A Remark on the Factorization of Factorials

Mehdi Hassani * and Mahmoud Marie

Abstract

The subject of this paper is to study distribution of the prime factors p and their exponents, which we denote by $v_{p}(n!)$, in standard factorization of n ! into primes. We show that for each $\theta>0$ the primes p not exceeding n^{θ} eventually assume almost all value of the sum $\sum_{p \leqslant n} v_{p}(n!)$. Also, we introduce the notion of θ-truncated factorial, defined by $n!_{\theta}=\prod_{p \leqslant n \theta} p^{v_{p}(n!)}$, and we show that the growth of $\log n!_{\frac{1}{2}}$ is almost half of growth of $\log n!_{1}$.

Keywords: factorial, growth of arithmetic functions, prime number.
2010 Mathematics Subject Classification: 11B65, 11N56.

How to cite this article

M. Hassani and M. Marie, A Remark on the Factorization of Factorials, Math. Interdisc. Res. 6 (2021) 235-242.

1. Introduction

Letting $n!=\prod_{p \leqslant n} p^{v_{p}(n!)}$, Legendre's theorem asserts that

$$
\begin{equation*}
v_{p}(n!)=\sum_{\alpha=1}^{\infty}\left[\frac{n}{p^{\alpha}}\right] \tag{1}
\end{equation*}
$$

Here $[x]=\max \{k \in \mathbb{Z}: k \leqslant x\}$. This relation enables us to observe several facts about the distribution of the exponents. It implies that for primes p and q with $p<q$ we have $v_{p}(n!) \geqslant v_{q}(n!)$. Primes p satisfying $\frac{n}{2}<p \leqslant n$ assume the minimum possible exponent $v_{p}(n!)=1$. Also, for primes p with $p>\sqrt{n}$ Legendre's sum in (1) assumes only its first term.

[^0](c)2021 University of Kashan
©(1) This work is licensed under the Creative Commons Attribution 4.0 International License.

These properties show that small primes get larger exponents than large primes. Our first result yields information about clustering of exponents on small primes.

Theorem 1.1. For given $\theta \in(0,1]$ let

$$
\mathfrak{S}_{\theta}(n)=\sum_{p \leqslant n^{\theta}} v_{p}(n!), \quad \text { and } \quad \mathfrak{A}_{\theta}(n)=\frac{1}{\mathfrak{S}_{1}(n)} \sum_{p \leqslant n^{\theta}} v_{p}(n!)
$$

For each integer $k \geqslant 0$, which we keep it fixed, as $n \rightarrow \infty$, we have

$$
\begin{equation*}
\mathfrak{S}_{\frac{1}{k+1}}(n)=n \log \log n+\left(M^{\prime}-\log (k+1)\right) n+O\left(\frac{n}{\log n}\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
M^{\prime}=M+\sum_{p}(p(p-1))^{-1}, \quad M=\gamma+\sum_{p}\left(\log \left(1-p^{-1}\right)+p^{-1}\right) \tag{3}
\end{equation*}
$$

and $\gamma=\lim _{n \rightarrow \infty} H_{n}-(\log n)$, with $H_{n}=\sum_{j=1}^{n} j^{-1}$. Also, for each fixed integer $m \geqslant 1$ we have

$$
\begin{equation*}
\mathfrak{A}_{\frac{1}{k+1}}(n)=1+\sum_{j=1}^{m} \frac{(-1)^{j}\left(M^{\prime}\right)^{j-1} \log (k+1)}{(\log \log n)^{j}}+O\left(\frac{1}{(\log \log n)^{m+1}}\right) . \tag{4}
\end{equation*}
$$

To study clustering of exponents on small primes, we introduce the notion of θ-truncated factorial, defined by

$$
n!_{\theta}=\prod_{p \leqslant n^{\theta}} p^{v_{p}(n!)}
$$

Naturally we ask about the growth of $n!{ }_{\theta}$, more precisely for the values of θ close to 0 . The following result asserts that the growth of $n!_{\frac{1}{2}}$ is almost half of growth of $n!_{1}$ in logarithmic scale.

