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Abstract

This study contributes to the theory of Riemann-Stieltjes integral. We
prove that if all continuous piecewise linear functions are Riemann-Stieltjes
integrable with respect to a bounded integrator α : [a, b] → R, then α must
be of bounded variation on [a, b]. We also provide some other consequences.
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1. Introduction
Although the theory of Riemann-Stieltjes (simply R-S) integral has been estab-
lished for a century, it remains as the subject of many current mathematical re-
searches. Some of the studies in R-S integration in the last four decades are given
in its own theory. For instance, in [11], Ross has proposed an alternative definition
for the R-S integral that has some advantages over the classical definition.

As is well known, Riemann integrability in Euclidean space is characterized
by continuity almost everywhere, with respect to Lebesgue measure. The main
purpose of Ter Horst in [15], is to generalize this classical theorem to Stieltjes
integral in Euclidean space.

In [9], Lukkarinen and Pakkanen has considered the question “Whether an R-S
integral of a positive continuous function with respect to a nonnegative function
of bounded variation is positive?" before providing an answer to it. They deduced
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that, the general answer to the question is no. An affirmative answer to this
question under a slightly different set of assumptions, is given by Satyanarayana
in [13].

In [6], Chen, Leskelä, and Viitasaari studied the existence of pathwise Stieltjes
integrals of the form

∫
f(Xt)dYt for nonrandom, possibly discontinuous, evaluation

functions f , and Hölder continuous random processes X and Y . In [16], Yaskov
derived the results of [6] under weaker conditions.
Some of the recent studies in this area, similar to [6] and [16] are related to the
approximation theory, or finding the bounds of functionals. For instance, in [5],
Cerone and Dragomir gave lower and upper bounds of the Čebyšev functional for
the R-S integral. In [1], Alomari proved several bounds for the difference between
two R-S integral means, under various assumptions.

Many papers have been espically devoted to study the analogies of the R-S
integration known for different types of partial differential equations, oscillation
theory, fractional differential equations, and integro-differential equations as well
as their applications to analysis of their solutions [7, 17].

Finally, some of the studies in this area, in the last two decades, were realated
to the modelling in life situations such as dynamics of multi-body systems, time
scales, applications in complex analysis, and probability theory. Some of the ref-
erences in this area are [4, 8, 10].

The present paper is also a study on the theory of R-S integral. Our approach,
as some of the previous references, is in its own theory. We turn to a basic question
in the theory of R-S integration that seems to be less well-known. In fact, as a
theorem in mathematical analysis, every continuous function is R-S integrable
with respect to a monotonic (hence a bounded variation) integrator α : [a, b] → R
[2, 3, 12]. Here, we provide a converse for this theorem. We show that if all
continuous piecewise linear functions are R-S integrable with respect to a bounded
integrator α : [a, b] → R, then α must be of bounded variation on [a, b].

2. Preliminary Notes

Let’s start with recalling some definitions and the most essential concepts needed in
our study. A partition of [a, b] is a set of points P = {x0, x1, . . . , xl}, (l ∈ N) such
that a = x0 < x1 < x2 < · · · < xl = b. The set of all partitions of [a, b] is denoted
by P[a, b]. A function α : [a, b] → R is said to be of bounded variation on [a, b], if
there exists a positive constant R such that Σ(P ) = Σi=l

i=1|α(xi)−α(xi−1)| ≤ R for
all possible partitions P ∈ P[a, b]. If α is of bounded variation on [a, b], then the
number Vα[a, b] = sup{Σ(P )|P ∈ P[a, b]} is called the total variation of α on [a, b].
In this case, the function V : [a, b] → R defined by V (x) = Vα[a, x] for x ∈ [a, b],
is called the function of total variation of α [2]. Total variation of α on [a, b] is
defined by V (b). A real valued function defined on [a, b] is of bounded variation,
if and only if its total variation on [a, b] is bounded [2].

Suppose that f and α are real-valued functions defined on [a, b]. Let P be
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a partition of [a, b] and S(P, f, α) = Σi=l
i=1f(ti)(α(xi) − α(xi−1)), where ti is an

arbitrary point in [xi−1, xi]. The function f is said to be R-S integrable with
respect to α, if there exists a real number I that satisfies the following condition:
For any ϵ > 0 there exists a partition Pϵ ∈ P[a, b] such that for every partition
P ∈ P[a, b] refines Pϵ, the inequality |S(P, f, α) − I| < ϵ holds [2, 3]. Since I is
unique, it is called the R-S integral of f with respect to α, and is denoted by
I =

∫ b

a
fdα. Clearly, if f is R-S integrable with respect to α, then there exists a

partition P0 ∈ P[a, b] such that the set {S(P, f, α)|P ∈ P[a, b], P0 ⊆ P} is bounded.

3. Main Results

We provide some results about the integrators of bounded variation. Regarding
the continution of the investigation, we start with some theorems on the functions
of bounded variation.

