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Abstract

The subject of this paper is to study distribution of the prime factors p
and their exponents, which we denote by vp(n!), in standard factorization
of n! into primes. We show that for each θ > 0 the primes p not exceeding
nθ eventually assume almost all value of the sum

∑
p⩽n vp(n!). Also, we

introduce the notion of θ-truncated factorial, defined by n!θ =
∏

p⩽nθ p
vp(n!),

and we show that the growth of logn! 1
2

is almost half of growth of logn!1.
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1. Introduction
Letting n! =

∏
p⩽n p

vp(n!), Legendre’s theorem asserts that

vp(n!) =
∞∑

α=1

[
n

pα

]
. (1)

Here [x] = max{k ∈ Z : k ⩽ x}. This relation enables us to observe several
facts about the distribution of the exponents. It implies that for primes p and q
with p < q we have vp(n!) ⩾ vq(n!). Primes p satisfying n

2 < p ⩽ n assume the
minimum possible exponent vp(n!) = 1. Also, for primes p with p >

√
n Legendre’s

sum in (1) assumes only its first term.
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These properties show that small primes get larger exponents than large primes.
Our first result yields information about clustering of exponents on small primes.

-

Theorem 1.1. For given θ ∈ (0, 1] let

Sθ(n) =
∑
p⩽nθ

vp(n!), and Aθ(n) =
1

S1(n)

∑
p⩽nθ

vp(n!).

For each integer k ⩾ 0, which we keep it fixed, as n → ∞, we have

S 1
k+1

(n) = n log log n+ (M ′ − log(k + 1))n+O
( n

log n

)
, (2)

where

M ′ = M +
∑
p

(p(p− 1))
−1

, M = γ +
∑
p

(
log

(
1− p−1

)
+ p−1

)
, (3)

and γ = limn→∞ Hn − (log n), with Hn =
∑n

j=1 j
−1. Also, for each fixed integer

m ⩾ 1 we have

A 1
k+1

(n) = 1 +

m∑
j=1

(−1)
j
(M ′)

j−1
log(k + 1)

(log log n)
j

+O
( 1

(log log n)
m+1

)
. (4)

To study clustering of exponents on small primes, we introduce the notion of
θ-truncated factorial, defined by

n!θ =
∏
p⩽nθ

pvp(n!) .

Naturally we ask about the growth of n!θ, more precisely for the values of θ close
to 0. The following result asserts that the growth of n! 1

2
is almost half of growth

of n!1 in logarithmic scale.

Theorem 1.2. Let Lθ(n) = log (n!θ). As n → ∞ we have

L 1
2
(n) = log

(
n

n
2

)
− γ n+O

( n

log n

)
. (5)

A natural question, for which we have no solution yet, deals with the ap-
proximation of Lθ(n) for the values of θ close to 0. If for α, β ∈ (0, 1] we let
Q(α, β;n) = Lα(n)/Lβ(n), then (5) and Stirling’s approximation imply

Q
(1
2
, 1;n

)
=

1

2
−

γ − 1
2

log n
+O

( 1

log2 n

)
.
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For α, β ∈ (0, 1] we conjecture that limn→∞ Q(α, β;n) = α/β. Also, if we let
Gθ(n) = (n!θ)

1
n , then Stirling’s approximation and (5) imply respectively

G1(n) = e−1n+O (log n) , and G 1
2
(n) = e−γ

√
n+O

( √
n

log n

)
.

Hence limn→∞ G 1
2
(n)/G1(n)

1
2 = e

1
2−γ . We ask about the existence and possible

value of limn→∞ Gθ(n)/G1(n)
θ for given θ ∈ (0, 1].

2. Auxiliary Sums over Primes
In this section we approximate several summations running over prime numbers,
for which as a key idea, we relate such summations with the function π(x), the
number of primes ⩽ x.

Proposition 2.1. Let f be a positive, strictly decreasing, and continuously dif-
ferentiable function on [2,∞), and f(t) = o( 1t ) as t → ∞. Then, for each z > 1
we have ∑

p>z

f(p) <
1 + 3

2 log z

log z

∫ ∞

z

f(t) dt+
9zf(z)

4 log2 z
. (6)

Proof. If we let ϖ(n) = 1 when n is prime and 0 otherwise, then

π(x) =
∑
n⩽x

ϖ(n). (7)

This representation allows us to write summations running over prime numbers
an a Stieltjes integral as follows∑

p⩽x

f(p) =
∑

2⩽n⩽x

ϖ(n)f(n) =

∫ x

2−
f(t) dπ(t).