Theorem 1.2. Let $\mathfrak{L}_{\theta}(n)=\log \left(n!_{\theta}\right)$. As $n \rightarrow \infty$ we have

$$
\begin{equation*}
\mathfrak{L}_{\frac{1}{2}}(n)=\log \left(n^{\frac{n}{2}}\right)-\gamma n+O\left(\frac{n}{\log n}\right) \tag{5}
\end{equation*}
$$

A natural question, for which we have no solution yet, deals with the approximation of $\mathfrak{L}_{\theta}(n)$ for the values of θ close to 0 . If for $\alpha, \beta \in(0,1]$ we let $\mathfrak{Q}(\alpha, \beta ; n)=\mathfrak{L}_{\alpha}(n) / \mathfrak{L}_{\beta}(n)$, then (5) and Stirling's approximation imply

$$
\mathfrak{Q}\left(\frac{1}{2}, 1 ; n\right)=\frac{1}{2}-\frac{\gamma-\frac{1}{2}}{\log n}+O\left(\frac{1}{\log ^{2} n}\right) .
$$

For $\alpha, \beta \in(0,1]$ we conjecture that $\lim _{n \rightarrow \infty} \mathfrak{Q}(\alpha, \beta ; n)=\alpha / \beta$. Also, if we let $\mathfrak{G}_{\theta}(n)=(n!)^{\frac{1}{n}}$, then Stirling's approximation and (5) imply respectively

$$
\mathfrak{G}_{1}(n)=\mathrm{e}^{-1} n+O(\log n), \quad \text { and } \quad \mathfrak{G}_{\frac{1}{2}}(n)=\mathrm{e}^{-\gamma} \sqrt{n}+O\left(\frac{\sqrt{n}}{\log n}\right)
$$

Hence $\lim _{n \rightarrow \infty} \mathfrak{G}_{\frac{1}{2}}(n) / \mathfrak{G}_{1}(n)^{\frac{1}{2}}=\mathrm{e}^{\frac{1}{2}-\gamma}$. We ask about the existence and possible value of $\lim _{n \rightarrow \infty} \mathfrak{G}_{\theta}(n) / \mathfrak{G}_{1}(n)^{\theta}$ for given $\theta \in(0,1]$.

2. Auxiliary Sums over Primes

In this section we approximate several summations running over prime numbers, for which as a key idea, we relate such summations with the function $\pi(x)$, the number of primes $\leqslant x$.
Proposition 2.1. Let f be a positive, strictly decreasing, and continuously differentiable function on $[2, \infty)$, and $f(t)=o\left(\frac{1}{t}\right)$ as $t \rightarrow \infty$. Then, for each $z>1$ we have

$$
\begin{equation*}
\sum_{p>z} f(p)<\frac{1+\frac{3}{2 \log z}}{\log z} \int_{z}^{\infty} f(t) \mathrm{d} t+\frac{9 z f(z)}{4 \log ^{2} z} \tag{6}
\end{equation*}
$$

Proof. If we let $\varpi(n)=1$ when n is prime and 0 otherwise, then

$$
\begin{equation*}
\pi(x)=\sum_{n \leqslant x} \varpi(n) \tag{7}
\end{equation*}
$$

This representation allows us to write summations running over prime numbers an a Stieltjes integral as follows

$$
\sum_{p \leqslant x} f(p)=\sum_{2 \leqslant n \leqslant x} \varpi(n) f(n)=\int_{2^{-}}^{x} f(t) \mathrm{d} \pi(t)
$$

Integration by parts we get

$$
\sum_{p \leqslant x} f(p)=\pi(x) f(x)-\int_{2}^{x} \pi(t)\left(\frac{\mathrm{d} f(t)}{\mathrm{d} t}\right) \mathrm{d} t
$$

