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Abstract

For a simple graph G, the Gordon-Scantlebury index of G is equal to the
number of paths of length two in G, and the Platt index is equal to the total
sum of the degrees of all edges in G. In this paper, we study these indices in
random plane-oriented recursive trees through a recurrence equation for the
first Zagreb index. As n → ∞, the asymptotic normality of these indices are
given.
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1. Introduction
A graph is a collection of points and lines connecting a subset of them. The points
and lines of a graph are also called vertices and edges of the graph, respectively.
The vertex and edge sets of a graph G are denoted by V (G) and E(G), respectively.
The degree of a vertex v of a graph is the number of edges incident to the vertex v
and is denoted by d(v) (or dv). A path in a graph is a sequence of adjacent edges,
which do not pass through the same vertex more than once, and the length of the
path is the number of edges in it.
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Trees are defined as connected graphs without cycles, and their properties are
basics of graph theory. A recursive tree with n nodes is an unordered rooted tree,
where the nodes are labelled by distinct integers from {1, 2, 3, ..., n} in such a way
that the sequence of labels lying on the unique path from the root node to any
node in the tree are always forming an increasing sequence [10]. A plane-oriented
recursive tree is a recursive tree with ordered sets of descendants. In recursive
trees, the ordering of the immediate descendants of a given node does not matter,
as all ordering represent the same tree. A random plane-oriented recursive tree
of order n is one chosen with equal probability from the space of all such trees.
There is a simple growth rule for the class of plane-oriented recursive trees. In
this class, a random tree Tn, of order n, is obtained from Tn−1, a random tree
of order n − 1, by choosing a parent in Tn−1 and adjoining a node labeled n to
it. The node n can be adjoined at any of the insertion positions or gaps between
the children of the chosen parent since insertion in each gap will give a different
ordering. We can describe the plane-oriented recursive tree evolution process which
generates random trees (of arbitrary order n) of grown trees. This description is
a consequence of the considerations made in:
Step 1: The process starts with the root labelled by 1.
Step i+1: At step i+1 the node with label i+1 is attached to any previous node
v (with degree d(v)) of the already grown plane-oriented recursive tree of order i
with probability

p(v) =
d(v)

2i− 1
.

Plane-oriented recursive trees, abbreviated as PORTs, were introduced in the liter-
ature under a few different names such as heap-ordered trees, nonuniform recursive
trees, scale-free trees (see [10] for main results on this tree).

Topological indices are numerical parameters of a graph which characterize its
topology and are usually graph invariant. For a simple graph G, the Gordon-
Scantlebury index of G is equal to the number of paths of length two in G [3],
and the Platt index is equal to the total sum of the degrees of all edges in G [8].
One of the most important topological indices of a graph is the first Zagreb index.
The first Zagreb index is related to the Gordon-Scantlebury and Platt indices.
Let S(G), and P (G) be the Gordon-Scantlebury index and the Platt index of the
graph G, respectively. We have

S(G) =
Z(G)

2
− |E(G)|,

P (G) = 2S(G), (1)

where |E(G)| is the number of edges of G and the first Zagreb index Z(G) of G is
defined as

Z(G) =
∑

v∈V (G)

d2v,

where d(v) denotes the degree of the vertex v in G [4, 7]. Thus, the first Zagreb
index of a graph is defined as the sum of the squares of the degrees of all vertices
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in the graph. This index introduced by chemists Gutman and Trinajstić [5]. This
index reflects the extent of branching of the molecular carbon-atom skeleton, and
can thus be viewed as molecular structure-descriptors. Followed by the first Zagreb
index, Furtula and Gutman [2] introduced forgotten topological index (also called
F-index) of G which was defined as

F (G) =
∑

v∈V (G)

d3v.

The motivation of studying the indices of trees is multifold (see [9] and refrences
therein).

The paper is organized as follows. In Section 2, we give the first two moments
(mean and variance) of Gordon-Scantlebury and Platt indices of random plane-
oriented recursive trees through a recurrence equation for the first Zagreb index.
In Section 3, we give the asymptotic normality of these indices.

