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Abstract

This paper proposes a new linear program for finding a relative interior
point of a polyhedral set. Based on characterizing the relative interior of a
polyhedral set through its polyhedral representing sets, two main contribu-
tions are made. First, we complete the existing results in the literature that
require the non-negativity of the given polyhedral set. Then, we deal with
the general case where this requirement may not be met.
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1. Introduction

Any convex subset of the non-negative orthant of Euclidean space is called a
non-negative convex set. Any element of a non-negative convex set is said to
be maximal, if the number of its positive components is maximum. If a closed
convex set can be described by a finite number of linear equality and inequality
constraints, it is called a (general) polyhedral set. By the defining constraints of
such a polyhedral set, we refer to the constraints apart from the non-negativity
constraints.
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The relative interior of a convex set is its interior relative to its affine hull.
As known from convex analysis, the relative interior of a non-empty convex set
is non-empty [11]. This paper proposes a linear optimization based approach to
deal effectively with the problem of finding a relative interior point of a polyhedral
set. The author’s motivation comes from four facts. First, the information of a
relative interior point of the optimal set of a linear program is useful for parametric
analysis [1, 9]. Second, each pair of relative interior points of the primal and dual
optimal sets of a linear program yields a strict complementary solution [10]. Third,
a relative interior point of a polyhedral set can be used to recognize the presence
of implicit equalities – inequality constraints that are satisfied as equalities for all
feasible solutions (see, e.g., [4, 12, 13, 14], among others). Fourth, the problem
under consideration has found applications in other fields such as linear fractional
optimization, geometric optimization, vector optimization, compressed sensing and
data envelopment analysis (see, e.g., [5, 7] and references therein).

Mehdiloozad et al. [8] develop a convex program for finding a maximal element
of a non-negative convex set. They prove that the set of all maximal elements
of a non-negative polyhedral set with equality defining constraints coincides with
its relative interior. Exploiting this result, they derive a linear program from
their convex program to find a relative interior point of such a polyhedral set.
Mirdehghan and Mehdiloo [7] develop a linear program to find a relative interior
point of a non-negative polyhedral set having both equality and inequality defining
constraints. As an extension to their program, a new linear program is developed
in this paper that is able to find a relative interior point of any polyhedral set
which is not required to be non-negative.

For a subset of Euclidean space, we define a representing set as a higher-
dimensional set that its projection onto the linear span of the given set is equal
to that set. We use two nice results of Rockafellar [11] to characterize the relative
interior of any convex representing set of a set. Restating one of his results, we
show that projecting the relative interior of each convex representing set of a set
(if any exists) onto its linear span1 results its relative interior. To find a relative
interior point of a non-negative polyhedral set having both equality and inequality
defining constraints, we represent it equivalently by a higher-dimensional non-
negative polyhedral set that its defining constraints are all equalities. Then, we
demonstrate that projecting the set of all maximal elements of this representing set
onto the linear span of the given set results its relative interior. This completes a
result presented by Mirdehghan and Mehdiloo [7], and helps us derive their linear
program from the convex program of Mehdiloozad et al. [8].

As a consequence of the Rockafellar’s results, we characterize the relative
interior of a convex set without using the relative interior of its representing
sets. We show that this characterization generalizes the already-stated result of
Mehdiloozad et al. [8], according to which the relative interior of a non-negative

1 The linear span, also called linear hull, of a set is the smallest subspace containing that
set.
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polyhedral set with equality defining constraints consists of its maximal elements.
Based on our new characterization, a new linear program is developed for finding
a relative interior of a general polyhedral set. This original program is derived
from the convex program of Mehdiloozad et al. [8].

The organization of the paper is as follows. Section 2 introduces the used
notations and develops a linear program for finding a maximal element of a non-
negative polyhedral set. It also presents an equivalent representation of any subset
of Euclidean space. Section 3 deals with finding a relative interior point of a non-
negative polyhedral set, and Section 4 considers the extension of this problem to
general polyhedral sets. Section 5 contains some concluding remarks. Appendix A
contains the computer program written in GAMS (General Algebraic Modeling
System) that can be used for solving the proposed linear program.