Hence

$$
\sum_{p>z} f(p)=\lim _{b \rightarrow \infty} \sum_{z<p \leqslant b} f(p)=-\pi(z) f(z)-\int_{z}^{\infty} \pi(t)\left(\frac{\mathrm{d} f(t)}{\mathrm{d} t}\right) \mathrm{d} t
$$

Rosser and Schoenfeld [4, Theorem 1] proved that

$$
\pi(x)<\frac{x}{\log x}\left(1+\frac{3}{2 \log x}\right) \quad(x>1)
$$

Since $f>0$ is strictly decreasing and $f(b)=o\left(\frac{1}{b}\right)$ as $b \rightarrow \infty$, by using this bound we obtain

$$
\begin{aligned}
\int_{z}^{\infty} \pi(t)\left(-\frac{\mathrm{d} f(t)}{\mathrm{d} t}\right) \mathrm{d} t & <\int_{z}^{\infty} \frac{t\left(1+\frac{3}{2 \log t}\right)}{\log t}\left(-\frac{\mathrm{d} f(t)}{\mathrm{d} t}\right) \mathrm{d} t \\
& \leqslant \frac{1+\frac{3}{2 \log z}}{\log z} \int_{z}^{\infty} t\left(-\frac{\mathrm{d} f(t)}{\mathrm{d} t}\right) \mathrm{d} t \\
& =\frac{1+\frac{3}{2 \log z}}{\log z}\left(z f(z)+\int_{z}^{\infty} f(t) \mathrm{d} t\right)
\end{aligned}
$$

Rosser and Schoenfeld [4, Theorem 1] also proved that

$$
\frac{x}{\log x}\left(1+\frac{1}{2 \log x}\right)<\pi(x), \quad(x \geqslant 59) .
$$

This implies that

$$
\frac{x}{\log x}\left(1-\frac{3}{4 \log x}\right)<\pi(x), \quad(x>1) .
$$

Thus, $-\pi(z) f(z)<-\frac{z}{\log z}\left(1-\frac{3}{4 \log z}\right) f(z)$ for each $z>1$. Combining the above bounds we obtain (6). This finishes the proof.

Corollary 2.2. For $s>1$ and $x \geqslant 2$ let $\mathfrak{B}_{s}(x)=\sum_{p \leqslant x} \frac{1}{p^{s}}$. Then

$$
\begin{equation*}
\mathfrak{B}_{s}(x)=P(s)+O\left(\frac{1}{x^{s-1} \log x}\right) \tag{8}
\end{equation*}
$$

where $P(s)=\sum_{p} \frac{1}{p^{s}}$ is an absolute constant, known as the prime zeta function.
Proof. Let $\mathfrak{B}_{s}(x)=P(s)-\sum_{p>x} \frac{1}{p^{s}}$. Approximation of the last sum is straightforward by using Proposition 2.1.

Proposition 2.3. For each $n \geqslant 2$,

$$
\begin{equation*}
\sum_{p \leqslant n}\left\{\frac{n}{p}\right\}(\log p)=(1-\gamma) n+O\left(\frac{n}{\log n}\right) \tag{9}
\end{equation*}
$$

Proof. Let

$$
\mathfrak{F}(n)=\sum_{p \leqslant n}\left\{\frac{n}{p}\right\} .
$$

Lee [3, Lemma 3] obtained the following approximation

$$
\sum_{p^{\alpha} \leqslant n}\left\{\frac{n}{p^{\alpha}}\right\}=(1-\gamma) \frac{n}{\log n}+O\left(\frac{n}{\log ^{2} n}\right)
$$

We observe that

$$
\sum_{p^{\alpha} \leqslant n}\left\{\frac{n}{p^{\alpha}}\right\}-\mathfrak{F}(n)=\sum_{\substack{p^{\alpha} \leqslant n \\ \alpha \geqslant 2}}\left\{\frac{n}{p^{\alpha}}\right\}<\sum_{\substack{p^{\alpha} \leqslant n \\ \alpha \geqslant 2}} 1=\sum_{\substack{p \leqslant n^{\frac{1}{\alpha}} \\ \alpha \geqslant 2}} 1=\sum_{2 \leqslant \alpha \leqslant \frac{\log n}{\log 2}} \pi\left(n^{\frac{1}{\alpha}}\right) .
$$

