
Mathematics Interdisciplinary Research 6 (2021) 35− 61

Original Scientific Paper

Schwinger Pair Creation by a Time-Dependent

Electric Field in de Sitter Space with the

Energy Density EµE
µ = E2a2(τ)

Fatemeh Monemi and Farhad Zamani ⋆

Abstract
We investigate Schwinger pair creation of charged scalar particles from

a time-dependent electric field background in (1+3)-dimensional de Sitter
spacetime. Since the field’s equation of motion has no exact analytical solu-
tion, we employ Olver’s uniform asymptotic approximation method to find
its analytical approximate solutions. Depending on the value of the electric
field E, and the particle’s mass m, and wave vector k, the equation of motion
has two turning points, whose different natures (real, complex, or double)
lead to different pair production probability. More precisely, we find that for
the turning points to be real and single, m and k should be small, and the
more smaller are the easier to create the particles. On the other hand, when
m or k is large enough, both turning points are complex, and the pair cre-
ation is exponentially suppressed. In addition, we study the pair creation in
the weak electric field limit, and find that the semi-classical electric current
responds as E1−2

√
µ2
(1− lnE), where µ2 = 9

4
− m2

ds
H2 . Thus, below a critical

mass mcr =
√
2H, the current exhibits the infrared hyperconductivity.
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1. Introduction

A strong enough external electric field can produce pairs of charged particles from
vacuum. This non-perturbative phenomenon in quantum field theory, that was
originally proposed by Sauter [31] and further investigated by Heisenberg and
Euler [18], is known as the Schwinger effect after the work of Schwinger [32] in
which a complete theoretical description is given (see, e.g., [10] for a recent review).
With a uniform background electric field E in flat spacetime, the number density
(probability) of the created pairs is proportional to the factor exp

(
−πm2/eE

)
,

where m and e are the particle mass and charge (coupling), respectively. This
pocket formula shows that the pair production occurs when the electric field is
as strong enough as a critical field Ecr ≃ m2/e; otherwise it is exponentially
suppressed. For the lightest charged particle, the electron, we need an intense
field Ecr ≃ 1.3× 1018 V/m [6] that is still experimentally far-reaching. This is the
main obstacle to directly observe the Schwinger pair production in ground-based
experiments. Nevertheless, as pointed out in the review article [30], one could
search for the imprint of the Schwinger effect in astrophysical and cosmological
contexts where extremely intense background fields could naturally be present.
This could be done, e.g., by considering the backreaction of the created pairs or
the signature of the induced current on the magnetogenesis and inflation.

De Sitter (dS) geometry plays a crucial role in our current understanding of
cosmology. Specifically, the inflationary background in the early universe (see, e.g.,
[2, 22] for reviews) as well as the present day accelerated expansion of the universe
(see, e.g., [5] for review) is approximately described by dS spacetime. Widely
motivated from false vacuum decay and bubble nucleation to cosmological appli-
cations including magnetogenesis or giving a thermal interpretation, Schwinger
mechanism in dS background has been extensively studied for various types of
particles and spacetime dimensions [3, 4, 8, 9, 16, 17, 19, 21, 34, 36, 37]. Thanks
to the curvature of the spacetime, Schwinger pair creation mechanism in 1 + 1-
dimensional dS geometry showed some quite peculiar features [8, 9, 19, 36, 37].
In particular, in the case of light fields, the current induced by created particles
is inversely proportional to the applied electric field which leads to the so-called
infrared hyperconductivity. The analysis, extended to 1+3-dimensional dS space-
time, showed further unexpected results [16, 17, 21]. Furthermore, in [3], it is
shown that the Schwinger effect tends to have the similar aspects even in 1 + d-
dimensional dS background. However, it is claimed recently that the unintuitive
infrared behavior (negative conductivity) of the induced Schwinger current in dS
space might be an artifact of regularization schemes [1].

Most of the previous works assumed a uniform background electric field with
constant energy density to consider Schwinger effect in dS space, which is in con-
trast with the realistic situation. Indeed, the background electric field would be
changed due to the backreaction of the created pairs and the expansion of the
universe. More importantly, the constancy of the energy density violates the sec-
ond law of thermodynamics in the case of a homogeneous field configuration in an
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expanding conformally flat background [12]. Recently, in some realistic models,
Schwinger pair production by time-dependent inflation-driven electric field and
its backreaction to the background geometry has been investigated [11, 20, 33].
These studies employ the fact that during the anisotropic inflation a persistent
electric field can be established by introducing a time-dependent gauge kinetic
coupling between the inflation and the gauge field [7, 39]. It is shown that, for
light charged scalar field, the pair production probability is strongly enhanced
in the weak electric field limit and the infrared hyperconductivity also occurs in
anisotropic inflation [11]. On the other hand, in the strong-field regime, it is shown
that the Schwinger current has the same functional dependence as in the case of
a constant electric field [20].

Unlike the case of flat space, studying the Schwinger effect in time-dependent
electric field background has been limited to some special cases in curved spacetime
(see, e.g., [14, 15, 23, 35, 38]). This is mainly because, in the presence of a time-
dependent background in curved spacetime, it is generally difficult to solve the
field’s equations of motion to find the mode functions and interpret them in terms
of positive- and negative-frequency modes. Thus, one needs either to choose a
special form for the scale factor or to restrict himself/herself to a particular time-
dependent electric field. Nevertheless, one can resort to approximate methods.
Based on Olver’s uniform asymptotic approximation method for the solution of
the second-order differential equation with two turning points [26], the Schwinger
effect coupled to inflation has been recently studied in [11] with the focus on the
weak electric field and light mass limits. In the present work, we use this uniform
asymptotic theory, that was developed further in [41, 42, 43, 44], to investigate the
Schwinger pair creation by a time-dependent electric field in de Sitter spacetime.
For different parameter region (different cases of the turning points), we compute
the pair production probability and study its different features. We show that the
pair creation is enhanced for light scalar fields, while is suppressed exponentially
for massive particles. We also compute the semi-classical electric current in the
weak electric field limit and show that the negative conductivity occurs.

