On the Entropy Rate of a Random Walk on t-Designs

Reza Kahkeshani *

Abstract
In this paper, a random walk on t-designs are considered. We assign a weight to each block and walk randomly on the vertices with a probability proportional to the weight of blocks. This stochastic process is a Markov chain. We obtain a stationary distribution for this process and compute its entropy rate. It is seen that, when the blocks have the same weight, the uniform distribution on the vertices is a stationary distribution and the entropy rate depends only on the number of vertices.

Keywords: random walk, Markov chain, design, entropy rate, stationary distribution.

2010 Mathematics Subject Classification: Primary 60J10, Secondary 60G50, 05B99, 94A17.

1. Introduction
Let X be a discrete random variable with alphabet \mathcal{X} and probability mass function $p(x) = \Pr\{X = x\}, x \in \mathcal{X}$. The entropy $H(X)$ of X is defined as

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x),$$

where logarithm is to the base 2 and entropy is expressed in bits. Here, the convention $0 \log 0 = 0$ will be used. The entropy $H(X)$ is a measure of the uncertainty of X and moreover, it is a measure of the amount of information required on the...
average to describe X. Let (X, Y) be a pair of discrete random variables with a joint distribution $p(x, y)$, $(x, y) \in \mathcal{X} \times \mathcal{Y}$. The joint entropy $H(X, Y)$ is defined by

$$H(X, Y) = - \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x, y).$$

Similarly, the entropy of a collection of random variables, such as $H(X_1, X_2, \ldots, X_n)$, is defined.

A stochastic process $\{X_n\}_{n \in \mathbb{N}}$ can be defined as an indexed sequence of random variables. This process is characterized by the probability mass functions

$$\Pr\{(X_1, X_2, \ldots, X_n) = (x_1, x_2, \ldots, x_n)\} = p(x_1, x_2, \ldots, x_n),$$

where $(x_1, x_2, \ldots, x_n) \in \mathcal{X}^n$ and $n \in \mathbb{N}$. This process is called to be stationary if $\Pr\{(X_1, X_2, \ldots, X_n) = (x_1, x_2, \ldots, x_n)\}$ is equal to $\Pr\{(X_{l+1}, X_{l+2}, \ldots, X_{l+n}) = (x_1, x_2, \ldots, x_n)\}$, for all $x_1, x_2, \ldots, x_n \in \mathcal{X}$ and every shift l. A Markov chain is a stochastic process $\{X_n\}_{n \in \mathbb{N}}$ such that $\Pr\{X_{n+1} = x_{n+1}|X_n = x_n, X_{n-1} = x_{n-1}, \ldots, X_1 = x_1\}$ is equal to $\Pr\{X_{n+1} = x_{n+1}|X_n = x_n\}$, for all $x_1, x_2, \ldots, x_{n+1}$ in \mathcal{X}. A Markov chain $\{X_n\}_{n \in \mathbb{N}}$ is called to be time invariant if $\Pr\{X_{n+1} = b|X_n = a\} = \Pr\{X_2 = b|X_1 = a\}$, for all $n \in \mathbb{N}$ and $a, b \in \mathcal{X}$. It is easy to see that a time invariant Markov chain with alphabet $\mathcal{X} = \{1, 2, \ldots, m\}$ can be characterized by an initial state and a probability transition matrix $P = (p_{ij})$, where $p_{ij} = \Pr\{X_{n+1} = j|X_n = i\}$. A distribution μ on \mathcal{X} is said to be stationary if $\mu P = \mu$.

In other words, μ is a distribution on the states such that the distributions at the successive times are the same. The entropy rate of a stochastic process $\{X_n\}_{n \in \mathbb{N}}$ is

$$H(\mathcal{X}) = \lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \ldots, X_n),$$

when the limit exists. Also, a related quantity for entropy rate is defined by

$$H'(\mathcal{X}) = \lim_{n \to \infty} H(X_n|X_{n-1}, X_{n-2}, \ldots, X_1),$$

when the limit exists. These two quantities correspond to different notions. It can be shown that if $\{X_n\}_{n \in \mathbb{N}}$ is a stationary Markov chain then $H(\mathcal{X}) = H'(\mathcal{X}) = H(X_2|X_1)$. See [2, 6, 7] for more details and examples.

In this paper, motivated by a random walk on a weighted graph [2], a random walk on t-designs are considered. We assign a weight to each block and walk randomly on the vertices with a probability proportional to the weight of blocks. This stochastic process is a Markov chain. We obtain a stationary distribution for this process and compute its entropy rate. It is seen that, when the blocks have the same weight, the uniform distribution on the vertices is a stationary distribution and the entropy rate depends only on the number of vertices. For more information and some new results on random walks, entropy rates and their applications, please see [3, 5, 8].
2. t-Designs

Let $S = (P, B, \mathcal{I})$ be an incidence structure which consists of point set P, block set B and an incidence relation $\mathcal{I} \subseteq P \times B$. The elements of \mathcal{I} are called flags and the notation pIB means that $(p, B) \in \mathcal{I}$. A block $B \in B$ is sometimes identified with the set of points p incident with it. Here, \mathcal{I} is in fact the membership relation \in.