Integration by parts we get∑
p⩽x

f(p) = π(x)f(x)−
∫ x

2

π(t)
( df(t)

dt

)
dt.

Hence ∑
p>z

f(p) = lim
b→∞

∑
z<p⩽b

f(p) = −π(z)f(z)−
∫ ∞

z

π(t)
( df(t)

dt

)
dt.

Rosser and Schoenfeld [4, Theorem 1] proved that

π(x) <
x

log x

(
1 +

3

2 log x

)
(x > 1).
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Since f > 0 is strictly decreasing and f(b) = o( 1b ) as b → ∞, by using this bound
we obtain ∫ ∞

z

π(t)
(
− df(t)

dt

)
dt <

∫ ∞

z

t(1 + 3
2 log t )

log t

(
− df(t)

dt

)
dt

⩽
1 + 3

2 log z

log z

∫ ∞

z

t
(
− df(t)

dt

)
dt

=
1 + 3

2 log z

log z

(
zf(z) +

∫ ∞

z

f(t) dt

)
.

Rosser and Schoenfeld [4, Theorem 1] also proved that

x

log x

(
1 +

1

2 log x

)
< π(x), (x ⩾ 59).

This implies that

x

log x

(
1− 3

4 log x

)
< π(x), (x > 1).

Thus, −π(z)f(z) < − z
log z

(
1 − 3

4 log z

)
f(z) for each z > 1. Combining the above

bounds we obtain (6). This finishes the proof.

Corollary 2.2. For s > 1 and x ⩾ 2 let Bs(x) =
∑

p⩽x
1
ps . Then

Bs(x) = P (s) +O
( 1

xs−1 log x

)
, (8)

where P (s) =
∑

p
1
ps is an absolute constant, known as the prime zeta function.

Proof. Let Bs(x) = P (s) −
∑

p>x
1
ps . Approximation of the last sum is straight-

forward by using Proposition 2.1.

Proposition 2.3. For each n ⩾ 2,∑
p⩽n

{
n

p

}
(log p) = (1− γ)n+O

( n

log n

)
. (9)

Proof. Let

F(n) =
∑
p⩽n

{
n

p

}
.

Lee [3, Lemma 3] obtained the following approximation∑
pα⩽n

{
n

pα

}
= (1− γ)

n

logn
+O

( n

log2 n

)
.
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We observe that∑
pα⩽n

{
n

pα

}
− F(n) =

∑
pα⩽n
α⩾2

{
n

pα

}
<

∑
pα⩽n
α⩾2

1 =
∑

p⩽n
1
α

α⩾2

1 =
∑

2⩽α⩽ log n
log 2

π(n
1
α ).

By using the approximation π(x) = O( x
log x ) we get

∑
2⩽α⩽ log n

log 2

π(n
1
α ) ≪

∑
2⩽α⩽ log n

log 2

n
1
α

log n
1
α

⩽ n
1
2

log n

∑
2⩽α⩽ log n

log 2

α ≪
√
n log n.

Hence,
F(n) = (1− γ)

n

log n
+O

( n

log2 n

)
. (10)

By using Abel summation we get∑
p⩽n

{
n

p

}
(log p) =

n∑
k=2

{n

k

}
ϖ(k) log k

= F(n) log n− F(2−) log 2−
∫ n

2

η(t)
dt

t
,

where η(t) =
∑

p⩽t

{
n
p

}
. Note that 0 ⩽ η(t) ⩽ π(t) ≪ t

log t . Combining this
approximation with (10) we deduce∑

p⩽n

{
n

p

}
(log p) = (1− γ)n+O

( n

log n

)
−
∫ n

2

O
( t

log t

) dt

t
.

This is the desired conclusion.

3. Proof of the Main Results
Proof of Theorem 1.1. First we consider the case k = 0. Approximation of
S1(n) is related to the average of the function Ω(n), which denotes the total num-
ber of prime factors of positive integer n. The function Ω is completely additive.
We recall the known approximation of the sum

∑
k⩽n Ω(k) due to Hardy and

Ramanujan [1] to obtain

S1(n) = Ω(n!) =
∑
k⩽n

Ω(k) = n log log n+M ′ n+O
( n

log n

)
. (11)

Let k ⩾ 1. For primes p satisfying n
1

k+1 < p ⩽ n we have n < pk+1. Thus, by
using the relation (1) we obtain

vp(n!) =

k∑
j=1

[
n

pj

]
= n

k∑
j=1

1

pj
+O(1).
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Thus by using the approximation π(x) ≍ x
log x we obtain

S1(n)−S 1
k+1

(n) =
∑

n1/(k+1)<p⩽n

vp(n!)