The rest of the article is organized as follows. In Section 2, we first intro-
duce the setup (i.e., the background spacetime and the time-dependent electric
fields). Then, starting from the action, we obtain the equation of motion for a
charged scalar field in these backgrounds. We show that the problem of finding
the mode functions is reduced to solve a second-order differential equation which
does not admit an exact analytical solution. We briefly introduce the uniform
asymptotic approximation method in Section 3 and use it to find the approximate
mode functions. We use these approximate mode functions to define the “in” and
“out” vacuum states for the quantized scalar field, and compute the Bogoliubov
coefficients and pair production probability in Section 4. Then, we explore the
different features of the pair creation for the different parameter regions (that lead
to different natures for the turning points). Finally, we conclude in Section 5. The
appendix include some useful information on Weber’s equation, parabolic cylinder
functions and their asymptotic expansion.
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2. The Field’s Equation of Motion
We take the background spacetime to be the four-dimensional de Sitter (dS4)
space, that is described by the metric

ds2 = gµν dx
µdxν = a2(τ)(−dτ2 + dx2), x = (x, y, z) ∈ R3, (1)

where a(τ) is the scale factor, and the conformal time τ is related to the physical
time t by dt = adτ . Note that we work in the flat slicing (Poincaré patch) of dS4
space that covers only half of the dS4 manifold. In terms of the Hubble constant
H :=a−1(t)da(t)dt =a−2(τ)da(τ)dτ , the conformal time τ is given by

τ = − 1

Ha(τ)
, τ ∈ (−∞, 0).

In this background spacetime, we consider a complex scalar field φ(x) with charge
e and mass m coupled to a U(1) gauge field Aµ(x) with the action

A =

∫
d4x

√
−g

{
−gµν(Dµφ)

∗(Dνφ)− (m2 + ξR)φ∗φ− 1

4
FµνF

µν

}
, (2)

where g is the determinant of the metric tensor, ξ is the dimensionless nonminimal
coupling constant, R = 12H2 is the Ricci scalar curvature, Dµ := ∇µ + ieAµ, and
Fµν = ∇µAν −∇νAµ = ∂µAν − ∂νAµ.

We also treat the U(1) gauge field Aµ(x) as a background field giving rise
to a homogenous time-dependent electric field in the z-direction. We choose the
homogenous vector potential to be

Aµ(τ) = − E

2H3τ2
δzµ = − E

2H
a2 δzµ, (3)

such that a co-moving observer with four-velocity uµ (u = 0, uµuµ = −1) measures
the electric field Eµ = uνFµν = Ea2(τ) δzµ with a growing (time-dependent) energy
density EµE

µ = E2a2(τ). Here E is a positive constant having the dimension
(length)−2 in natural units. The de Sitter scale H−1 has the length dimension and
therefore Aµ has the dimension (length)−1.

The equation of motion for the scalar field φ can be easily deduced from the
action (2) as [

∇µ∇µ + 2 iegµνAµ∇ν − e2gµνAµAν −m2
ds

]
φ(x) = 0,

where ∇µ∇µ = 1√
−g

∂µ(
√
−ggµν∂ν) and we defined m2

ds := m2 + ξR. In the
presence of the time-dependent gauge field (3) in the background metric (1), the
equation of motion for φ takes the explicit form

φ′′ + 2
a′

a
φ′ − ∂2i φ+ i

eE

H
a2∂zφ+

e2E2

4H2
a4φ+m2

dsa
2φ = 0, (4)
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where the prime denotes a τ− derivative and the spatial index i is summed over.
The spatial translational invariance of Equation (4) suggests that we can consider

φ(τ,x) = a−1(τ)ϕk(τ) e
ik·x, (5)

where, for the co-moving wave number k2 = k2x + k2y + k2z , ϕk(τ) satisfies

ϕ′′k±(τ) + ω2
k± ϕk±(τ) = 0, (6)

with the effective frequency given by

ω2
k± = k2 +

1

τ2

(
m2

ds

H2
− 2∓ eE|kz|

H3

)
+

e2E2

4H6τ4
. (7)

Also, the subscripts ± correspond to the so-called “upward” (kz > 0) and “down-
ward” (kz < 0) tunneling (or “anti-screening” and “screening” orientation), respec-
tively.

From Equation (7), we observe that in the asymptotic past (τ → +∞), we
have ωk± ≃ k2 and thus ϕk±(τ) is a sum of plane waves. Indeed, at early times
the adiabatic condition(

ω′
k±
ω2
k±

)2

≪ 1,
ω′′
k±
ω3
k±

≪ 1, (8)

is trivially satisfied, leading to a well-defined notion of adiabatic “in” vacuum.
On the other hand, in the asymptotic future (τ → 0), the frequencies ωk± are
determined by the last dominant term in Equation (7), i.e., ωk± ≃ e2E2

4H6τ4 . Thus,
in this case the adiabatic condition (8) is also well satisfied and then ϕk±(τ) is well
approximated by a WKB solution in the asymptotic future. This means that there
exists a well-defined adiabatic “out” vacuum. We employ these facts to compute
the Bogoliubov coefficients and pair production in Section 4.

Introducing the dimensionless variable

z := −|kz|τ, z ∈ (0,+∞),

Equation (6) can be recast as

d2

dz2
ϕk±(z) +

[
α− µ̃2 + β±

z2
+
β2
±

4 z4

]
ϕk±(z) = 0, (9)

where we have defined the dimensionless parameters

M :=
mds

H
, E :=

eE

H2
, κz :=

|kz|
H

,

α :=
k2

k2z
= 1 +

k2x + k2y
k2z

, β± := ±Eκz, µ̃2 := 2−M2.