Theorem 3.1. ([2], [3]) Let the function α : [a, b] → R be of bounded variation
on [a, b] and p ∈ [a, b]. Then α is of bounded variation on the subintervals [a, p]
and [p, b], such that

Vα[a, b] = Vα[a, p] + Vα[p, b]. (1)

Conversely, if α is of bounded variation on [a, p] and [p, b] for some p ∈ [a, b], then
α is of bounded variation on [a, b], and (1) holds.

Theorem 3.2. Suppose that α : [a, b] → R is not of bounded variation on [a, b].
Then there exists a point p ∈ [a, b] such that α is not of bounded variation on
every subinterval [x, y] ⊆ [a, b] containing p as an interior point.

Proof. Let c = a+b
2 . The intervals [a, c] and [c, b] then determines two subintervals

Q1, Q2 whose union is [a, b]. Theorem 3.1 implies that, at least one of the sets Qi,
call it I1 admits the following properties:

1. I1 ⊂ [a, b],

2. α is not of bounded variation on I1,

3. if x, y ∈ I1, then |x− y| ≤ b−a
2 .

Continuing the process, we obtain a sequence {In}n∈N of closed subintervals of
[a, b] with the following properties:

(a) In+1 ⊂ In for n ∈ N ,

(b) α is not of bounded variation on In for n ∈ N ,

(c) if x, y ∈ In, then |x− y| ≤ b−a
2n .
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Therefore Cantor’s intersection theorem implies that, there exists exactly one point
p which lies in every In [14]. If [x, y] ⊆ [a, b] is any subinterval and x < p < y,
then there exists r > 0 such that |z−p| < r implies that z ∈ (x, y). If n is so large
that b−a

2n < r, then 3 implies that In ⊂ [x, y]. Now, (b) and Theorem 3.1 imply
that α is not of bounded variation on [x, y].

Corollary 3.3. If α : [a, b] → R is not of bounded variation on [a, b], then there
exists p ∈ [a, b] such that α is not of bounded variation on every interval [c, p] for
all c, (a ≤ c < p), or, α is not of bounded variation on every interval [p, d] for all
d, (p < d ≤ b).

Proof. The proof of Theorem 3.2 implies that, there exists a point p ∈ [a, b] and a
sequence {In}n∈N of the closed subintervals of [a, b] containing p, such that α is
not of bounded variation on In for n ∈ N . If p = a (res. p = b), then the structure
of the proof of Theorem 3.2, shows that there exists a nonconstant sequence of
the end points of the constructed intervals with terms bigger (res. smaller) than
p where tends to p. Therefore, α is not of bounded variation on every interval
[p, d] for all d, (p < d ≤ b) (res. on every interval [c, p] for all c, (a ≤ c < p)). If
a < p < b, then there exists a nonconstant subsequence of the end points of the
intervals with terms bigger (and also smaller) than p where tends to p. Thus α is
not of bounded variation on every interval [c, p] for all c, (a ≤ c < p), (and also on
every interval [p, d] for all d, (p < d ≤ b)).

We now proceed to prove that if the integrator α : [a, b] → R is a bounded
function, and if every continuous function on [a, b], is R-S integrable with respect
to α on [a, b], then α must be of bounded variation on [a, b].

Theorem 3.4. Let the integrator α : [a, b] → R be a bounded function. If α is
not of bounded variation on [a, b], then there exists a real continuous function,
defined on [a, b], which is not R-S integrable with respect to α on [a, b].

Proof. Because of boundedness of α, there exists M > 1 such that |α(x)| < M
for all x ∈ [a, b]. By corollary 3.3, there exists p ∈ [a, b] such that α is not of
bounded variation on [c, p] for all c (a ≤ c < p), or, on [p, d] for (p < d ≤ b).
Without loss of generality we assume the first case, so there exists a partition
{x0, x1, . . . , xl1 , p} ∈ P[a, p] such that a = x0 < x1 < x2 < · · · < xl1 < p and
Σi=l1

i=1 |α(xi)− α(xi−1)|+ |α(p)− α(xl1)| > 3M . Hence there exists an ordered set
x0 < x1 < x2 < · · · < xl1 < p of the points in [a, p] such that Σi=l1

i=1 |α(xi) −
α(xi−1)| > 3M − |α(p) − α(xl1)| > M . Since α is not of bounded variation on
[xl1 , p], repetition the process for [xl1 , p] shows that there exists an ordered set
xl1 < x(l1+1) < · · · < xl2 < p of the points in [xl1 , p] such that Σi=l2

i=l1+1|α(xi) −
α(xi−1)| > M . Let k ∈ N(k ≥ 2) and the process is repeated for [xlk , p]. Thus
there exists an ordered set xlk < x(lk+1) < · · · < xlk+1

< p of the points in [xlk , p]

such that Σ
i=lk+1

i=lk+1|α(xi) − α(xi−1)| > M . Since α is not of bounded variation on
[xlk+1

, p], repetition the process for [xlk+1
, p] shows that there exists an ordered
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set xlk+1
< x(lk+1+1) < · · · < xlk+2

< p of the points in [xlk+1
, p] such that

Σ
i=lk+2

i=lk+1+1|α(xi)− α(xi−1)| > M . Continuing the process, produces an increasing
sequence

a = x0, x1, . . . , xl1 , x(l1+1), . . . , xl2 , x(l2+1), . . . , xl3 , . . ., x(lk+1), . . . , xlk+1
, . . .