= n
∑

n1/(k+1)<p⩽n

k∑
j=1

1

pj
+O

( ∑
n1/(k+1)<p⩽n

1
)

= n
k∑

j=1

∑
n1/(k+1)<p⩽n

1

pj
+O(π(n))

= n
k∑

j=1

(
Bj(n)−Bj(n

1
k+1 )

)
+O

( n

log n

)
,

where B1(x) =
∑

p⩽x 1/p, and Bj for j ⩾ 2 is defined in Corollary 2.2. By using
Mertens’ approximation B1(x) = log log x + M + O( 1

log x ) with M as in (3) we
obtain

B1(n)−B1(n
1/(k+1)) = log(k + 1) +O

( 1

log n

)
.

Also, for s > 1 we use the approximation (8) to get

Bs(n)−Bs(n
1/(k+1)) = O

( 1

n(s−1)/(k+1) log n

)
.

Hence
S1(n)−S 1

k+1
(n) = n log(k + 1) +O

( n

log n

)
.

This approximation and (11) imply (2). To obtain (4) we divide the right hand
side of (2) by the right hand side of (11). Let z = log n and M ′′ = M ′− log(k+1).
Hence

A 1
k+1

(n) =
1 + M ′′

log z +O( 1
z log z )

1 + M ′

log z +O( 1
z log z )

.

To deal with the above fraction, we consider the expansion

1

1 + t
=

m∑
j=0

(−1)
j
tj +O(tm+1),

which is valid for each fixed integer m ⩾ 1, as t → 0. If we let t = M ′

log z +O
(

1
z log z

)
,

then
1

1 + M ′

log z +O( 1
z log z )

=

m∑
j=0

(−1)
j
(M ′)

j

(log z)
j

+O
( 1

(log z)
m+1

)
.
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Thus,

A 1
k+1

(n) =
m∑
j=0

(−1)
j
(M ′)

j

(log z)
j

+
m∑
j=0

(−1)
j
(M ′)

j
M ′′

(log z)
j+1

+O
( 1

(log z)
m+1

)
.

We simplify to get

A 1
k+1

(n) = 1 +
m∑
j=1

(−1)
j
(M ′)

j
+ (−1)

j−1
(M ′)

j−1
M ′′

(log z)
j

+O
( 1

(log z)
m+1

)
,

and then

A 1
k+1

(n) = 1 +
m∑
j=1

(−1)
j
(M ′)

j−1
(M ′ −M ′′)

(log z)
j

+O
( 1

(log z)
m+1

)
.

Note that M ′ −M ′′ = log(k + 1). This completes the proof.

Proof of Theorem 1.2. We have

L 1
2
(n) = L1(n)−

∑
√
n<p⩽n

vp(n!) (log p) .

Stirling’s approximation for n! asserts that

log (n!) = L1(n) = n log
(n
e

)
+ log

√
2πn+O

( 1

n

)
. (12)

Also, we have∑
√
n<p⩽n

vp(n!) log p =
∑

√
n<p⩽n

[
n

p

]
(log p) =

∑
p⩽n

[
n

p

]
(log p)−

∑
p⩽√

n

[
n

p

]
(log p) .

Let us write ∑
p⩽n

[
n

p

]
log p = nK(n)−

∑
p⩽n

{
n

p

}
(log p) , (13)

where
K(n) =

∑
p⩽n

log p

p
.

Landau [2, p. 198] proved that

K(n) = log n+ E +O
( 1

log n

)
. (14)

where

E = −γ −
∞∑
j=2

∑
p

log p

pj
,
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and c > 0 is a computable constant. Note that the double series defining the
constant E is absolutely convergent. Approximations (9) and (14) imply∑

p⩽n

[
n

p

]
(log p) = n log n+ (γ + E − 1)n+O

( n

log n

)
. (15)

By using (14) and applying the Chebyshev type approximation
∑

p⩽z log p ≍ z

with z =
√
n we deduce that∑

p⩽√
n

[
n

p

]
(log p) =

1

2
n log n+ E n+O

(√
n
)
.

Combining the relations (12), (15) and the last approximation we get (5). This
finishes the proof.
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