To study the Schwinger effect, we need to solve this differential equation which has
no exact solution. Therefore, one needs to resort to numerical or/and approximate
methods. We will proceed to do this in the following sections.
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3. Uniform Asymptotic Approximation and Mode Functions
To find the approximate analytical solution of Equation (9), we closely follow
the approach of Refs. [41, 42, 43, 44], where the authors developed the uniform
asymptotic approximation method for solving the second-order differential equation
of the form d2w/dz2 =

[
λ2ĝ(z) + q(z)

]
w that was originally formulated by Olver

[26]. Here, we briefly apply this method to construct the solution and refer the
reader to Refs. [24, 27, 28, 41, 42, 43, 44] for further details. To do this, we first
rewrite Equation (9) in the form

d2

dz2
ϕk±(z) =

[
λ2ĝ(z) + q(z)

]
ϕk±(z), (10)

where

λ2ĝ(z) + q(z) = −
(
α− µ̃2 + β±

z2
+
β2
±

4 z4

)
. (11)

Here, λ is a positive large parameter that is introduced to trace the order of the
approximation and can be set to one at the end. The two functions g(z) ≡ λ2ĝ(z)
and q(z) cannot be uniquely determined from Equation (11). Nevertheless, as
discussed in [27, 41, 42, 43, 44], they can be usually determined demanding that
the associated errors of the approximate solutions are minimized. In view of (11),
λ2ĝ(z) and q(z) have a pole at z = 0+ and λ2ĝ(z) may vanish at the so-called
turning points in the range z ∈ (0+,+∞). The uniform asymptotic solutions of
Equation (10) strictly depend on the nature of the turning points and the behavior
of λ2ĝ(z) and q(z) near the pole and turning points.

To specify the explicit form of λ2ĝ(z) and q(z), we first apply the Liouville
transformation with two new variables ζ(z) and U(ζ), defined by [26, 27, 28]

U(ζ) := ż−
1
2ϕ(z), ż−2 :=

(
dζ

dz

)2

=
|ĝ(z)|
f (1)(ζ)2

, (12)

to Equation (10), where f(ζ) =
∫
dz
√
|ĝ(z)| and f (1)(ζ) = df/dζ. This yields

d2U(ζ)

dζ2
=

{
±λ2f (1)(ζ)2 + ψ(ζ)

}
U(ζ) (13)

where

ψ(ζ) = ż2q(z) + ż
1
2
d2

dζ2
(ż−

1
2 ) = ż2q(z)− ż

3
2
d2

dz2
(ż

1
2 ),

and ± correspond to g(z) > 0 and g(z) < 0, respectively. Clearly, the accuracy
of the approximate solutions depends on the magnitude of ψ(ζ). As shown in
[28, 41, 42, 43, 44], the errors of the approximate solutions are characterized by an
error control function, F(z), that in the first-order, with the choice of f (1)(ζ)2 = 1,
is defined by

F(z) =

∫
dz |ψ(z)| =

∫
dz

{
5

16

g′2(z)

g5/2(z)
− 1

4

g′′(z)

g3/2(z)
− q(z)

g1/2(z)

}
. (14)
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As pointed out in [41, 42, 43, 44], the Liouville-Green approximation is valid
provided that, near the pole z = 0+ the two conditions hold: (i) |λ2ĝ(z)| ≪ |q(z)|
everywhere, except in the neighborhood of turning points, and (ii) the error control
function F(z) must be finite (convergent). Assuming that λ2ĝ(z) and q(z) have a
pole at z = 0+, respectively, of order i and j, one can expand them in the region
near the pole z = 0+ in the form

λ2ĝ(z) =
1

zi

∞∑
s=0

gsz
s, q(z) =

1

zj

∞∑
s=0

qsz
s,

where gs and qs are some constants. Making use of these expansion in (14), at the
leading order we find

F(z) ≃ −g−
1
2

0

∫
dz

{
q0 z

i
2−j +

(
i(i+ 1)

4
− 5 i2

16

)
z

i
2−2

}
.

In view of (11), when β± ̸= 0, the condition (i) requires that λ2ĝ(z) must be of
order i = 4 at the pole z = 0+, while q(z) can be of order j ≤ 3. However, for the
case β± = 0, we have i = j = 2 (see [41, 42, 43, 44] for details). Therefore, in this
case, to keep F(z) finite near the pole, we must choose q0 = −1/4. On the other
hand, we must set qs = 0 for s ≥ 1 to ensure that the condition |λ2ĝ(z)| ≪ |q(z)|
holds. This implies q(z) = − 1

4 z2 , which, in view of (11), results in

λ2ĝ(z) = −
(
α− µ2 + β±

z2
+
β2
±

4 z4

)
, (15)

with µ2 := µ̃2 + 1
4 = 9

4 −M2.

3.1 Turning Points
Having determined the function λ2ĝ(z), now we are ready to find its turning points.
These are the zeros of the equation λ2ĝ(z) = 0 that can be cast in the form

4α z4 − 4(µ2 + β±) z
2 + β2

± = 0.

This is a quartic equation which can have at most four roots. Its discriminant

∆ = 47αβ2
±
(
(µ2 + β±)

2 − αβ2
±
)2
,

is always non-negative and depending on the values of α, µ2 and β± the nature of
the four roots is different. There are four different cases to consider.

(a) When 0 ≤ M2 < 9
4−(

√
α∓1)|β±|, we have µ2+β± > 0, (µ2+β±)

2−αβ2
± > 0,

and hence ∆ > 0, such that there are four distinct real roots. But we have
two real turning points z1± < z2± in the interval (0,+∞) which are given by

zi± =
1√
2α

(
(µ2 + β±) + ϵi

√
(µ2 + β±)2 − αβ2

±

)1/2
, (16)

where ϵ1 = −1 and ϵ2 = +1.
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(b) When 9
4 − (

√
α ∓ 1)|β±| < M2 < 9

4 + (
√
α ± 1)|β±|, we have ∆ > 0, but

µ2 + β± may be positive, negative or zero. In this case, there are two pairs
of non-real complex conjugate roots which one of them with the positive real
part to be considered here. These are

z1± =

√
|β±|√
2α1/4

{
cos(ϑ±/2)− i sin(ϑ±/2)

}
= z∗2±, (17)

where ϑ± is defined by

ϑ± = arccos

(
µ2 + β±
|β±|

√
α

)
.

(c) When M2 = 9
4 −(

√
α∓1)|β±| or M2 = 9

4 +(
√
α±1)|β±|, we have ∆ = 0 and

there are two real or purely imaginary double roots depending on whether
µ2 + β± is positive or negative, respectively. The acceptable double root in
each case is z± =

√
(µ2 + β±)/2α.

(d) When M2 > 9
4 + (

√
α± 1)|β±|, we have ∆ > 0, but µ2 + β± is negative and

there are two pairs of purely imaginary complex conjugate roots given by

zi± =
i√
2α

(
|µ2 + β±|+ ϵi

√
(µ2 + β±)2 − αβ2

±

)1/2
,

and their complex conjugates.

