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Abstract

In this paper, we obtain a new conservation law for the Harry Dym
equation by using the scaling method. This method is algorithmic and based
on variational calculus and linear algebra. In this method, the density of
the conservation law is constructed by considering the scaling symmetry of
equation and the associated flux is obtained by the homotopy operator. This
density-flux pair gives a conservation law for the equation. A conservation
law of rank 7 is constructed for the Harry Dym equation.
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1. Introduction
Some partial differential equations (PDEs) which appear in applied sciences like
physical chemistry, fluid mechanics, quantum physics and etc., admit conservation
laws. In mathematical sense, conservation laws are divergence expressions that
vanish on the solution of the PDE. Conservation laws are fundamental laws in
physics and state that specific quantities of a system will remain unchanged dur-
ing the time. There are some methods for obtaining the conservation laws of a
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system [1, 4, 5, 6]. Noether’s theorem that relates the variational symmetry and
conservation laws of a PDE, were used in the common methods [12, 13]. There is
another method that apply calculus of variation and linear algebra. This method
is called scaling method and briefly works as follows [14]. A primitive density with
arbitrary coefficients which is invariant under the scaling symmetry of the PDE
is considered in the first step. Then, the time derivative of primitive density is
calculated and is combined with the PDE. Using the Euler operator, a linear sys-
tem is obtained and by solving this system, the actual density will be constructed.
Finally, the associated flux is obtained by using the inverse divergence operator
i.e, homotopy operator. In this work, we obtain the conservation laws of the Harry
Dym equation,

ut = −1

2
u3u3x. (1)

This equation was obtained by Harry Dym and Martin Kruskal as a solvable
evolution equation by a spectral problem based on the string equation instead of
the Schrödinger equation [2, 8, 9, 10, 11].

The main purpose of this study is to find the conservation law of the Equation
(1), by applying the scaling method. This paper is organized as follows. In Section
2, we have referred to some definitions and previous results that are used in the
later sections. We will show that the Harry Dym equation is uniform in rank and
admits a scaling symmetry in Section 3. In Section 4, the primitive density of rank
7 is constructed and actual density is obtained by removing the divergence and
divergence-equivalent terms. Finally, we calculate the corresponding fluxes using
the homotopy operator.

2. Preliminaries
Let ∆(x, u(n)) = 0 be a system of PDEs, where x = (x1, . . . , xp) and u =
(u1, . . . , uq) are independent and dependent variables respectively and u(n) is all
derivatives of u up to the n-th order. A conversation law is the following divergence
expression

DivQ = 0,

which is vanished for all solutions u = f(x) of the given system. In dynamical
problems, the time variable t and the spatial variables x = (x1, . . . , xp) are specified
separately. So the conservation law takes the form

Dtρ+DivJ = 0, (2)

where ρ is the conserved density, J is the corresponding flux, Dt is the total
time derivative which is defined as following and Div is the total divergence of
J = (J1, . . . ,Jp) with respect to the spatial variables [13].
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Definition 2.1. The total time derivative Dt of the function g = g(x, t, u(M)(x, t))
is defined as follows,

Dtg =
∂g

∂t
+

q∑
α=1

∑
J

uα
J,t

∂g

∂uα
J

,

where J = (j1, . . . , jk) is a multi-index with 0 ≤ k ≤ M and

uα
J,t =

∂uα
J

∂t
=

∂k+1uα

∂t∂xj1 . . . ∂xjk
.

Definition 2.2. [15] The zeroth-Euler operator acting on a scalar differential
function g is defined as

Lu(x)g = (Lu1(x)g,Lu2(x)g, . . . ,Luq(x)g),

where

Luα(x)g =

Mα
1∑

k=0

(−Dx)
k ∂g

∂uα
kx

, α = 1, . . . , q, (3)

where Mα
1 ’s are orders of g for the component uα with respect to x.

Definition 2.3. Let g = g(x, u(M)(x)) of order M be given. g is called exact if a
differential vector function G(x, u(M−1)(x)) exists such that g = DivG.

The following theorem, called Exactness theorem, states the condition for ex-
actness of a differential function using the zeroth-Euler operator. This theorem is
so important for calculating the conservation laws.

Theorem 2.4. [14] Exactness of a differential function g = g(x, u(M)(x)) is equiv-
alent to the condition Lu(x)g = 0.

Another operator whish is used to calculate the flux of conservation laws is
called the homotopy operator and is defined as follows.