If we replace each block of S by its complement then we obtain the complement of the structure, denoted by \overline{S}. The dual of $S = (P, B, \mathcal{I})$ is the incidence structure $S^\top = (B, P, \mathcal{I}^\top)$, where $B^I^\top p$ if and only if pIB. The incidence matrix of S is a matrix M of size $|P| \times |B|$ whose rows and columns are labeled by points and blocks, respectively, such that the entry $(p; B)$ is 1 if and only if p is incident with B, and 0 otherwise.

The incidence structure $D = (P, B, \mathcal{I})$ is called a t-$(v; k; \lambda)$ design if $|P| = v$, $|B| = k$ for any $B \in B$, and every t distinct points are incident with precisely λ blocks. It is known that the number of blocks, denoted by b, is equal to $\lambda(v-t\lambda)/v$. The design D is called trivial if B consists of all the k-subsets of P. If $v = b$ then D is called symmetric. It is well-known that the number of blocks incident with s points $(s \leq t)$, denoted by λ_s, is independent of the set and $\lambda_s = \lambda(v-s\lambda)/(k-s\lambda)$. Therefore, every t-(v, k, λ) design is also an s-(v, k, λ) design, where $s \leq t$. The complement of a t-(v, k, λ) design D is also a design D' with parameters t-$(v, v-k, \lambda')$, where $\lambda' = \sum_{s=0}^{t} (-1)^s \binom{t}{s} \lambda_{v-s}$. The number of blocks incident with any point, λ_1, is also denoted by r and called the replication number. If D is a t-(v, k, λ) design then D^\top is a design with b points such that its block size is r. If M is the incidence matrix of D then the incidence matrix of D^\top is M^\top. It can be shown that if D is a 2-(v, k, λ) design then $bk = vr$ and $\lambda(v - 1) = r(k - 1)$. For more details, see [1, 4].

3. Results

Let the incidence structure $D = (P, B, \mathcal{I})$ be a t-(v, k, λ) design with the vertex set $\{1, 2, \ldots, v\}$. To each block $B \in B$, we assign a weight $\omega(B) \geq 0$ in \mathbb{R} and set

$$
\omega = \sum_{B \in B} \omega(B),
$$

$$
\omega_i = \sum_{i \in B \in B} \omega(B),
$$

$$
\omega_{ij} = \sum_{i, j \in B \in B} \omega(B),
$$

where $i, j \in P$ and $i \neq j$. In other words, ω_i is the sum of the weights of all blocks containing the vertex i and ω_{ij} is also the sum of the weights of all blocks
containing the points \(i\) and \(j\). Note that for any vertex \(i\), we have
\[
\sum_{j \in \mathcal{P}} \omega_{ij} = \sum_{j \in \mathcal{P}} \sum_{B \in \mathcal{B}} \omega(B)
\]
\[
= \sum_{B \in \mathcal{B}} \sum_{j \in \mathcal{P}} \omega(B)
\]
\[
= \sum_{B \in \mathcal{B}} (k - 1)\omega(B)
\]
\[
= (k - 1)\omega_i.
\]
A random walk \(\{X_n\}_{n=1}^\infty\) in \(\mathcal{D}\) is a sequence of points of \(\mathcal{D}\) in such a way that \(X_n = i\) and \(X_{n+1} = j\) if there exists a block \(B\) containing the points \(i\) and \(j\). Moreover, we walk from \(i\) to \(j\) with the probability \(p_{ij} = \omega_{ij} / ((k - 1)\omega_i)\). As it is seen, we walk randomly from the vertex \(i\) to the vertex \(j\) with a probability proportional to the weight of the blocks containing \(i\) and \(j\), and the values \(\{p_{ij}\}_{1 \leq j \leq v}\) form a mass probability function. By definition, this stochastic process is a Markov chain with the probability transition matrix \(P = (p_{ij})_{v \times v}\). Set \(\mu = (\mu_1, \mu_2, \ldots, \mu_v)\), where \(\mu_i = \omega_i / (k\omega)\) for any \(1 \leq i \leq v\). Since
\[
\sum_{i=1}^v \mu_i = \sum_{i=1}^v \frac{\omega_i}{k\omega}
\]
\[
= \frac{1}{k\omega} \sum_{i=1}^v \omega(B)
\]
\[
= \frac{1}{k\omega} \sum_{B \in \mathcal{B}} \sum_{i \in \mathcal{P}} \omega(B)
\]
\[
= \frac{1}{k\omega} \sum_{B \in \mathcal{B}} k\omega(B)
\]
\[
= 1,
\]
\(\mu\) is a probability distribution on the points \(\mathcal{P}\). Moreover, for any \(1 \leq j \leq v\),
\[
\sum_{i=1}^v \mu_i p_{ij} = \sum_{i=1}^v \frac{\omega_i}{k\omega} \frac{\omega_{ij}}{(k - 1)\omega_i}
\]
\[
= \frac{1}{k(k - 1)\omega} \sum_{i=1}^v \omega_{ij}
\]
\[
= \frac{\omega_j}{k\omega}
\]
\[
= \mu_j.
\]
Therefore, μ is also a stationary distribution. Now, the entropy rate of this process is