Thus, for the cases of small masses, weak electric fields and small momentums,
we have two real turning points z1± < z2±. The case of two complex conjugate
turning points z1± = z∗2± occurs when we have moderate to large masses, mod-
erate to strong electric fields or large momentums. Double turning points (real
or purely imaginary) can be obtained by the fine-tuning of the free parameters
involved in the theory, i.e., E, m, and k. Finally, very heavy particles (masses)
(compared to the electric field and momentum) lead to four purely imaginary turn-
ing points. Physically, heavy particles are hard to be produced, so therefore we
did not consider this case, i.e., (d), in the following.

3.2 Approximate Solutions Near the Pole z = 0+ and Two
Turning Points z1 and z2

Finally, as shown in [26, 41, 42, 43, 44], we find that the approximate solutions
and the corresponding error bounds near the pole z = 0+ and around the turning
points can be constructed as follows. The approximate solution near the pole
z = 0+ can be obtained by choosing f (1)(ζ)2 = const = 1. Because g(z) is negative
near the pole, we then find from (13) that d2U/dζ2 =

[
−λ2 + ψ(ζ)

]
U , where

U(ζ) = (−g(z))1/4ϕ(z) and ζ(z) =
∫ z

dz′
√
−ĝ(z′). Therefore, neglecting the ψ(ζ)
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term, to first-order approximation, ϕk±(z) near the pole z = 0+ is given by the
Liouville-Green approximate solution

ϕk±(z) =
c1

(−ĝ(z)) 1
4

eiλ
∫ zdz′

√
−ĝ(z′)(1+ϵ1)+

c2

(−ĝ(z)) 1
4

e−iλ
∫ zdz′

√
−ĝ(z′)(1+ϵ2), (18)

where c1 and c2 are integration constants, and ϵ1 and ϵ2 denote the errors of the
approximate solution whose definition can be found in Refs. [28, 41, 42, 43, 44].

As pointed out in [26, 41, 42, 43, 44], the crucial point to get the asymp-
totic solution near two turning points z1 and z2 is to choose f (1)(ζ)2 = |ζ2 − ζ20 |
in Equation (12), where ζ is an increasing function of z with the conditions
ζ(z1) = −ζ0 and ζ(z2) = ζ0. In this case, Equation (13) reduces to d2U/dζ2 =[
λ2(ζ20 − ζ2) + ψ(ζ)

]
U . Ignoring the term ψ(ζ), the first-order solution to this

so-called Weber equation can be expressed in terms of the parabolic cylinder func-
tions Dν(

√
2λζ e−iπ

4 ) and D−ν−1(
√
2λζ ei

π
4 ) [28, 40], where ν is defined by (see

Appendix for details)

ν := −1

2
− i

2
λζ20 .

Thus, the general first-order approximate solution of Equation (9) near two turning
points z1 and z2 is given by

ϕk±(z) =

(
ζ2 − ζ20
−ĝ(z)

)1/4 [
C1Dν(

√
2λζ e−iπ/4) + C2D−ν−1(

√
2λζ eiπ/4)

]
, (19)

where C1 and C2 are two integration constants and we have omitted the error
terms. The relation between ζ(z) and z can be easily derived from Equation (12).
Consider that z1 and z2 (z1 < z2) are real turning points. When z < z1, one has
ζ < −ζ0 and g(z) < 0 which imply∫ z

z1

dz′
√
−g(z′) = 1

2
ζ
√
ζ2 − ζ20 +

1

2
ζ20 arccosh(−ζ/ζ0).

When z > z2, one has ζ > ζ0 and g(ζ) < 0 which yield∫ z

z2

dz′
√
−g(z′) = 1

2
ζ
√
ζ2 − ζ20 − 1

2
ζ20 arccosh(ζ/ζ0).

And in the region z1 ≤ z ≤ z2, one has −ζ0 ≤ ζ ≤ ζ0 and g(z) > 0 which result in∫ z

z1

dz′
√
g(z′) =

1

2
ζ
√
ζ20 − ζ2 +

1

2
ζ20 arccos(−ζ/ζ0).

Note that in the above relation, if we take the upper limit of the integral to be z2,
we obtain

ζ20 =
2

π

∫ z2

z1

dz
√
ĝ(z). (20)
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Finally, we recall from [41, 42, 43, 44] that the general approximate solution
(19) is valid when z1 and z2 are two complex turning points. But it should be
noted that in this case ζ20 is always negative (ζ0 is purely imaginary), and thus the
relation between ζ(z) and z is given by∫ z

ℜ(z1)

dz′
√
−g(z′) = 1

2
ζ
√
ζ2 − ζ20 − 1

2
ζ20 arcsinh(ζ/|ζ0|),

where ℜ stands for “the real part of ”.
We close this section to comment on the validity of the first-order approxima-

tion used to derive the approximate solutions. In the next section, we will use the
physically well-defined initial conditions to determine the integration constants C1

and C2. The analytical approximate solution (19) with C1 and C2 being given by
Equation (23) is compared with the numerical solution in Figures 1 (for kz > 0)
and 2 (for kz < 0). These figures and many other ones we examined show that
the exact solution of Equation (9) are well approximated by our first-order ap-
proximate analytical solution (19). In the next section we will also observe that
the pair production probability obtained by these approximate solutions is very
close to the numerical (exact) value. These observations show that the first-order
approximation works well and there is no need to extend the solution (19) to high
orders.

4. Pair Production Probability
Having obtained the general approximate solutions, let us compute the Schwinger
pair production. To do this end, we need to specify the positive- and negative-
frequency mode functions that define the so-called in and out vacua.