Definition 2.5. The homotopy operator of a differential function g = g(x, u(M)(x))
of one variable x, is the following operator,

Hu(x)g =

∫ 1

0

(

q∑
α=1

Iuα(x)g)[λu]
dλ

λ
, (4)

where the integrand is defined as

Iuα(x)g =

Mα
1∑

k=1

(
k−1∑
j=0

uα
jx(−Dx)

k−(j+1))
∂g

∂uα
kx

. (5)

Theorem 2.6. [14] Assume that an exact differential function g = g(x, u(M)(x))
be given. That is, there exists a function G = G(x, u(M−1)(x)) such that g = DivG.
In this case,

G = Div−1g = Hu(x)g.
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3. Scaling Symmetry of the Harry Dym Equation
To find the conservation laws of a system using the scaling method, we use the
scaling (dilation) symmetry of that system to find the primitive density. We claim
that the scaling symmetry of Equation (1) is the transformation

(x, t, u) → (λ−1x, λ−6t, λu),

where λ is an arbitrarily scaling constant. There are several algorithmic methods
for finding the scaling symmetries [3, 4, 13], but here, we use the concept of the
weight of variables to find it [7].

Definition 3.1. Consider the scaling symmetry x → λ−px. The weight of the
variable x is denoted by W (x) and is equal to −p. If W (x) = −p, the weight of
Dx is defined as p.

Definition 3.2. If a monomial has more than one variable and each variable has
a weight, then the sum of the weights of its variables is called the rank of the
monomial. If all the monomials in a differential function have the same rank, it
is called uniform in rank.

An equation that admits a scaling symmetry is uniform in rank, so we can ob-
tain the scaling symmetry of Harry Dym equation by assuming that (1) is uniform
in rank. With this assumption, a system of weight-balance equations is obtained,
then by solving this system, scaling symmetry will be obtained. For (1), the
weight-balance equation is

W (u) +W (Dt) = 4W (u) + 3W (Dx). (6)

Solving the Equation (6) gives W (u) = 1, W (Dx) = 1 and then W (Dt) = 6. Since
(2) must vanish on all the solutions of the PDE, density and flux of conservation
law must follow its scaling symmetries. So, clearly the conservation law must also
be uniform in rank. In addition, according to the symmetry of the Harry Dym
equation, we can construct the initial density, which is a linear combination of
monomials with the selected rank (See [14] for more details).

4. Computing Conservation Laws of the
Harry Dym Equation

In this section, using the scaling method, we obtain the conservation laws of the
Harry Dym equation. To calculate the conservation law with this method, we
firstly construct the density ρ and then we will obtain the corresponding flux J.
To calculate the density, we will firstly consider an initial density, which is a linear
combination of differential terms with arbitrary coefficients. This combination
must be chosen from a fixed rank and must be invariant under the scaling symmetry
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of the Harry Dym equation. The total time derivative of the initial density is
calculated in the next step and all time derivatives in the expressions are replaced
by their equivalent expressions using (1). According to (2), the resulting expression
must be exact. Therefore, the arbitrary coefficients are calculated by solving the
linear system which is achieved by applying the exactness Theorem 2.4; i.e.,

Lu(x)(Dtρ) = 0.

By substituting the coefficients obtained from the above system with the initial
density ρ, the actual density is obtained. Finally, the corresponding flux is calcu-
lated using the homotopy operator,

J = −Div−1(Dtρ).

4.1 Constructing the Candidate Density

As mentioned earlier, the first step to find conservation laws, is to obtain the
density. We firstly choose an arbitrary rank for the initial density. Then, we
construct the terms of ρ by combining monomials with a specified rank that include
dependent variables and their partial derivatives. In the following, we obtain
the initial density ρ of rank 7 for the Harry Dym Equation (1). Consider the
list P, which contains dependent variables up to rank 7. According to (6), P =
{u7, u6, u5, u4, u3, u2, u}. Then, we apply the total derivative operator with respect
to the spatial variables on P to increase the rank of the terms in the list up to 7.
We call this new list as Q.