2. Background

2.1. Notation

Throughout the paper we use the following notations. Let Rd denote the d-
dimensional Euclidean space, and let Rd

+ denote its non-negative orthant. We
denote sets by uppercase calligraphic letters, vectors by boldface lowercase letters,
and matrices by boldface uppercase letters. By convention, all vectors are column
vectors. Superscript ⊤ denotes the transpose of a vector or matrix.

Vectors 0 and 1 are vectors all components of which are equal to 0 and 1,
respectively. The dimensions of these vectors are clear from the context in which
they are used. For simplicity, notation (a;b) ∈ Rd+d′

is used to show the column
vector obtained by adding vector b ∈ Rd′

below vector a ∈ Rd. For two vectors
a,b ∈ Rd, the inequality a ≥ b (resp., a > b) denotes ai ≥ bi (resp., ai > bi),
for all i = 1, . . . , d. Matrix 0 is the matrix all components of which are equal to
0, and matrix I is the identity matrix. The dimensions of these matrices are clear
from the context in which they are used.

Let S be a set in Rd. The relative interior of S, denoted ri (S), is defined as
interior relative to its affine hull. Formally,

ri (S) =
{
so ∈ S : Nε (s

o) ∩ aff (S) ⊆ S for some ε > 0
}
,

where aff (S) denotes the affine hull of S, and Nε (s
o) =

{
s ∈ Rd : ∥s− so∥ < ε

}
.

If the set S is non-empty and convex, then ri (S) ̸= ∅ (see, e.g., [11]). If the set
S is non-negative, we use the notation me (S) to denote the set of all its maximal
elements:

me (S) = {s ∈ S : the number of positive components of s is maximum} .

Let S be a set in Rd+d′
, and let each vector s ∈ S be partitioned into two

subvectors x ∈ Rd and y ∈ Rd′
as s = (x;y). We define the x-space Π1 [S] ⊂ Rd
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of S as the projection of S onto the space of x-variables. Formally,

Π1 [S] =
{
x ∈ Rd : (x;y) ∈ S for some y ∈ Rd′}

.

For any x ∈ Π1 [S], we define the x-section S2 (x) ⊆ Rd′
of S as the set of all

subvectors y ∈ Rd′
such that (x;y) ∈ S. That is, S2 (x) =

{
y ∈ Rd′

: (x;y) ∈ S
}
.

Similarly, we define the y-space Π2 [S] ⊂ Rd′
of S as follows:

Π2 [S] =
{
y ∈ Rd′

: (x;y) ∈ S for some x ∈ Rd
}
.

For any y ∈ Π2 [S], the y-section S1 (y) ⊆ Rd of S is defined as S1 (y) =
{
x ∈

Rd : (x;y) ∈ S
}
.

2.2. Finding a Maximal Element of a Non-Negative Polyhedral Set

Consider the non-empty set K ⊂ Rd defined as

K =
{
x ∈ Rd : Px+Qy = r, x ≥ 0, y ∈ Rd′

}
,

where x and y are the vectors of variables that are non-negative and unrestricted in
sign, respectively. Furthermore, P and Q are matrices of coefficients of dimensions
c× d and c× d′, respectively, and r ∈ Rc is a constant vector.

By the projection lemma (see, e.g., Corollary 2.4 in [3]), the projection of any
polyhedral set onto the space of any subset of its characterizing variables is a
polyhedral set. Therefore, K is a non-negative polyhedral set in Rd

+.
Mehdiloozad et al. [8] develop a general convex program for finding a maximal

element of any non-negative convex set. As a consequence to their Theorem 3.2,
the following result develops a linear program for finding a maximal element of K.

Theorem 2.1. Let
(
x1∗,x2∗,y∗, w∗) be an optimal solution to the following linear

program:

max 1⊤x1

subject to

P
(
x1 + x2

)
+Qy = rw,

1 ≥ x1 ≥ 0, x2 ≥ 0, y sign free, w ≥ 1.

(1)

Then, 1
w∗

(
x1∗ + x2∗) ∈ me (K).

Proof. Consider the following linear program:

max 1⊤x1 + w1

subject to

P
(
x1 + x2

)
+Qy = r

(
w1 + w2

)
,

1 ≥ x1 ≥ 0, x2 ≥ 0, y sign free, 1 ≥ w1 ≥ 0, w2 ≥ 0.