By using the approximation $\pi(x)=O\left(\frac{x}{\log x}\right)$ we get

$$
\sum_{2 \leqslant \alpha \leqslant \frac{\log n}{\log 2}} \pi\left(n^{\frac{1}{\alpha}}\right) \ll \sum_{2 \leqslant \alpha \leqslant \frac{\log n}{\log 2}} \frac{n^{\frac{1}{\alpha}}}{\log n^{\frac{1}{\alpha}}} \leqslant \frac{n^{\frac{1}{2}}}{\log n} \sum_{2 \leqslant \alpha \leqslant \frac{\log n}{\log 2}} \alpha \ll \sqrt{n} \log n
$$

Hence,

$$
\begin{equation*}
\mathfrak{F}(n)=(1-\gamma) \frac{n}{\log n}+O\left(\frac{n}{\log ^{2} n}\right) \tag{10}
\end{equation*}
$$

By using Abel summation we get

$$
\begin{aligned}
\sum_{p \leqslant n}\left\{\frac{n}{p}\right\}(\log p) & =\sum_{k=2}^{n}\left\{\frac{n}{k}\right\} \varpi(k) \log k \\
& =\mathfrak{F}(n) \log n-\mathfrak{F}\left(2^{-}\right) \log 2-\int_{2}^{n} \eta(t) \frac{\mathrm{d} t}{t}
\end{aligned}
$$

where $\eta(t)=\sum_{p \leqslant t}\left\{\frac{n}{p}\right\}$. Note that $0 \leqslant \eta(t) \leqslant \pi(t) \ll \frac{t}{\log t}$. Combining this approximation with (10) we deduce

$$
\sum_{p \leqslant n}\left\{\frac{n}{p}\right\}(\log p)=(1-\gamma) n+O\left(\frac{n}{\log n}\right)-\int_{2}^{n} O\left(\frac{t}{\log t}\right) \frac{\mathrm{d} t}{t}
$$

This is the desired conclusion.

3. Proof of the Main Results

Proof of Theorem 1.1. First we consider the case $k=0$. Approximation of $\mathfrak{S}_{1}(n)$ is related to the average of the function $\Omega(n)$, which denotes the total number of prime factors of positive integer n. The function Ω is completely additive. We recall the known approximation of the sum $\sum_{k \leqslant n} \Omega(k)$ due to Hardy and Ramanujan [1] to obtain

$$
\begin{equation*}
\mathfrak{S}_{1}(n)=\Omega(n!)=\sum_{k \leqslant n} \Omega(k)=n \log \log n+M^{\prime} n+O\left(\frac{n}{\log n}\right) \tag{11}
\end{equation*}
$$

Let $k \geqslant 1$. For primes p satisfying $n^{\frac{1}{k+1}}<p \leqslant n$ we have $n<p^{k+1}$. Thus, by using the relation (1) we obtain

$$
v_{p}(n!)=\sum_{j=1}^{k}\left[\frac{n}{p^{j}}\right]=n \sum_{j=1}^{k} \frac{1}{p^{j}}+O(1) .
$$