Q = {u7, u5ux, u
3u2

x, u
4u2x, uu

3
x, u

2uxu2x, u
3u3x, u

2
xu2x,

u2
2xu, uuxu3x, u

2u4x, u2xu3x, uxu4x, uu5x, u6x}.
(7)

In order to the density to be nontrivial, we have to delete the divergence terms
and also keep one of the divergence-equivalent terms in the list and to remove the
rest. By applying (3) over (7), we have

Lu(x)Q = {7u6, 0,−3u2u2
x − 2u3u2x, 8u

3u2x + 12u2u2
x,−2u3

x − 6uuxu2x,

4uuxu2x + (2u2
x + 2uu2x)ux,−(6u2

x + 6uu2x)ux − 12uuxu2x, 0,

3u2
2x + 4uxu3x + 2uu4x,−2uu4x,−4uxu3x − 3u2

2x,

4uu4x + 8uxu3x + 6u2
2x, 0, 0, 0, 0}.

(8)

According to the Theorem 2.4, u5ux, u
2
xu2x, u2xu3x, uxu4x, uu5x, and u6x are di-

vergences and so they should be removed from Q. The third and fourth terms of
the list (8) are multiples of each other, so the third and fourth terms of the list
(7) are divergence-equivalent and one of them must be removed from Q. From
the equivalent terms, select the one with the lowest rank and delete the rest.
Therefore, u4u2x is removed from the list. In a similar way, the sixth and seventh
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terms, as well as the ninth, tenth, and eleventh terms, are equivalent. So Q can
be summarized as

Q = {u7, u3u2
x, uu

3
x, u

2u2xux, u
2
2xu}.

Now, consider a linear combination of the members of the above list with arbitrary
coefficients to form the initial density of rank 7 for the Harry Dym equation

ρ = c1u
7 + c2u

3u2
x + c3uu

3
x + c4u

2uxu2x + c5u
2
2xu. (9)

4.2 Determining the Actual Density
To determine the unspecified coefficients in (9), we calculate Dtρ,

Dtρ = (7c1u
6 + 3c2u

2u2
x + c3u

3
x + 2c4uuxu2x + c5u

2
2x)ut

+(2c2u
3ux + 3c3uu

2
x + c4u

2u2x)uxt

+(c4u
2ux + 2c5u2xu)u2xt.

Then, by using (1), we replace ut and its derivatives with their equivalent values.
Let E = −Dtρ. So we have

E = (7c1u
6 + 3c2u

2u2
x + c3u

3
x + 2c4uuxu2x + c5u

2
2x)(

1
2u

3u3x)

+(2c2u
3ux + 3c3uu

2
x + c4u

2u2x)(
3
2uxu

2u3x + 1
2u

3u4x)

+(c4u
2ux + 2c5u2xu)(

3
2u2xu

2u3x + 3u2
xuu3x + 3

2uxu
2u4x + 1

2u
3u5x).

According to (2), E must be exact. Therefore, using Theorem 2.4, we have
Lu(x)E = 0. This equation forms a system of linear equations, by solving this
system, unspecified coefficients are determined as follows

c1 = c2 = c5 = 0, c3 = c4, (10)

and c4 is arbitrary. Assuming c4 = 1, then c3 = 1. Substituting (10) in (9), the
actual density is obtained as follows

ρ = uu3
x + u2uxu2x.

4.3 Computing the Flux
After the density has been determined, the corresponding flux can be calculated
using the fact that J = Div−1(E). We use Theorem 2.6 and the homotopy operator
to obtain the flux. Substituting (10) in E, we have

E = 8u3u3xu
3
x + 4u4u3xuxu2x + 9

2u
4u2

xu4x + 1
2u

5u2xu4 +
1

2
u5uxu5x.

The integrand Iu(x)E is calculated by relation (5) as follows

Iu(x)E =
∑3

k=1

(∑k−1
j=0 ujx(−Dx)

k−(j+1)
)

∂f
∂ukx

= 14u4u2
xu3x + 7

2u
5uxu4x.
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Using (4), we obtain the flux as follows

J = Hu(x)E =
∫ 1

0
(Iu(x)E)[λu]dλλ = 1

2u
4ux(4uxu3x + uu4x).

Therefore, the conservation law of rank 7 is obtained as follows

Dtρ+DivJ = Dt(uu
3
x + u2uxu2x) + Div

(
2u4u2

xu3x +
1

2
u5uxu4x) = 0.

5. Conclusions
In this paper, the Harry Dym equation, which is one of the most widely used
equations in various sciences, was examined. Since this equation is uniform in
rank, its scaling symmetries were obtained and using them, the density of the
conservation law was constructed for the equation. The corresponding flux was
also obtained using the homotopy operator. Eventually, a conservation law of rank
7 was obtained for the Harry Dym equation.
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