(2)
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The maximization program (2) is feasible and its objective function is up-
per bounded by d + 1, where d is the dimension of vector x1. Consequently,
program (2) has a finite optimal solution, namely

(
x1∗,x2∗,y∗, w1∗, w2∗). By as-

sumption, we have K ̸= ∅. Hence, it follows from Theorem 3.2 in [8] that w1∗ = 1.
Therefore, program (1) can be derived from program (2) by replacing w1 with
its optimal value and using the variable substitution w = 1 + w2. This indicates
that

(
x1∗,x2∗,y∗, 1 + w2∗) is an optimal solution to program (1), and that any

optimal solution of program (1) gives an optimal solution of program (2). Namely,
if we define x1′ = x1∗, x2′ = x2∗, y′ = y∗, w1′ = 1 and w2′ = w∗ − 1, then(
x1′,x2′,y′, w1′, w2′) is an optimal solution to program (2). Therefore, the state-

ment of the theorem follows from Theorem 3.2 in [8].

Remark 1. In Theorem 2.1, there is no need for a prior knowledge about the non-
emptiness of the set K. This is due to the fact that the infeasibility of the linear
program (1) implies K = ∅.

2.3. An Equivalent Representation of a Set

We begin this section with the following definition (see [2]).

Definition 2.2. Let X ⊂ Rd. A set X+ ⊂ Rd+d′
is a representing set for X , if

Π1 [X+] = X .

By Definition 2.2, the set X+ can be regarded as an equivalent representation
of the set X . That is, x ∈ X if and only if there exists some s ∈ Rd′

such that
(x; s) ∈ X+. We use superscripts “+c” and “+n” for a representing set of a set to
denote its convexity and non-convexity, respectively.

It is straightforward to verify that the convexity of any representing set X+c

implies the convexity of the set X itself. In particular, as follows from the projec-
tion lemma, the projection of any polyhedral set onto the space of any subset of its
variables is a polyhedral set. However, it should be noted that any representing
set of a polyhedral, and more broadly convex, set is not generally convex. We
illustrate this fact with the following example.

Example 2.3. Figure 1 shows the two-dimensional polyhedral set L =
{
(x; y) ∈

R2 : 0 ≤ x ≤ 1, y = x
}

as the segment OA. It further depicts the non-convex
set L+n =

{
((x; y); z) ∈ R3 : 0 ≤ x ≤ 1, y = x, z = x2

}
as the curve OB. It

is clear that the projection of the curve OB onto the (x; y)-space is the segment
OA. Therefore, Π1 [L+n] = L, and L+n is a non-convex representing set for the
polyhedral set L.

Restating Theorem 6.8 in [11] as the next theorem, we characterize the relative
interior of any convex representing set of a set.
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Figure 1: The sets L and L+n in Example 2.3.

Theorem 2.4. Let X+c ⊂ Rd+d′
be a convex representing set for X ⊂ Rd. Then,

the following equality is true:

ri
(
X+c

)
=

∪
x∈ri(X )

{x} × ri
(
X+c

2 (x)
)
. (3)

Figure 2 draws the three-dimensional convex set X+c as a representing set for
the two-dimensional convex set X . All points inside the half-sphere X+c are its
relative interior points. Furthermore, all points inside the ball X are its relative
interior points. It is clear that the relative interior of X+c can be stated as the
union of all vertical open segments parallel to axis z each of which is projected onto
a relative interior point of X in the (x, y)-space. This is a graphical illustration of
Theorem 2.4.

x

y

z

X

X+c

X+c
2 (xo)

xo

Figure 2: The relative interior of a convex representing set.
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By the next example, we show that the convexity assumption made in Theo-
rem 2.4 is not necessary for (3) to hold, though it is sufficient.