, x(lk+u−1+1), . . . , xlk+u
, . . .

of the points in [a, b]. Without loss of generality, it can be assumed that the
sequence xl1 , xl2 , . . . , xlk , . . . tends to p. Let r > 0 be arbitrary and define the
functions θ : R → R, and fr : [a, b] → R such that xθ(x) = |x|, θ(0) = 0 and

fr(x) =


0, if x ∈ [a, xl1 ],

r
q+1θ(α(xi)− α(xi−1)), if x = xi, lq + 1 ≤ i ≤ lq+1, q = 1, 2, 3, . . .

0, if x ∈ [p, b].

Obviously, one can extend fr to be continuous on [a, b]. It suffices to show that,
this extension is not R-S integrable with respect to α on [a, b]. For this, let

P0 = {a = y0, y1, . . . , ys−1, ys, ys+1, . . . , ym = b}

be a partition of [a, b] with ys = p, and let k ∈ N, k > 1 be such that ys−1 < xlk .
For u ∈ N the partition

P(k,u) = {a = y0, y1, . . ., ys−1, xlk , x(lk+1), . . . , xlk+1
, . . .

, xlk+u−1
, x(lk+u−1+1), . . . , xlk+u

, p = ys, ys+1, . . . , ym = b}

is a refinement of P0. Now for tν ∈ [yν−1, yν ](1 ≤ ν ≤ s− 1, s+ 2 ≤ ν ≤ m), tlk ∈
[ys−1, xlk ], ts+1 ∈ [p, ys+1] and tlk+u

∈ [xlk+u
, p], we have

S(P(k,u), fr, α) =

ν=s−1∑
ν=1

fr(tν)(α(yν)− α(yν−1)) + fr(tlk)(α(xlk)− α(ys−1))

+

µ=lk+u∑
µ=lk+1

fr(xµ)(α(xµ)− α(xµ−1)) + fr(tlk+u
)(α(p)− α(xlk+u

))

+ fr(ts+1)(α(ys+1)− α(p)) +
ν=m∑
ν=s+2

fr(tν)(α(yν)− α(yν−1))

=
ν=s−1∑
ν=1

fr(tν)(α(yν)− α(yν−1)) + fr(tlk)(α(xlk)− α(ys−1))

+

q=k+u−1∑
q=k

µ=lq+1∑
µ=lq+1

r

q + 1
θ(α(xµ)− α(xµ−1))(α(xµ)− α(xµ−1))

+ fr(tlk+u
)(α(p)− α(xlk+u

))
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=

ν=s−1∑
ν=1

fr(tν)(α(yν)− α(yν−1)) + fr(tlk)(α(xlk)− α(ys−1))

+ r

q=k+u−1∑
q=k

µ=lq+1∑
µ=lq+1

1

q + 1
|α(xµ)− α(xµ−1)|

+ fr(tk+u)(α(p)− α(xlk+u
))

>
ν=s−1∑
ν=1

fr(tν)(α(yν)− α(yν−1)) + fr(tlk)(α(xlk)− α(ys−1))

+ rM

q=k+u−1∑
q=k

1

q + 1
+ fr(tlk+u

)(α(p)− α(xlk+u
)).

Since α and fr are bounded functions and limu→+∞
∑q=k+u−1

q=k
1

q+1 = +∞, so,
the set {S(P, fr, α)|P0 ⊆ P} is not bounded, and fr is not R-S integrable with
respect to α on [a, b].

Corollary 3.5. If a bounded function α : [a, b] → R is not of bounded variation
on [a, b], then there exist infinitely many real continuous functions on [a, b], that
are not R-S integrable with respect to α on [a, b].

A piecewise linear function defined on an interval, is a function composed
of some number of linear segments defined over a number of subintervals, not
essentially of equal lengths. Since fr, in the preceeding proof, can be extended to
a continuous piecewise linear function on [a, b], the following Corollary is hold.

Corollary 3.6. If all real continuous piecewise linear functions are R-S integrable
with respect to a bounded integrator α : [a, b] → R on the interval [a, b], then α
must be of bounded variation on [a, b].

Theorem 3.7. If a bounded funtion f : [a, b] → R is R-S integrable with respect
to every continuous piecewise linear function α : [a, b] → R on [a, b], then f must
be of bounded variation on [a, b].
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