Thus by using the approximation $\pi(x) \asymp \frac{x}{\log x}$ we obtain

$$
\begin{aligned}
\mathfrak{S}_{1}(n)-\mathfrak{S}_{\frac{1}{k+1}}(n) & =\sum_{n^{1 /(k+1)}<p \leqslant n} v_{p}(n!) \\
& =n \sum_{n^{1 /(k+1)}<p \leqslant n} \sum_{j=1}^{k} \frac{1}{p^{j}}+O\left(\sum_{n^{1 /(k+1)}<p \leqslant n} 1\right) \\
& =n \sum_{j=1}^{k} \sum_{n^{1 /(k+1)}<p \leqslant n} \frac{1}{p^{j}}+O(\pi(n)) \\
& =n \sum_{j=1}^{k}\left(\mathfrak{B}_{j}(n)-\mathfrak{B}_{j}\left(n^{\frac{1}{k+1}}\right)\right)+O\left(\frac{n}{\log n}\right),
\end{aligned}
$$

where $\mathfrak{B}_{1}(x)=\sum_{p \leqslant x} 1 / p$, and \mathfrak{B}_{j} for $j \geqslant 2$ is defined in Corollary 2.2. By using Mertens' approximation $\mathfrak{B}_{1}(x)=\log \log x+M+O\left(\frac{1}{\log x}\right)$ with M as in (3) we obtain

$$
\mathfrak{B}_{1}(n)-\mathfrak{B}_{1}\left(n^{1 /(k+1)}\right)=\log (k+1)+O\left(\frac{1}{\log n}\right) .
$$

Also, for $s>1$ we use the approximation (8) to get

$$
\mathfrak{B}_{s}(n)-\mathfrak{B}_{s}\left(n^{1 /(k+1)}\right)=O\left(\frac{1}{n^{(s-1) /(k+1)} \log n}\right)
$$

Hence

$$
\mathfrak{S}_{1}(n)-\mathfrak{S}_{\frac{1}{k+1}}(n)=n \log (k+1)+O\left(\frac{n}{\log n}\right)
$$

This approximation and (11) imply (2). To obtain (4) we divide the right hand side of (2) by the right hand side of (11). Let $z=\log n$ and $M^{\prime \prime}=M^{\prime}-\log (k+1)$. Hence

$$
\mathfrak{A}_{\frac{1}{k+1}}(n)=\frac{1+\frac{M^{\prime \prime}}{\log z}+O\left(\frac{1}{z \log z}\right)}{1+\frac{M^{\prime}}{\log z}+O\left(\frac{1}{z \log z}\right)} .
$$

To deal with the above fraction, we consider the expansion

$$
\frac{1}{1+t}=\sum_{j=0}^{m}(-1)^{j} t^{j}+O\left(t^{m+1}\right)
$$

which is valid for each fixed integer $m \geqslant 1$, as $t \rightarrow 0$. If we let $t=\frac{M^{\prime}}{\log z}+O\left(\frac{1}{z \log z}\right)$, then

$$
\frac{1}{1+\frac{M^{\prime}}{\log z}+O\left(\frac{1}{z \log z}\right)}=\sum_{j=0}^{m} \frac{(-1)^{j}\left(M^{\prime}\right)^{j}}{(\log z)^{j}}+O\left(\frac{1}{(\log z)^{m+1}}\right)
$$

Thus,

$$
\mathfrak{A}_{\frac{1}{k+1}}(n)=\sum_{j=0}^{m} \frac{(-1)^{j}\left(M^{\prime}\right)^{j}}{(\log z)^{j}}+\sum_{j=0}^{m} \frac{(-1)^{j}\left(M^{\prime}\right)^{j} M^{\prime \prime}}{(\log z)^{j+1}}+O\left(\frac{1}{(\log z)^{m+1}}\right) .
$$

We simplify to get

$$
\mathfrak{A}_{\frac{1}{k+1}}(n)=1+\sum_{j=1}^{m} \frac{(-1)^{j}\left(M^{\prime}\right)^{j}+(-1)^{j-1}\left(M^{\prime}\right)^{j-1} M^{\prime \prime}}{(\log z)^{j}}+O\left(\frac{1}{(\log z)^{m+1}}\right)
$$

and then

$$
\mathfrak{A}_{\frac{1}{k+1}}(n)=1+\sum_{j=1}^{m} \frac{(-1)^{j}\left(M^{\prime}\right)^{j-1}\left(M^{\prime}-M^{\prime \prime}\right)}{(\log z)^{j}}+O\left(\frac{1}{(\log z)^{m+1}}\right)
$$