Example 2.5. Consider the polyhedral set L as defined in Example 2.3 and
modify its representing set as L+n =

{
((x; y); z) ∈ R3 : 0 ≤ x ≤ 1, y = x, 0 ≤ z ≤

x2
}
. Figure 3 shows this representing set as the shaded area OAB.
It is observed that the relative interior of L is the open segment OA and

the relative interior of L+n is the inside of the area OAB. Formally, ri (L) ={
(x; y) ∈ R2 : 0 < x < 1, y = x

}
and ri (L+n) =

{
((x; y); z) ∈ R3 : 0 < x <

1, y = x, 0 < z < x2
}
. Furthermore, for any (x; y) ∈ L, we have L+n

2

(
(x; y)

)
={

z ∈ R : 0 ≤ z ≤ x2
}

and ri
(
L+n
2

(
(x; y)

))
=

{
z ∈ R : 0 < z < x2

}
. Therefore,

while the representing set L+n is non-convex, it satisfies the equality (3).
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Figure 3: The sets L and L+n in Example 2.5.

3. Finding a Relative Interior Point of a
Non-Negative Polyhedral Set

Let X+ ⊂ Rd+d′
be a representing set for X ⊂ Rd. Then, it is not difficult to

verify that Π1 [aff (X+)] = aff (Π1 [X+]) = aff (X ) (see, e.g., Page 8 of [11]). By
this equality, we obtain the next result.

Theorem 3.1. Let X+ ⊂ Rd+d′
be a representing set for X ⊂ Rd. Then, the

following embedding is true:

Π1

[
ri
(
X+

)]
⊆ ri (X ) . (4)

Proof. Let xri ∈ Π1 [ri (X+)]. Then, by Definition 2.2, there exists some yri ∈ Rd′

such that
(
xri;yri

)
∈ ri (X+). This means that Nε

((
xri;yri

))
∩ aff (X+) ⊆ X+,
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for some ε > 0. As a consequence, the following relationship holds between the
x-spaces of the two sets in the above embedding:

Π1

[
Nε

((
xri;yri

))]
∩Π1

[
aff

(
X+

)]
⊆ Π1

[
X+

]
. (5)

It is straightforward to show that Nε

(
xri

)
⊆ Π1

[
Nε

((
xri;yri

))]
, Π1 [aff (X+)] =

aff (X ) and Π1 [X+] = X . Then, it follows from (5) that Nε

(
xri

)
∩ aff (X ) ⊆ X ,

which means that xri ∈ ri (X ). Therefore, the embedding (4) is true.

It follows from (4) that the projection of any relative interior point of X+

onto the space of the original variables is a relative interior point of X . It is
important to note that this inclusion may be strict. For example, let L and
L+n be as considered in Example 2.3. Then, we have ri (L+n) = ∅, whereas
ri (L) =

{
(x; y) ∈ R2 : 0 < x < 1, y = x

}
(see Figure 1). Therefore, ∅ ⊂ ri (L).

By Theorem 6.6 in [11], the following theorem demonstrates that the embed-
ding (4) holds as equality for the class of convex representing sets.

Theorem 3.2. Let X+c ⊂ Rd+d′
be a convex representing set for X ⊂ Rd. Then,

the following equality is true:

ri (X ) = Π1

[
ri
(
X+c

)]
. (6)

Proof. Define the linear function A : Rd+d′ → Rd as A (x;y) = x. Then, (6)
follows from Theorem 6.6 in [11].

By Theorem 3.2, the convexity of a representing set of a set ensures the converse
of the embedding (4). However, this condition is not necessary. For example, con-
sider the sets P and P+n as in Example 2.5. Then, we have ri (P) = Π1 [ri (P+n)],
while the representing set P+n is non-convex.

From convex analysis, it is known that the relative interior of a convex set is
convex [11]. Therefore, it follows from Theorem 3.2 that the relative interior of
X+c is a convex representing set for the relative interior of X . This representation
suggests an approach for finding a relative interior of X . Namely, it states that a
relative interior point of X can be obtained by projecting a relative interior point
of X+c onto the space of original variables.

Note that the above approach is most effective when X+c is a non-negative
polyhedral set that is described only with equality constraints, because a relative
interior point of such a polyhedral set can be found through Theorem 2.1. In
this section, we use this approach to find a relative interior point of the following
non-empty polyhedral set in Rn:

P = {x ∈ Rn : Ax = b, Cx ≤ d, x ≥ 0} ,

where x is the vector of variables, A and B are respectively matrices of coefficients
of dimensions m×n and m′×n, and b ∈ Rm and d ∈ Rm′

are respectively constant
vectors of equality and inequality constraints.