2. The First Two Moments
The following lemma is very important for computing the mean and variance of
the above topological indices in our tree model.

Lemma 2.1. Suppose that

K(n, j, i) :=
Γ
(
n+ 3+i

2

)
Γ
(
n+ 3−j

2

) , n ≥ 3, i, j ≥ 1,

where Γ(·) is the gamma function. Then

2n− 1

2n− 3
=

K(n− 1, 2, 0)

K(n− 2, 2, 0)
,

2n

2n− 3
=

K(n− 1, 2, 1)

K(n− 2, 2, 1)
,

K(n, 4, 0)

K(n− 1, 4, 0)
= 2

K(n− 1, 2, 0)

K(n− 2, 2, 0)
− 1.

Proof. The proof is obvious and straightforward, since Γ(x) = (x−1)Γ(x−1).

Let Fn be the sigma-field generated by the first n stages of plane-oriented
recursive trees and Un be a randomly chosen node belonging to these trees of
order n [1].

Theorem 2.2. Let Sn and Pn be the Gordon-Scantlebury index and Platt index
of a random plane-oriented recursive tree of order n ≥ 3, respectively. Then

E(Sn) = K(n− 1, 2, 0)
n−1∑
t=1

1

K(t, 2, 0)
− (n− 1),
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and

E(Pn) = 2K(n− 1, 2, 0)

n−1∑
t=1

1

K(t, 2, 0)
− 2(n− 1).

Proof. We first compute the mean of the fisrt Zagreb index. Using the definition
of the first Zagreb index and by the stochastic growth rule of the tree,

Zn = Zn−1 + (dUn−1 + 1)2 − d2Un−1
+ 1 = Zn−1 + 2dUn−1 + 2. (2)

From Lemma 2.1 and [1],

E(Zn|Fn−1) = E(Zn−1 + 2dUn−1 + 2 | Fn−1)

= Zn−1 + 2E(dUn−1 |Fn−1) + 2

= Zn−1 + 2
1

2n− 3

n−1∑
i=1

d2vi
+ 2

= Zn−1 +
2

2n− 3
Zn−1 + 2

=
2n− 1

2n− 3
Zn−1 + 2

=
K(n− 1, 2, 0)

K(n− 2, 2, 0)
Zn−1 + 2.

Thus

E(Zn) =
K(n− 1, 2, 0)

K(n− 2, 2, 0)
E(Zn−1) + 2. (3)

By iteration,

E(Zn) = 2K(n− 1, 2, 0)

n−1∑
t=1

1

K(t, 2, 0)
, Z1 = 0, Z2 = 1.

Proof is completed by relations (1).

It is obvious that
K(n, j, i) = n

i+j
2 (1 +O(n−1)).

Thus

E(Sn) = n log n+O(n),

E(Pn) = 2n log n+O(n).
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Theorem 2.3. Let Fn be the F-index of a random plane-oriented recursive tree
of order n ≥ 3. Then

E(Fn) = K(n− 1, 2, 1)
n−1∑
t=1

α(t)

K(t, 2, 1)
,

where
α(t) =

3

2t− 1
E(Zt) + 2, t ≥ 1.

Proof. Using the definition of F-index and by the stochastic growth rule of the
tree,

Fn = Fn−1 + (dUn−1 + 1)3 − d3Un−1
+ 1

= Fn−1 + 3d2Un−1
+ 3dUn−1 + 2.

This implies that

E(Fn|Fn−1) = Fn−1 + 3E(d2Un−1
|Fn−1) + 3E(dUn−1 |Fn−1) + 2

= Fn−1 +
3

2n− 3

n−1∑
k=i

d3vi
+

3

2n− 3

n−1∑
i=1

d2vi + 2

= Fn−1 +
3

2n− 3
Fn−1 +

3

2n− 3
Zn−1 + 2

=
2n

2n− 3
Fn−1 +

3

2n− 3
Zn−1 + 2

=
K(n− 1, 2, 1)

K(n− 2, 2, 1)
Fn−1 +

3

2n− 3
Zn−1 + 2.