As pointed out in Section 2, there exist adiabatic in and out vacua correspond-
ing, respectively, to the plane wave and WKB solutions in the asymptotic past
and future. Therefore, at early times τ → −∞ (z → +∞), for which we have
λ2ĝ(z) ≃ −α, we choose the normalized positive-frequency solutions ϕ(in,+)

k± (z) to
have the asymptotic form

lim
z→+∞

ϕ
(in,+)
k± (z) =

ei
√
α z√

2|kz|α1/4
. (21)

Considering the asymptotic form of the parabolic cylinder functions in the limit
z → +∞ (ζ → +∞) given by Equations (34) and (35), the general approximate
solution (19) take the asymptotic form

ϕk±(z) ≃ (−2λĝ(z))
− 1

4 e−
π
8 λζ2

0

[
C1e

iχ(z) + C2e
−iχ(z)

]
, (22)

where, with ϕ2 := phΓ
(
1
2 + i

2λζ
2
0

)
, the function χ(z) is defined by

χ(z) :=

∫ z

z2

√
−g(z′) dz′ + π

8
− 1

2
ϕ2 .
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

two real turning points two complex conjugated turning points

a double real turning pointtwo complex conjugated turning points

two real turning points

two real turning points

two real turning points

two complex conjugated turning points

Figure 1: Comparison between the numerical (exact) (blue solid curves) and ap-
proximate analytical (red dotted curves) mode functions ϕk+(z) for kz > 0. The
figures (a), (e), (g) and (h) correspond to case (a) with two real turning points,
while (b), (c) and (f) correspond to case (b) with two complex conjugated turning
points. The panel (d) corresponds to case (c) with a double real turning point.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

two real turning points two complex conjugated turning points

a double real turning pointtwo complex conjugated turning points

two real turning points

two real turning points

two real turning points

two complex conjugated turning points

Figure 2: Comparison between the numerical (exact) (blue solid curves) and ap-
proximate analytical (red dotted curves) mode functions ϕk−(z) for kz < 0. The
figures (a), (e), (g) and (h) correspond to case (a) with two real turning points,
while (b), (c) and (f) correspond to case (b) with two complex conjugated turning
points. The panel (d) corresponds to case (c) with a double real turning point.
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Making use of g(z) → −α in the limit z → +∞, one can easily see that the right-
hand side of Equation (22) can be matched with the expression (21) if, up to an
irrelevant phase factor, we set

C1 = (2λ|kz|2)−1/4 e
π
8 λζ2

0 , C2 = 0. (23)

In light of (5) and (19), these integration constants imply that

φ
(in,+)
k± (x) = a−1(τ)eik·xϕ

(in,+)
k± (τ)

= a−1(τ) eik·x|kz|−
1
2 e

π
8 λζ2

0

(
ζ2 − ζ20
−2λĝ(z)

)1
4

Dν(
√
2λζ e−iπ/4) (24)

describes the positive-frequency mode function for the in vacuum. Similarly, the
negative-frequency mode function for the in vacuum can be obtained by C1 = 0
and C2 = (2λ|kz|2)−1/4 e

π
8 λζ2

0 , i.e., we have

φ
(in,−)
k± (x) = a−1(τ) e−ik·x|kz|−

1
2 e

π
8 λζ2

0

(
ζ2 − ζ20
−2λĝ(z)

)1
4

D−ν−1(
√
2λζ eiπ/4). (25)

At late times τ → 0− (z → 0+) the positive-frequency solution of Equation (9)
should asymptotically take the form of the WKB solution

ϕ
(out,+)
k± (z) =

1√
2ωk±

e−i
∫
ωk±dτ ≃ 1√

2|kz|(−g(z))
1
4

exp

[
i

∫ z

dz′
√

−g(z′)
]
. (26)

The Liouville-Green approximate solution (18) near the pole z = 0+ matches with
the WKB solution (26) if, up to an irrelevant phase factor, we set c1 = (2λ|kz|)−1/2

and c2 = 0. On the other hand, the negative-frequency solution is simply given
by the choice c1 = 0 and c2 = (2λ|kz|)−1/2. Thus, the positive- and negative-
frequency mode functions for the out vacuum can be expressed by

φ
(out,+)
k± (x) = a−1(τ)eik·xϕ

(out,+)
k± (τ)

=
a−1(τ) eik·x√
2|kz|(−g(z))

1
4

exp

[
i

∫ z

dz′
√
−g(z′)

]
, (27)

and φ(out,−)
k± (x) = φ

(out,+)
k± (x)∗.

Having determined the in and out mode functions (given by Equations (24),
(25) and (27)), we can compute the Bogoliubov coefficients. To do this, we use the
asymptotic form of φ(in,+)

k± (x) in the infinite future τ → 0− (z → 0+ or ζ → −∞).
In view of the asymptotic relation (37), and Equation (27), in this limit we have

lim
z→0+

ϕ
(in,+)
k± (z) = lim

ζ→−∞
|kz|−

1
2 e

π
8 λζ2

0

(
ζ2 − ζ20
−2λĝ(z)

)1
4

Dν(
√
2λζ e−iπ/4)

≃ ei(
π
8 − 1

2ϕ2)√
2|kz| (−g(z))

1
4

[√
1 + eπλζ

2
0 e−iχ̃(z) − ie

π
2 λζ2

0 eiχ̃(z)
]

= ei(
π
8 − 1

2ϕ2)
[√

1 + eπλζ
2
0ϕ

(out,+)
k± (z)− ie

π
2 λζ2

0ϕ
(out,−)
k± (z)

]
,
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where in second line we used the notation χ̃(z) := −
∫ z

z1

√
−g(z′) dz′. This, in turn,

implies that

φ
(in,+)
k± (x) ≃

∫
d3k′

(2π)3

(
αk±,k′φ

(out,+)
k′± (x) + βk±,k′φ

(out,−)
k′± (x)

)
,

where the Bogoliubov coefficients αk±,k′ and βk±,k′ are given by

αk±,k′ = (2π)3δ3(k− k′)αk±, αk± =
√
1 + eπλζ

2
0 ,

βk±,k′ = (2π)3δ3(k+ k′)βk±, βk± = ie
π
2 λζ2

0 .
(28)

Here we have ignored the unphysical global phase factor ei(
π
8 − 1

2ϕ2). These Bogoli-
ubov coefficients explicitly satisfy the normalization condition |αk±|2−|βk±|2 = 1.

Now we are in a position to compute the probability of pair production. The
in and out vacua are respectively defined by aoutk|0⟩out = boutk|0⟩out = 0 and
aink|0⟩in = bink|0⟩in = 0, for all k, where the late time annihilation operators aoutk
and boutk are related to the early time creation and annihilations operators by a
Bogoliubov transformation [29]

aoutk = αk aink + β∗
k b

†
in−k , boutk = β∗

−k a
†
in−k + α−k bink.