By the next result, we show that the relative interior of any non-negative convex
set is included in the set of its maximal elements.
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Theorem 3.3. Let C be a non-negative convex set in Rd
+. Then, the following

embedding is true:
ri (C) ⊆ me (C) . (7)

Proof. If C = ∅, there is nothing to prove. Otherwise, it follows from convex
analysis [11] that ri (C) ̸= ∅. Let xo ∈ ri (C). By Lemma 3.1 in [8], we have
me (C) =

{
x ∈ C : xj > 0 for all j ∈ J ̸=}, where J ̸= =

{
j ∈ {1, . . . , n} : xj >

0 for some x ∈ C
}
. Therefore, proving the statement that xo ∈ me (C) is equiva-

lent to showing that xo
j > 0 for all j ∈ J ̸=.

Let ε > 0 be an arbitrary positive constant. By contradiction, assume that
xo
ĵ
= 0 for some ĵ ∈ J ̸=. By the definition of J ̸=, there exists some x̄ ∈ C such

that x̄ĵ > 0. For any δ > 0, define xδ = (1 + δ)xo − δx̄. Clearly, xδ ∈ aff (C)
for all δ > 0. Choose δε > 0 sufficiently small such that xδε ∈ Nε (x

o). Then,
xδε ∈ Nε (x

o) ∩ aff (C). At the same time, we have xδε
ĵ

< 0, because xo
ĵ
= 0 and

x̄ĵ > 0. It follows that xδε /∈ C, which contradicts the assumption that xo is in
ri (C). This contradiction shows that xo ∈ me (C). Therefore, ri (C) ⊆ me (C).

Notice that, though the converse of the embedding in (7) is true for the special
class of non-negative polyhedral sets with equality defining constraints (see Theo-
rem 3.1 in [8]), it is not generally true for polyhedral and, therefore, convex sets.
This is shown by the following counterexample.

Example 3.4. Consider the polyhedral set L as defined in Example 2.3. It is
straightforward to see that (1; 1) is a maximal element of L, whereas it is not
a relative interior point of L. Geometrically speaking, this element corresponds
to the extreme point A of the segment AO in Figure 1, which draws the set L.
Therefore, me (L) ⊈ ri (L).

The above counterexample shows that the problem of finding a relative interior
point of P cannot be addressed by finding one of its maximal elements. To deal
with this problem, the inequality constraints of P are converted to equalities by
adding slack variables, and the following non-negative polyhedral set is defined:

P+c =
{
(x; s) ∈ Rn+m′

: Ax = b, Cx+ s = d, x ≥ 0, s ≥ 0
}
.

Clearly, P+c is a polyhedral representing set for P. By Theorem 1 in [7], the
projection of any maximal element of P+c onto its x-space is a relative interior of
P, i.e., Π1 [me (P+c)] ⊆ ri (P). The next theorem completes this result by showing
that the inclusion holds as equality.

Theorem 3.5. The following equality is true:

ri (P) = Π1

[
me

(
P+c

)]
. (8)
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Proof. Because the non-negative polyhedral set P+c is described only by equality
defining constraints, it follows from Theorem 4.1 in [8] that ri (P+c) = me (P+c).
Therefore, (8) is obtained by Theorem 3.2.

We illustrate Theorem 3.5 with the following example.

Example 3.6. Consider the non-negative polyhedral set L as defined in Exam-
ple 2.3. As already mentioned, we have ri (L) =

{
(x; y) ∈ R2 : 0 < x < 1, y = x

}
,

which is shown as the segment OA in Figure 4. By adding the slack variable s to
the inequality defining constraint x ≤ 1, the representing set L+c is obtained as
follows:

L+c =
{(

(x; y); s
)
∈ R3 : x− y = 0, x+ s = 1, x, y, s ≥ 0

}
.

Figure 4 shows the set L+c as the segment AC. It is clear that the points on
the open segment AC are the maximal elements of L+c. Therefore, the projection
of this segment onto the (x; y)-space is the open segment OA, which shows the
relative interior of L.

x

y

s

O

A

C

1

1

1

L

L+c

Figure 4: The sets L and L+c in Example 3.6.

From Theorem 3.5, a relative interior point of P can be obtained from a max-
imal element of P+c. Using this fact, the following theorem develops a linear
program (as in [7]) for finding a relative interior point of P.