Thus

E(Fn) =
K(n− 1, 2, 1)

K(n− 2, 2, 1)
E(Fn−1) + α(n− 1).

By iteration, proof is completed since F1 = 0.

Lemma 2.4. The sequences ( Sn − E(Sn)

K(n− 1, 2, 0)

)
n≥1

,

and ( Pn − E(Pn)

K(n− 1, 2, 1)

)
n≥1

,

are two martingales relative to the Fn−1.



6 R. Kazemi

Proof. We have

E
( Sn − E(Sn)

K(n− 1, 2, 0)
|Fn−1

)
= E

( Zn

2 − (n− 1)− E(Zn)
2 + (n− 1)

K(n− 1, 2, 0)
|Fn−1

)
=

1

2K(n− 1, 2, 0)
E(Zn − E(Zn)|Fn−1)

=
1

2K(n− 1, 2, 0)

(K(n− 1, 2, 0)

K(n− 2, 2, 0)
(Zn−1 − E(Zn−1))

)
=

1

2K(n− 2, 2, 0)
(Zn−1 − E(Zn−1))

=
Zn−1

2 − (n− 2)− E(Zn−1)
2 + (n− 2)

K(n− 2, 2, 0)

=
Sn−1 − E(Sn−1)

K(n− 2, 2, 0)
.

The second martingale is obtained by the same method [1].

Theorem 2.5. Let Sn and Pn be the Gordon-Scantlebury index and Platt index
of a random plane-oriented recursive tree of order n ≥ 3, respectively. Then

Var(Sn) =
K(n, 4, 0)

4

n−1∑
t=1

ξ(t)

K(t+ 1, 4, 0)
,

and

Var(Pn) = K(n, 4, 0)

n−1∑
t=1

ξ(t)

K(t+ 1, 4, 0)
,

where
ξ(t) =

4

2t− 1
E(Ft)−

(4E(Zt)

2t− 1

)2

, t ≥ 1.

Proof. We first study the variance of the first Zagreb index. We have

E(Zn − Zn−1 − 2)2 = 4E(dUn−1)
2

=
4

2n− 3

n−1∑
i=1

E(d3vi
)

=
4

2n− 3
E(Fn−1). (4)

Also

E((Zn − E(Zn)− Zn−1 + E(Zn−1))(E(Zn)− E(Zn−1)− 2))

= (E(Zn)− E(Zn−1)− 2)× E(Zn − E(Zn)− Zn−1 + E(Zn−1))

= (E(Zn)− E(Zn−1)− 2)× 0

= 0,
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and by Lemma 2.4,

E((Zn − E(Zn))(Zn−1 − E(Zn−1)))

= E(E((Zn − E(Zn))(Zn−1 − E(Zn−1)))|Fn−1))

= E((Zn−1 − E(Zn−1))E(Zn − E(Zn)|Fn−1))

=
K(n− 1, 2, 0)

K(n− 2, 2, 0)
E((Zn−1 − E(Zn−1))(Zn−1 − E(Zn−1)))

=
K(n− 1, 2, 0)

K(n− 2, 2, 0)
V(Zn−1).

Thus

E(Zn − Zn−1 − 2)2

= E(Zn − E(Zn)− Zn−1 + E(Zn−1) + E(Zn)− E(Zn−1)− 2)2

= E(Zn − E(Zn)− Zn−1 + E(Zn−1))
2

+ E(E(Zn)− E(Zn−1)− 2)2

+ 2E((Zn − E(Zn)− Zn−1 + E(Zn−1))(E(Zn)− E(Zn−1)− 2))

= E(Zn − E(Zn))
2 + E(Zn−1 − E(Zn−1))

2

− 2E((Zn − E(Zn))(Zn−1 − E(Zn−1)))

+ E(E(Zn)− E(Zn−1)− 2)2

= Var(Zn) +
(
1− 2

K(n− 1, 2, 0)

K(n− 2, 2, 0)

)
Var(Zn−1) +

(4E(Zn−1)

2n− 3

)2

. (5)

From (4) and then (5),

4

2n− 3
E(Fn−1) = Var(Zn) +

(
1− 2

K(n− 1, 2, 0)

K(n− 2, 2, 0)

)
Var(Zn−1) +

(4E(Zn−1)

2n− 3

)2

.

