Fn}n≥1 is a martingale.

Theorem 2.7. Assume

S∗n = Z3,n − E(Z3,n)− (a+ 3Hn−1)(Z2,n − E(Z2,n)), a ∈ R.

Then, the process {S∗n,Fn}n≥1 is a zero-mean martingale.
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Proof. Set

Ln =
αn

n
(Z3,n − E(Z3,n)) +

βn
n

(Z2,n − E(Z2,n)).

According to the fundamental property of martingales, we want to have

αn =
n

n− 1
αn−1,

βn = n

(
βn−1
n− 1

− 3αn

n(n− 1)

)
.

Setting α1 = 1 and β1 = a, proof is completed.

As n → ∞, the coefficients in the martingale structure have the following
asymptotic values:

αn ∼ n,

βn ∼ −a− 3 log n.

3. Conclusion
In this paper, we studied the F -index of random tree structures. We obtained
the exact and asymptotic values of the mean of this index. Also, we introduced
a relation for the variance of the F -index in terms of the covariance between the
two indices. With the approach presented here, the study of another topological
indices is possible. Three martingales introduced that can be important to study
the asymptotic normality of this index.
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