\[H(\mathcal{X}) = H(X_2|X_1) \]

\[= - \sum_{i=1}^{v} \mu_i \sum_{j=1}^{v} p_{ij} \log p_{ij} \]

\[= - \sum_{i=1}^{v} \sum_{j=1}^{v} \frac{\omega_{ij}}{k\omega} \sum_{k=1}^{v} \frac{\omega_{ij}}{(k-1)\omega_i} \log \frac{\omega_{ij}}{(k-1)\omega_i} \]

\[= - \sum_{i=1}^{v} \sum_{j=1}^{v} \frac{\omega_{ij}}{k(k-1)\omega} \log \frac{\omega_{ij}}{(k-1)\omega_i} \]

\[= - \sum_{i=1}^{v} \sum_{j=1}^{v} \frac{\omega_{ij}}{k(k-1)\omega} \log \frac{\omega_{ij}}{k(k-1)\omega} + \sum_{i=1}^{v} \sum_{j=1}^{v} \frac{\omega_{ij}}{k(k-1)\omega} \log \frac{\omega_{i}}{k\omega} \]

\[= - \sum_{i=1}^{v} \sum_{j=1}^{v} \frac{\omega_{ij}}{k(k-1)\omega} \log \frac{\omega_{ij}}{k(k-1)\omega} + \sum_{i=1}^{v} \frac{\omega_{i}}{k\omega} \log \frac{\omega_{i}}{k\omega} \]

\[= H \left(\cdots, \frac{\omega_{ij}}{k(k-1)\omega}, \cdots \right) - H \left(\cdots, \frac{\omega_{i}}{k\omega}, \cdots \right). \]

So, the following theorem is implied:

Theorem 3.1. Let \(\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I}) \) be a t-(v, k, λ) design. Assign a non-negative real number \(\omega(B) \) to each block \(B \in \mathcal{B} \) and set

\[\omega = \sum_{B \in \mathcal{B}} \omega(B), \]

\[\omega_i = \sum_{i \in B \in \mathcal{B}} \omega(B), \]

\[\omega_{ij} = \sum_{i,j \in B \in \mathcal{B}} \omega(B), \]

for any \(i \neq j \in \mathcal{P} \). Let \(\{X_n\}_{n=1}^{\infty} \) be a random walk on the points of \(\mathcal{D} \) with the probability transition matrix \(P = (p_{ij})_{v \times v} \), where \(p_{ij} = \omega_{ij}/(k-1)\omega_i \). Set \(\mu_i = \omega_i/(k\omega) \), where \(1 \leq i \leq v \). Then, \(\{X_n\}_{n=1}^{\infty} \) is a Markov chain with the stationary distribution \(\mu = (\mu_1, \mu_2, \ldots, \mu_v) \) and the entropy rate

\[H(\mathcal{X}) = H \left(\cdots, \frac{\omega_{ij}}{k(k-1)\omega}, \cdots \right) - H \left(\cdots, \frac{\omega_{i}}{k\omega}, \cdots \right). \]

Note that if all the blocks have equal weight then \(p_{ij} = \lambda_2/(r(k-1)) \) and \(\mu_i = r/(kb) = 1/v \). Also,

\[\frac{\omega_i}{k\omega} = \frac{r}{kb} = \frac{1}{v}. \]
and
\[
\frac{\omega_{ij}}{k(k-1)\omega} = \frac{\lambda_2}{k(k-1)b} = \frac{1}{v(v-1)}.
\]
Hence, in this case, the uniform distribution on \(P \) is a stationary distribution and the entropy rate is
\[
H(X) = H(\cdots, \frac{1}{v(v-1)}, \cdots) - H(\cdots, \frac{1}{v}, \cdots) = \log(v-1).
\]

Acknowledgement. The author would like to thank the referee for his/her suggestions and comments. This work is partially supported by the University of Kashan under grant number 985983/1.

Conflicts of Interest. The author declares that there are no conflicts of interest regarding the publication of this article.

References

Reza Kahkeshani
Department of Pure Mathematics,
Faculty of Mathematical Sciences,
University of Kashan,
Kashan, I. R. Iran
e-mail: kahkeshanireza@kashanu.ac.ir