By Lemma 2.1,

Var(Zn) =
K(n, 4, 0)

K(n− 1, 4, 0)
Var(Zn−1) + ξ(n− 1), Var(Z1) = 0.

By iteration, relation (1) and this fact that for each random variable X and a, b ∈
R, Var(aX + b) = a2Var(X) proof is completed.

Corollary 2.6. We have

V(Zn) = n log n+O(n).
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3. Asymptotic Normality

We use the notation D−→ to denote convergence in distribution. The standard ran-
dom variable N(µ, σ2) appear in the following theorem for the normal distributed
with mean µ and variance σ2.

Theorem 3.1. Let Sn and Pn be the Gordon-Scantlebury index and Platt index
of a random plane-oriented recursive tree of order n ≥ 3, respectively. Then as
n → ∞,

S∗
n =

2Sn − 2n logn√
n log n

D−→ N(0, 1),

and
P ∗
n =

Pn − 2n log n√
n log n

D−→ N(0, 1).

Proof. Let

Uj =
Zj − E(Zj)

K(j − 1, 2, 0)
− Zj−1 − E(Zj−1)

K(j − 2, 2, 0)
, j ≥ 2,

with U1 = 0. Thus (Un)n≥1 is a martingale difference sequence. Then E(Uj |Fj−1) =
0 and

n∑
j=1

Uj =
Zn − E(Zn)

K(n− 1, 2, 0)
.

Set
Xn,j =

K(n− 1, 2, 0)√
n log n

Uj .

Thus
n∑

j=1

Xn,j =
Zn − E(Zn)√

n log n
.

But
n∑

j=1

E(Xn,j |Fj−1) = 0.

By (2) and (3),

Uj =
(
1− K(j − 1, 2, 0)

K(j − 2, 2, 0)

) Zj−1

K(j − 1, 2, 0)
+

2dUj−1

K(j − 1, 2, 0)

= 2
dUj−1 −

Zj−1

2j−3

K(j − 1, 2, 0)
.

Then there exists a positive constant c independent of n such that

max
1≤j≤n

|Uj | ≤
c

K(n− 1, 2, 0)
= o

( 1√
n log nK(n− 1, 2, 0)

)
,
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and thus for any ε > 0,

n∑
j=1

E(X2
n,jI(|Xn,j | > ε)|Fj−1)

P−→ 0.

It is obvious that

E((Zj − Zj−1 − 2)2|Fj−1) =
4

2j − 3
Fj−1,

and

E((Zj − Zj−1 − 2)2|Fj−1) = E((Zj − E(Zj))
2|Fj−1)

+
(
1− 2

K(j − 1, 2, 0)

K(j − 2, 2, 0)

)
(Zj−1 − E(Zj−1))

2

+ E((E(Zj)− E(Zj−1)− 2)2|Fj−1).

Thus

E((Zj − E(Zj))
2|Fj−1) =

K(j, 4, 0)

K(j − 1, 4, 0)
(Zj−1 − E(Zj−1))

2 + η(j − 1), (6)

where

η(j) =
4

2j − 1
Fj −

(4E(Zj)

2j − 1

)2

.

Then from (6),

n∑
j=1

E(X2
n,j |Fj−1) =

K(n− 1, 2, 0)2

n log n

n∑
j=1

E(U2
j |Fj−1)

=
K(n− 1, 2, 0)2

n log n

n∑
j=1

E
(( Zj − E(Zj)

K(j − 1, 2, 0)
− Zj−1 − E(Zj−1)

K(j − 2, 2, 0)

)2

|Fj−1

)
=

K(n− 1, 2, 0)2

n log n

n∑
j=1

(E((Zj − E(Zj))
2|Fj−1)

K(j − 1, 2, 0)2
− (Zj−1 − E(Zj−1)

2

K(j − 2, 2, 0)2

)
P−→ 1.

Now, proof is completed through the martingale central limit theorem [6] and by
relation (1).
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