In view of this transformation, and Equation (28), for each comoving wave vector
k (with positive or negative kz), the number of created pairs in the out vacuum
|0⟩out per comoving three-volume is simply given by

out⟨0|a†inkaink|0⟩out
(2π)3

∫
d3x

=
out⟨0|b†in−kbin−k|0⟩out

(2π)3
∫
d3x

=
|βk±|2

(2π)3
=
eπλζ

2
0

(2π)3
.

Therefore, the nature of the particle creation effect in the background potential (3)
can be characterized by the quantity ζ20 . The nature and value of ζ20 , and therefore
the behavior of pair creation strictly depends on the nature of two turning points
z1 and z2. In the following we treat this issue for three different cases of turning
points considered in section 3.

Case (a) 0 ≤ M2 < 9
4 − (

√
α∓ 1)|β±| : In this case, to calculate λζ20 , we use

Equations (20) and (15) to write

λζ20 =
2

π

∫ z2±

z1±

dz
√
g(z) =

2
√
α

π

∫ z2±

z1±

dz

z2

√
(z2 − z21±)(z

2
2± − z2) , (29)

where z1± and z2± are two real turning points given in (16). The integral
can be performed by the change of variable z2 = z22± − (z22± − z21±) sin

2θ. A
part-by-part integration then yields

λζ20 =
2

π

√
α z2±

(
1−

z21±
z22±

)∫ π
2

0

dθ
2 sin2θ − 1√

1−
(
1− z21±/z

2
2±

)
sin2θ

,
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that can be expressed in terms of the complete elliptic integrals of the first
and second kinds K(m) and E(m) [13, 28]. The result is

πλζ20 = 4
√
α z2±

[(
1− m2

2

)
K(m)− E(m)

]
, (30)

where (here 0 < m ≤ 1)

m :=
√

1− z21±/z
2
2± =

√
2
[
1 +

(
1−

αβ2
±

(µ2 + β±)2

)− 1
2
]− 1

2

.

is the modulus of the elliptic functions. The result (30) (more precisely, the
pair production probability |βk±|2 = eπλζ

2
0 ) is compared with the numerical

one in Figures 3 (for kz > 0) and 4 (for kz < 0). As can be seen from
these plots, the more smaller the pair’s mass and momentum are the easier
it to be created by the Schwinger mechanism (remember that β± linearly
depends on kz). Also, comparing figures 3 and 4 show that the modes with
anti-screening orientations (kz > 0) are hardest to be produced than those
with screening (kz < 0) orientations.

Case (b) 9
4 − (

√
α∓ 1)|β±| < M2 < 9

4 + (
√
α± 1)|β±| : In this case, λζ20 = 2π−1∫ z2±

z1±
dz
√

−g(z) can be expressed by a similar expression as in (29) in which
z1± and z2± stands for the pair of complex conjugate turning points given by
Equation (17). Noting that the path of integration lies along the imaginary
axis, we can use z = ℜ(z1±) + is to perform the integral over s from ℑ(z1±)
to ℑ(z2±), where ℑ stands for ‘the imaginary part of ’. The result is

πλζ20 = 4
√
α ℑ

[
z1±

{
2
(
E(n)−E(ψ, n)

)
+(n2 − 1)

(
K(n)−F (ψ, n)

)
+i(n− 1)

√
1− (1− 2(n+ 1)−1)

2
/4

}]
, (31)

where F (ψ, n) and E(ψ, n) denote the elliptic integrals of the first and second
kind [13, 28], whose argument ψ and modulus n are defined by

ψ := arcsin
(1
2
(1 + n−1)

)
, n :=

z2±
z1±

= eiϑ± .

The result (31) for λζ20 and the corresponding approximate pair production
probability eπλζ

2
0 are, respectively, compared with the numerical result of

π−1 ln
(
|βk±|2

)
and |βk±|2 in Figures 5 (for kz > 0) and 6 (for kz < 0). These

figures indicate that ζ20 is negative for the case of complex turning points and
therefore, in this case, the pair production is exponentially suppressed. These
plots confirm that (as is physically expected) the more larger the pair’s mass
and momentum are the harder it to be created. Comparing Figures 5 and
6, also, show that the modes with anti-screening orientations (kz > 0) are
more suppressed than those with screening (kz < 0) orientations.
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Case (c) M2 = 9
4 − (

√
α∓ 1)|β±| or M2 = 9

4 + (
√
α± 1)|β±| : In this case, with

a real or purely imaginary double turning point z1± = z2±, we find ζ20 = 0.
This can be trivially seen either from the definition (20) or from the expres-
sion (30) in which m = 0 and K(0) = E(0) = π

2 , or the expression (31) in
which n = 1, ψ = π/2, F (π/2, n) = K(n) and E(π/2, n) = E(n).

(a) (b)

(c) (d)

(e) (f)

2

3

Figure 3: Plots of numerical (exact) (blue solid curves) and approximate analytical
(red dotted curves) results of the pair production probability |βk+|2 for kz > 0,
with two real turning points. The panels (a) and (b) are plotted for some fixed
values of electric field and particle’s momentum. At the other figures the particle’s
mass and momentum are fixed. These figures show that pairs with small masses
and momentums are easy to be created.
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(a) (b)

(c) (d)

(e) (f)

2

Figure 4: Plots of numerical (exact) (blue solid curves) and approximate analytical
(red dotted curves) results of the pair production probability |βk−|2 for kz < 0,
with two real turning points. The panels (a) and (b) are plotted for some fixed
values of electric field and particle’s momentum. At the other figures the particle’s
mass and momentum are fixed. These figures show that pairs with small masses
and momentums are easy to be created.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Plots of numerical (exact) (blue solid curves) and approximate analytical
(red dotted curves) results of λζ20 the pair production probability |βk+|2 for kz > 0,
with two complex conjugate turning points. λζ20 is compared with the numerical
value of π−1 ln

(
|βk+|2

)
in the panels (a) – (d) for fixed values of the electric field

and particle’s momentum. At the figures (e) and (f), for some fixed values of the
particle’s mass and momentum, the approximate result of |βk+|2 is compared with
the numerical one. These figures confirm that the Schwinger pairs with large mass
or large momentum kz are hard to be created.