Theorem 3.7. Let
(
xri, sri

)
= 1

w∗

(
x1∗ + x2∗, s1∗ + s2∗

)
, where

(
x1∗,x2∗,

s1∗, s2∗, w∗) is an optimal solution to the following linear program:

max 1⊤x1 + 1⊤s1

subject to[
A 0
C I

](
x1 + x2

s1 + s2

)
=

(
c
d

)
w,

1 ≥ x1, s1 ≥ 0, x2, s2 ≥ 0, w ≥ 1.

(9)
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Then,
(
xri, sri

)
∈ me (P+c) and, therefore, xri ∈ ri (P).2

Proof. The proof follows from Theorems 2.1 and 3.5.

4. Finding a Relative Interior Point of a
General Polyhedral Set

As already stated, finding a relative interior point of a set X ⊂ Rd by (6) requires
having a relative interior point of its convex representing set X+c. By the next
result, we make an alternative characterization of the relative interior of X that is
exempt from this requirement.

Theorem 4.1. Let X+c ⊂ Rd+d′
be a convex representing set for X ⊂ Rd, and

let S = Π2 [X+c]. Then, the following equality is true:

ri (X ) =
∪

s∈ri(S)

ri
(
X+c

1 (s)
)
. (10)

Proof. Let S = Π2 [X+c]. Then, X+c is regarded as a convex representing set for
the set S ∈ Rd′

. By Theorem 2.4, it follows that

ri
(
X+c

)
=

∪
s∈ri(S)

ri
(
X+c

1 (s)
)
× {s}. (11)

Therefore, the equality (10) follows from (11) by Theorem 3.2.

Theorem 4.1 suggests an approach for finding a relative interior point of the
set X . Namely, it states that such a point can be obtained in two stages. First, a
relative interior point of the projection of X+c onto its s-space, namely sri ∈ ri (S),
is found. Second, a relative interior point of the sri-section of X+c is found as a
relative interior point of X .

The suggested approach is most effective when S is a non-negative polyhedral
set with equality defining constraints and the affine hull of X+c

1

(
sri

)
is equal to

this set. This is due to two facts. First, the former condition allows for finding
sri through Theorem 2.1. Second, the latter condition requires finding an element
of X+c

1

(
sri

)
. In this section, we use the above-described approach to deal with

finding a relative interior point of the following non-empty polyhedral set in Rn:

Q = {x ∈ Rn : Ex = f , Gx ≤ h} , (12)

where x is the vector of variables, E and G are respectively matrices of coefficients
of dimensions m×n and m′′×n, and f ∈ Rm and h ∈ Rm′′

are respectively constant
vectors of equality and inequality constraints.

2 It further follows by (3) that sri ∈ ri
(
P+c
2

(
xri

))
.
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Observe that the set Q itself is not a non-negative polyhedral set. To find
a relative interior point of this set, we build the following set by adding slack
variables to the inequality defining constraints of Q:

Q+c =
{
(x; s) ∈ Rn+m′′

: Ex = f , Gx+ s = h, s ≥ 0
}
.

Clearly, Q+c is a polyhedral representing set for Q that is characterized only by
equality defining constraints, but it is not non-negative. Denote S the projection
of Q+c onto its s-space, i.e., S = Π2 [Q+c]. Then, the set S is stated as follows:

S =
{
s ∈ Rm′′

: Ex = f , Gx+ s = h, s ≥ 0
}
. (13)

Because the set Q+c is polyhedral, it follows from the projection lemma that
S is a non-negative polyhedral set in Rm′′

+ . It is straightforward to prove that any
maximal element of S is a relative interior point of this set. By Theorem 3.3, it
follows that ri (S) = me (S). Using this equality in the next result, we characterize
the relative interior of Q by the set of all vectors x ∈ Q that their associated slack
vectors are maximal elements of S.

Theorem 4.2. The following equality is true:

ri (Q) =
∪

s∈me(S)

Q+c
1 (s). (14)

Proof. Take some arbitrary ŝ ∈ S. Then, we have

Q+c
1 (ŝ) = {x ∈ Rn : Ex = f , Gx = h− ŝ} .