Note that $M^{\prime}-M^{\prime \prime}=\log (k+1)$. This completes the proof.
Proof of Theorem 1.2. We have

$$
\mathfrak{L}_{\frac{1}{2}}(n)=\mathfrak{L}_{1}(n)-\sum_{\sqrt{n}<p \leqslant n} v_{p}(n!)(\log p) .
$$

Stirling's approximation for n ! asserts that

$$
\begin{equation*}
\log (n!)=\mathfrak{L}_{1}(n)=n \log \left(\frac{n}{\mathrm{e}}\right)+\log \sqrt{2 \pi n}+O\left(\frac{1}{n}\right) \tag{12}
\end{equation*}
$$

Also, we have

$$
\sum_{\sqrt{n}<p \leqslant n} v_{p}(n!) \log p=\sum_{\sqrt{n}<p \leqslant n}\left[\frac{n}{p}\right](\log p)=\sum_{p \leqslant n}\left[\frac{n}{p}\right](\log p)-\sum_{p \leqslant \sqrt{n}}\left[\frac{n}{p}\right](\log p) .
$$

Let us write

$$
\begin{equation*}
\sum_{p \leqslant n}\left[\frac{n}{p}\right] \log p=n \mathfrak{K}(n)-\sum_{p \leqslant n}\left\{\frac{n}{p}\right\}(\log p), \tag{13}
\end{equation*}
$$

where

$$
\mathfrak{K}(n)=\sum_{p \leqslant n} \frac{\log p}{p} .
$$

Landau [2, p. 198] proved that

$$
\begin{equation*}
\mathfrak{K}(n)=\log n+E+O\left(\frac{1}{\log n}\right) . \tag{14}
\end{equation*}
$$

where

$$
E=-\gamma-\sum_{j=2}^{\infty} \sum_{p} \frac{\log p}{p^{j}},
$$

and $c>0$ is a computable constant. Note that the double series defining the constant E is absolutely convergent. Approximations (9) and (14) imply

$$
\begin{equation*}
\sum_{p \leqslant n}\left[\frac{n}{p}\right](\log p)=n \log n+(\gamma+E-1) n+O\left(\frac{n}{\log n}\right) \tag{15}
\end{equation*}
$$

By using (14) and applying the Chebyshev type approximation $\sum_{p \leqslant z} \log p \asymp z$ with $z=\sqrt{n}$ we deduce that

$$
\sum_{p \leqslant \sqrt{n}}\left[\frac{n}{p}\right](\log p)=\frac{1}{2} n \log n+E n+O(\sqrt{n})
$$

Combining the relations (12), (15) and the last approximation we get (5). This finishes the proof.

Conflicts of Interest. The authors declare that there are no conflicts of interest regarding the publication of this article.

References

[1] G. H. Hardy and S. Ramanujan, The normal number of prime factors of a number n, Q. J. Math. 48 (1917) $76-92$.
[2] E. G. H. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, 3rd edn. Chelsea Publishing Company, New York, 1974.
[3] J. Lee, The second central moment of additive functions, Proc. Amer. Math. Soc. 114 (4) (1992) $887-895$.
[4] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962) $64-94$.

Mehdi Hassani
Department of Mathematics,
University of Zanjan,
University Blvd., 45371-38791
Zanjan, I. R. Iran
e-mail: mehdi.hassani@znu.ac.ir
Mahmoud Marie
Department of Mathematics,
University of Zanjan,
University Blvd., 45371-38791
Zanjan, I. R. Iran
e-mail: mahmoud.marie@znu.ac.ir

[^0]: *Corresponding author (E-mail: mehdi.hassani@znu.ac.ir)
 Academic Editor: Abbas Saadatmandi
 Received 5 November 2020, Accepted 22 July 2021
 DOI: 10.22052/mir.2021.240348.1254