Schwinger Pair Creation by a Time-Dependent Electric Field in dS4 53

(a) (b)

(c) (d)

(e) (f)

Figure 6: Plots of numerical (exact) (blue solid curves) and approximate analytical
(red dotted curves) results of λζ20 and the pair production probability |βk−|2 for
kz < 0, with two complex conjugate turning points. λζ20 is compared with the
numerical value of π−1 ln

(
|βk−|2

)
in the panels (a) – (d) for some fixed values

of the particle’s mass and momentum. At the figures (e) and (f), for some fixed
values of the particle’s mass and momentum, the approximate result of |βk−|2 is
compared with the numerical one. These figures confirm that the Schwinger pairs
with large mass or large momentum kz are hard to be created.
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The numerical value for |βk±|2 can be obtained from the numerical solutions
of Equation (9). For this purpose, we first notice that when z approaches zero,
one can choose the positive- and negative-frequency out-modes as (compare with
the WKB solution (26))

ϕ
(out,+)
k± (z) =

z√
|kz| |β±|

exp
[
− i

|β±|
2z

]
, ϕ

(out,−)
k± (z) = ϕ

(out,+)
k± (z)∗,

which solve the asymptotic equation d2ϕk±/dz
2 +

(
β2/(4z2)

)
ϕk± = 0 and are

normalized with the inner product
(
ϕ1(z), ϕ2(z)

)
= i

[
ϕ1(z)

∗ ϕ′2(z) − ϕ′1(z)
∗ ϕ2(z)

]
,

where ϕ′ = ∂τϕ = −|kz|∂zϕ. Also, we take the expression (21) as the initial condi-
tion to obtain the numerical solution ϕk±(z) and its derivative. Then, according to
the expansion ϕk±(z) = αk± ϕ

(out,+)
k± (z) + βk± ϕ

(out,−)
k± (z), we can use a very small

value for z (z → 0) to compute |βk±|2 =
∣∣(ϕk±(z), ϕ(out,−)

k± (z)
)∣∣2. This numerical

result is compared with the analytical value |βk±|2 = eπλζ
2
0 in Figures 3 and 5 for

kz > 0 and Figures 4 and 6 for kz < 0.

3.3 Weak Electric Field Limit

For the weak electric field eE ≪ H2 (E ≪ 1), the parameter |β±| is small, and
hence the modulus m of the elliptic functions is close to one. This means that
the complementary modulus m′ :=

√
1−m2 is small and one can use the series

expansions [13]

K(m) = ln
4

m′ +
1

4

(
ln

4

m′ − 1
)
m′2 +

9

64

(
ln

4

m′ −
7

6

)
m′4 + · · · ,

E(m) = 1 +
1

2

(
ln

4

m′ −
1

2

)
m′2 +

3

16

(
ln

4

m′ −
13

12

)
m′4 + · · · ,

for the elliptic functions in Equation (30) to find the approximate value of ζ20 in
the powers of β± (or E). The result is

πλζ20 ≃ 2
√
µ2

{
− 2 +

(
1± |β±|

2µ2

)
ln
( 8µ2

|β±|
√
α

)
+O(β2

±)
}

=

√
9

4
−
m2

ds

H2

{
6 ln 2− 4 + 2 ln

(9
4
− m2

ds

H2

)
− ln

(
1 +

k2⊥
k2z

)
− 2 ln

(eE|kz|
H3

)
±
(eE|kz|

H3

)(9
4
− m2

ds

H2

)−1

ln

(
8
(9
4
− m2

ds

H2

)(
1 +

k2⊥
k2z

)−1/2
)

∓
(9
4
− m2

ds

H2

)−1(eE|kz|
H3

)
ln
(eE|kz|

H3

)
+O(E2)

}
, (32)
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where we recall that k2⊥ = k2x + k2y. Thus, in view of the result (32), in the weak
electric field limit, pair production probability |βk±|2 = eπλζ

2
0 behaves as

|βk±|2 ∝
(

H3

eE|kz|

)2

√
9
4−

m2
ds

H2

,

which diverges as eE|kz|/H3 → 0 (see Figures 3-c to 3-f and 4-c to 4-f).
Though we can not compute the renormalized induced electric current (because

we have not at hand any everywhere-defined expression for the mode functions
ϕk±(z)), instead, following [8], in the weak electric field limit, we can find the
semiclassical current J as

J ∝
(
|βk−|2 − |βk+|2

)
≈ C

(
eE|kz|
H3

)1−2

√
9
4−

m2
ds

H2
[
1− ln

(eE|kz|
H3

)]
+O(Eδ),

where δ = 2− 2
√
9/4−m2

ds/H
2 and

C := −2
(
µ2

)−1/2
e−4

√
µ2
(64(µ2)2

α

)√µ2

ln
(8µ2

√
α

)
.

Similar to the case studied in [11], there exists a critical mass mcr =
√
2H, below

which the electric current J exhibits the so-called infrared hyperconductivity, which
has been initially observed in [8] (only for m = 0 in the presence of a uniform
electric field background in (1+1)-dimensional de Sitter space). Indeed, for mds ∈
(0,

√
2H), when E goes to zero, the electric current J diverges as 1/E 2∆, where

∆ :=
√

9/4−m2
ds/H

2 − 1
2 ∈ (0, 1). In particular, when mds = 0, J is inversely

proportional to E2. This divergence behavior is two times faster than the cases
considered in [8, 11]. In addition, unlike the case of [11], here for mds = mcr =√
2H, J exhibits also a logarithmic divergence in the limit eE|kz|/H3 → 0.