From the above equality, it is clear that the affine hull of Q+c
1 (ŝ) is equal to

this set and, therefore, ri
(
Q+c

1 (ŝ)
)
= Q+c

1 (ŝ). Taking into account this equality,
(14) follows from Theorem 4.1.

Remark 2. It is worth noting that Theorem 4.2 can be viewed as an exten-
sion of Theorem 4.1 in [8]. To see this, let M denote the non-negative poly-
hedral set obtained from (12) by setting G = −I and h = 0. That is, M ={
x ∈ Rd : Ex = f , x ≥ 0

}
. Then, we have M+c =

{
(x;x) ∈ R2n : x ∈ M

}
, and

M+c
1 (s) = {s} for all s in S = Π2 [M+c]. Consequently,

∪
s∈me(S) M

+c
1 (s) =

me (S). Because S = M, it thus follows from (14) that ri (M) = me (M). This is
the same statement of Theorem 4.1 in [8].

Theorem 4.2 enables one to identify a relative interior point of Q without any
use of the relative interiors of its representing sets. It shows that such a point can
be obtained in two stages. First, a maximal element of the set S as defined in (13),
namely sme ∈ me (S), is found. Second, a relative interior point of the sri-section
of Q+c, namely xri, is identifies as a relative interior point of Q. The next result
develops a linear program that accomplishes these two tasks simultaneously.
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Theorem 4.3. Suppose that xri = 1
w∗x

∗ and sme = 1
w∗

(
s1∗ + s2∗

)
, where(

x∗, s1∗, s2∗, w∗) is an optimal solution to the following linear program:

max 1⊤s1

subject to[
E 0
G I

](
x

s1 + s2

)
=

(
f
h

)
w,

x sign free, 1 ≥ s1 ≥ 0, s2 ≥ 0, w ≥ 1.

(15)

Then, sme ∈ me (S) and, therefore, xri ∈ ri
(
Q
)
.

Proof. The proof follows from Theorems 2.1 and 4.2.

Remark 3. Note that linear program (15) includes linear program (9) as a special
case. Precisely, linear program (9) is derived from (15) by setting E = A, f = b,

G =

[
C
−I

]
and h =

(
d
0

)
.

Based on Theorem 4.3, we devise the following Algorithm 1 for finding a relative
interior point of the polyhedral set Q.

Algorithm 1 Finding a relative interior point of the polyhedral set Q
1 Start
2 Read E, G, f and h;
3 Solve the linear program (15);
4 If program (15) is not feasible, then
5 Print "Q = ∅";
6 Else
7 Set xri = 1

w∗x
∗, where

(
x∗, s1∗, s2∗, w∗) is an optimal solution of (15);

8 Return xri;
9 end if
10 Stop

We illustrate Algorithm 1 by the following example.

Example 4.4. Let the two-dimensional polyhedral set Q ⊂ R2 be defined as
follows:

Q =
{
(x; y) ∈ R2 : − 2x+ 3y ≤ 6,

− 2x+ y ≤ 6,

− 2x− 3y ≤ 14,

− y ≤ 4
}
.

Figure 5 shows the relative interior of the set Q as the interior of the shaded
area A′ABCC ′. To find a relative interior point of Q, the linear program (15) was
solved by using the GAMS code provided in Appendix A. The code was executed
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on a Laptop with Intel Core i7-3537U 2.06 GHz processor, 8GB of RAM and 64
bit Windows 7. Table 1 shows the six relative interior points of the set Q obtained
by using different solvers of GAMS. The last column of this table provides the
amount of CPU time (in seconds) taken by each solver. It is observed that using
different solvers may lead to different relative interior points.

x

y

−1−3−4

2

−2

−4

A′

A

B

C C ′

Q

Figure 5: The relative interior of the set Q in Example 4.4.