5. Conclusion
In this work, we have investigated the Schwinger pair creation by a time-dependent
electric field in (1+3)-dimensional de Sitter spacetime. Specifically, in dS4, we
have considered a charged scalar field, as a test field, coupled to a time-dependent
background electric field (3) which has a time-dependent energy density in the
expanding universe. We have seen that, while the field equation of motion does
not admit an exact analytical solution, it can be solved by means of Olver’s uniform
asymptotic approximation method. We showed that the equation of motion, in
general, has two turning points, whose natures (single, double, real or complex)
depend on the value of the electric field E, the particle’s massm, and wave vector k.
Using the first-order approximate solutions (the mode functions for the canonical
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quantization) the Bogoliubov coefficients and consequently the probability for the
pair production were computed both analytically and numerically, which strictly
depends on the natures of the turning points. More precisely, we found that
the pair creation process is enhanced when the two turning points are real and
single, and suppressed when they are complex conjugate. Furthermore, when the
particle’s mass and momentum are small, two turning points are real, and the
more smaller are the easier to create particles by the Schwinger mechanism. For
massive particles or large momentums, both turning points are complex, and the
Schwinger pair creation is exponentially suppressed. In addition, for both cases of
real and complex turning points, we explored that the modes with anti-screening
orientation (kz > 0) are different from those with screening orientation (kz < 0)
in pair production process. Indeed, light (massive) particles with anti-screening
orientations are hardest to be produced (are more suppressed) than those with
screening orientations.

For small particle’s mass and momentum, in the weak electric field limit, we
also computed analytically the pair production probability and the semi-classical
electric current induced by the created Schwinger pairs. Remarkably, we found
that the pair creation probability |βk±|2 and hence the semi-classical current J are
strongly enhanced as the electric field diminishes. Indeed, as E → 0, pair creation
probability and the semi-classical current diverge, respectively, as 1/E2∆+1 and
1/E2∆ (1− lnE), where ∆ :=

√
9/4−m2

ds/H
2 − 1

2 ∈ (0, 1). This means that,
similar to the case studied in [11], there exists a critical mass mcr =

√
2H, below

which the electric current J exhibits the so-called infrared hyperconductivity that
stems from the infrared behavior of light fields in de Sitter spacetime. For a
constant electric field background, this negative conductivity shows itself in the
regularized electric current [3, 8, 21]. But, it is recently argued in [1] that this
spurious is a byproduct of nonlinear corrections to the Maxwell action and the
logarithmic running of the coupling constant.

Appendix: Weber’s Equation, Parabolic Cylinder Functions
and their Asymptotic Expansion
In this appendix, we present the detailed derivation of the general solution (19)
of equation d2U/dζ2 =

[
λ2(ζ20 − ζ2)

]
U , and elaborate on their asymptotic ex-

pansions. It can be easily seen that in terms of the variable ζ̃ :=
√
λ (1 − i)ζ =√

2λ ζ e−iπ/4, this equation can be cast into the form of the so-called Weber’s
equation [40]

d2U

dζ̃2
+

[
1

2
+ ν − 1

4
ζ̃2
]
U = 0, (33)

where ν := − 1
2 − i

2 λ ζ
2
0 . The parabolic cylinder functions Dν(ζ̃) satisfy the dif-

ferential equation (33). Because Equation (33) is unaltered if we simultaneously
apply the changes ζ̃ → iζ̃ and ν → −ν − 1, we can choose Dν(

√
2λ ζ e−iπ/4) and

D−ν−1(
√
2λ ζ eiπ/4) as two linearly independent solutions of equation d2U/dζ2 =
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[
λ2(ζ20 − ζ2)

]
U . Thus, the general asymptotic solution near two turning points z1

and z2 can be written as in Equation (19).
Next, in view of the relation Dν(ζ̃) = U(− 1

2 − ν, ζ̃) and the asymptotic expan-
sions for Weber parabolic cylinder function U(a, ζ̃) that is given in [25], we observe
that the asymptotic expansion of Dν(ζ̃) of large order ζ20 in the limit ζ → +∞ can
be expressed as

D− 1
2−

i
2λζ

2
0
(
√
2λ ζ e−iπ/4) ≃ eiλ ζ2

0 ξ(ζ)

(ζ2 − ζ20 )
1/4

h(
√
λζ0 e

−iπ/4), (34)

D− 1
2+

i
2λζ

2
0
(
√
2λ ζ eiπ/4) ≃ e−iλ ζ2

0 ξ(ζ)

(ζ2 − ζ20 )
1/4

h(
√
λζ0 e

iπ/4), (35)

where ξ(ζ) is defined by

ζ20 ξ(ζ) :=

∫ ζ

ζ0

dζ ′
√
ζ ′2 − ζ20 =

1

2
ζ
√
ζ2 − ζ20 − 1

2
ζ20 arccosh(ζ/ζ0),

h(
√
λζ0 e

−iπ
4 ) is approximately given by

h(
√
λζ0 e

−iπ/4) ≃ (2λ)−
1
4 e−π

λζ20
8 ei(

π
8 − 1

2ϕ2),

h(
√
λζ0e

iπ
4 )=(h(

√
λζ0e

−iπ
4 ))∗, and ϕ2 :=phΓ

(
1
2+

i
2λζ

2
0

)
is the phase of Γ

(
1
2+

i
2λζ

2
0

)
.

To find the asymptotic expansion of Dν(
√
2λ ζ e−iπ/4) of large order ζ20 in the

limit ζ → −∞, we use the connection formula [40, 28]

Dν(−
√
2λζe−iπ

4 ) = eiπνDν(
√
2λζe−iπ

4 ) + i eiπν/2
√
2π

Γ(−ν)
D−ν−1(

√
2λζei

π
4 ). (36)

Substituting Equations (34) and (35) in Equation (36) and making use of the
identities ie−iπ/4h(

√
λζ0e

iπ
4 ) = h(

√
λζ0e

−iπ
4 ) and

Γ(
1

2
+
i

2
λζ20 ) =

√
π(cosh(

πλζ20
2

))−1/2 eiϕ2 ,

we find that, for large order ζ20 , the asymptotic form of Dν(
√
2λ ζ e−iπ/4) in the

limit ζ → −∞ can be written as

D− 1
2−

i
2λζ

2
0
(
√
2λ ζ e−iπ/4) ≃ h(

√
λζ0 e

−iπ/4)

(ζ2 − ζ20 )
1/4

[√
1 + eπλζ

2
0 e−iλ ζ2

0 ξ′(ζ)

−ieπλζ
2
0/2 eiλ ζ2

0 ξ′(ζ)
]
, (37)

where ξ′(ζ) is defined by

ζ20 ξ
′(ζ) :=

∫ ζ

−ζ0

dζ ′
√
ζ ′2 − ζ20 = −1

2
ζ
√
ζ2 − ζ20 − 1

2
ζ20 arccosh(−ζ/ζ0).
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