Table 1: Six relative interior points of the set Q in Example 4.4.
Solver w∗ x∗ y∗ xri yri CPU

BARON 1 −2 −3 −2 −3 0.030
BDMLP 1 −2.5 0 −2.5 0 0.062
CBC 1 −3.5 −2 −3.5 −2 0.002
CONOPT 1 −3.5 −2 −3.5 −2 0.015
CPLEX 1 −2 −3 −2 −3 0.078
GUROBI 1 −2.5 0 −2.5 0 0.177
IPOPT 1 −3.339 −1.809 −3.339 −1.809 0.796
KNITRO 1 −3.001 −1.525 −3.001 −1.525 0.624
MOSEK 1 0 0 0 0 0.109
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5. Concluding Remarks

In this paper, we address the problem of finding a relative interior point of a
polyhedral set through its representation in higher-dimensional space. For a given
set, we say that a higher-dimensional set is representing, if its projection onto the
linear span of the given set is the same as that set. Using two nice results of
Rockafellar [11], we characterize the relative interior of any convex representing
set of a set in two alternative ways. We then use these characterizations to deal
with the problem under investigation.

We first reduce the statement of the problem under investigation to the class of
non-negative polyhedral sets to complete the existing results in the literature. We
represent the relative interior of a non-negative polyhedral set as the projection of
the relative interior of a specific polyhedral representing set of the given set onto its
linear span. Based on this result, we derive the linear program of Mirdehghan and
Mehdiloo [7] from the convex program proposed in [8] that identifies a maximal
element of any non-negative convex set.

We next consider the problem under investigation for general polyhedral sets.
For such a polyhedral set, a polyhedral representing set results from adding slacks
to the inequality constraints. By projecting this representing set onto the space
of the slack variables, we make an alternative statement of the relative interior of
the given polyhedral set.

By our consequence of the results of Rockafellar, we extend a result in [8] by
which the relative interior of a non-negative polyhedral set described by equality
defining constraints coincides with the set of its maximal elements. Based on our
extended result, we develop a new linear program for finding a relative interior of
a polyhedral set. This linear program is derived from the general convex program
of Mehdiloozad et al. [8], and includes the linear program of Mirdehghan and
Mehdiloo [7] as a special case.

Appendix A

The following computer program written in GAMS has been used for identifying
a relative interior point of the polyhedral set Q in Example 4.4.

1 ** The code has been developed by Mahmood Mehdiloo for finding a relative interior point

of a polyhedral set.

2 ** Making the code applicable for any polyhedral set just requires modifying ’Sets’,

’Table A(ma,n)’ and ’Table B(me,n)’.

3

4 Sets

5 ma row number of matrix A /ma1*ma1/

6 me row number of matrix E /me1*me4/

7 n column number of matrices A and E / n1*n2 /;

8

9 Table A(ma,n)

10 n1 n2

11 ma1 0 0;

12
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13 Table E(me,n)

14 n1 n2

15 me1 -2 3

16 me2 -2 1

17 me3 -2 -3

18 me4 0 -1;

19

20 Parameters

21 c/ma1 0/

22 f/me1 6

23 me2 6

24 me3 14

25 me4 4/;

26

27 Free Variables

28 Theta

29 x(n);

30

31 Positive Variables

32 s1(me)

33 s2(me)

34 w;

35 ************************************

36 Equations

37 Obj

38 Con1

39 Con2

40 Con3

41 Con4;

42

43 Obj.. Theta =E= Sum(me, s1(me));

44 Con1(ma).. Sum(n, a(ma,n)*x(n)) =E= c(ma)*w;

45 Con2(me).. Sum(n, e(me,n)*x(n)) + s1(me) + s2(me) =E= f(me)*w;

46 Con3(me).. s1(me) =L= 1;

47 Con4.. w =G= 1;

48

49 Model ProposedLP /All/;

50 ************************************

51 File Program /Results.txt/; Put Program;

52

53 Put ’Finding a relative interior point of Q’;

54 Put /’--------------------------------------’/;

55 Solve ProposedLP using LP Maximizing Theta;

56 Put ’ w = ’:5; Put w.L:<5:0; Put / /;

57 Loop(me,

58 Put ’s1(’:3; Put ord(me):<>3:0; Put ’) = ’:4;

59 Put ( s1.L(me) ):<10:3;

60 Put ’s2(’:3; Put ord(me):<>3:0; Put ’) = ’:4;

61 Put ( s2.L(me) ):<10:3 /;

62 );

63 Put /;

64 Loop(n,

65 Put ’ x(’:3; Put ord(n):<>3:0; Put ’) = ’:4;

66 Put ( x.L(n)/w.L ):<10:3/;

67 );

68 Put ’--------------------------------------’/;
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