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Abstract

In this paper, a finite cylindrical plasma waveguide is investigated as
a plasma valve in the path of a non-dissipative cylindrical waveguide with
metal walls. Theoretical simulation to investigate the effect of the main
parameters of this plasma valve on the transmission coefficients and reflection
coefficients of the symmetric modes is the main part of this paper. The
transmittance coefficients of electromagnetic waves in each symmetric mode
are introduced in terms of Henkel and ordinary Bessel functions, and the
role of these functions in the purification of some modes is investigated.
Taking into account the boundary conditions, the transmission coefficient of
the output wave modes from the plasma valve are obtained. The diagrams
of the mentioned coefficient versus the incident wave frequency, geometry
dimensions and the type of the used plasma in the valve are studied.
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1. Introduction
As is well known, the Fabry-Perot resonators are devices in optical structures for
purifying or filtering electromagnetic waves in a specific frequency rang [9, 20,
21, 23, 24]. In general, the equations governing the behavior of electromagnetic
waves, in addition to being the answer to Maxwell’s basic equations, must also
accurately meet the boundary conditions in the configuration. Applying these
boundary conditions creates quantities in the wave scattering equations in certain
configuration [10, 18]. As we know, depending on how many degrees of freedom
exist in the equations of an electromagnetic structure, the number of quanta index
in their dispersion equations varies. Fabry-Perot resonators are commonly used in
theoretical optics topics as well as in textbooks with a single degree of freedom.
This results in only one quantum number in the dispersion equations of those
systems [5, 8]. Targeted passage of electromagnetic waves in bounded systems
such as waveguides is a familiar subject for which researchers have conducted
numerous theoretical studies and practical experiments [19, 22].

As we know, one of the causes of return and reflection waves in waveguide sys-
tems is the appearance of mismatch of wave impedance in the waveguide. Analysis
of the behavior of electromagnetic waves and their transmission and reflection from
one environment to another is strongly related to a parameter change called wave
impedance in the waveguide [7, 16]. Recently, this issue has led to the use of
impedance matching theory in theoretical studies on the passage and reflection of
waves in different waveguides by researchers [6, 11, 12, 13, 14]. In the mentioned
studies, each injector and the receiver media of the electromagnetic waves have
been considered semi bounded. The presence of a lamb from a special waveguide
(cylindrical plasma resonator) at the confluence of two semi-bounded cylindrical
waveguides, corrects and even adjusts the behavior of the transmitting and reflect-
ing waves in these waveguides. In other words, in this case, the plasma resonator
can play the role of an electromagnetic valve to pass or not pass electromagnetic
waves from one waveguide to another waveguide, in certain modes. The influence
of the geometric dimensions and properties of the constituents of the plasma valve
on the coefficient of transmission and reflection is an issue that we will address in
this article.

The present work has been organized in four sections where the introduction
was presented as Section 1. In Section 2, the configuration of the plasma valve
and the governing equations are introduced. In this section, the equations of the
waves dispersion and the reflection and transmission coefficients of the reflected
and transmitted waves are presented. In Section 3, the graphs of the transmission
coefficients of the output wave from plasma valve versus the geometrical parame-
ters and properties of the used plasma are investigated. Finally, a summary and
conclusion are presented in Section 4. In the end of the paper, the governed law
on energy conservation is described as the appendix section.
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Figure 1: Configuration and geometric dimensions of waveguide and plasma valve.

2. The Considered Configurations and Governed
Equations

The structure consists of a plasma resonator between two semi-bounded cylindrical
waveguides with a circular cross section with radius a. The two semi-bounded
waveguides are simply filled with a non-dissipative dielectric constant material
with dielectric permittivity ε1. The plasma resonator consists of a plasma rod
with radius b of length L, which is enclosed in a dielectric layer with dielectric
permittivity ε2. Also, the radius of the plasma rod (the region 0 < z < L) is
considered to be much smaller than the radius of the waveguide (b << a) as
shown in Figure 1. The landing wave is sent from the left side of the plasma
valve. By solving the wave equation, the z component of the potential vector of
the incident wave with its quantum number (j) is obtained as follows [15]:

Aizj = J0(
γj
a
ρ)eik

i
zjZ , (1)

where J0 is the Bessel function of the first kind of zero order, γj is the j-th zero
of the Bessel function of the zero order and kizj is propagation constant of the
incident wave, in which

(kizj)
2 = (Γd1)2 − (

γj
a

)2,

Γd1 = ω
√
ε1µ0,

where ω is the frequency of the incident wave. The incident wave is reflected
and transmitted from the first boundary of the plasma valve at z = 0. Based on
mode matching technique, the reflected and transmitted waves are considered as
an infinite series of Eigen modes with quantization m and n, respectively [4, 17].
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Be noted that the reflected and transmitted waves are in symmetric mode the same
as the incident wave. Therefore, the m and n are modes number of the reflected
and transmitted waves (for example TM0m and TM0n). The same as the incident
wave, the potential vector Az of the reflected wave from the first boundary (z = 0)
can be written as [15]:

Arzm = RmJ0(
γm
a
ρ)e−ik

r
zmZ ,

where Rm is the reflection coefficient of reflected wave and krzm is the propagation
constant of the reflected wave in the region z < 0. Also, the potential vector Az
of transmitted wave from the first boundary (z = 0) are obtained as [15]:

Atzn =

∞∑
n=1

Tn

{
J0(

βpn

a ρ)eik
t
zpnZ 0 < ρ < b,

(x1(n)H
(1)
0 (βdn

a ρ) + x2(n)J0(βdn

a ρ))eik
t
zdnZ b < ρ < a,

where H(1)
0 is the Hankel function of the first kind of zero order, βpn , βdn, x1(n)

and x2(n) are the constant coefficients of the wave equation, ktzpn and ktzdn are
the propagation constants of the transmitted wave in the plasma and dielectric in
the plasma resonator, respectively. Note that, the propagation constants of the
transmitted wave in the plasma and dielectric region are equal. It means that:

(ktzdn)2 = (Γd2)2 − (
βdn
a

)2 = (ktzpn)2 = (Γp)
2 − (

βpn
a

)2. (2)

The transmitted wave is propagated in the region 0 < Z < L and is reflected
and transmitted in the second boundary (z = L), again. Therefore, the potential
vector Az of the reflected and transmitted wave with r′m (reflection coefficient)
and t′n (transmission coefficient) can be written respectively, as follows:

Atzm′ =
∞∑

m′=1

r′m

{
J0(

βpm′
a
ρ)e
−ikrp

zpm′Z 0 < ρ < b,

(x1(m
′)H

(1)
0 (

βdm′
a
ρ) + x2(m

′)J0(
βdm′
a
ρ))e−ik

rd
zdm′Z b < ρ < a,

Atzn′ =

∞∑
n′=1

t′nJ0(
γ′n
a
ρ)eik

t
zn′Z ,

where
(krpzpm′)

2 = (Γp)
2 − (

βpm′

a
)2 = (krdzdm′)2 = (Γd2)2 − (

βdm′

a
)2.

In the above equations, n′ and m′ are the quantization of the reflected and
transmission wave from the second boundary z = L, respectively. In continue, by
using the boundary conditions in ρ = a and ρ = b in the region 0 < Z < L the
constant coefficients in the mentioned equations will be determined.

By using the continuity of the components of electric and magnetic fields on the
boundary surface between the plasma and dielectric ρ = b in the region 0 < Z < L,
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the coefficients x1(n), x2(n), x1(m′) and x2(m′) in the above equations can be
obtained as follows [7, 12]:

x2(n) = −x1(n)
H0

(1)(βdn)

J0(βdn)
, (3)

x2(m′) = −x1(m′)
H0

(1)(βdm′)

J0(βdm′)
,

x1(n) =
βpn
βdn

J1(βpn
b
a )J0(βdn)

H
(1)
1 (βdn

b
a )J0(βdn)−H(1)

0 (βdn)J1(βdn
b
a )
,

x1(m′) =
βpm′

βdm′

J1(βpm′
b
a )J0(βdm′)

H
(1)
1 (βdn

b
a )J0(βdm′)−H(1)

0 (βdm′)J1(βdm′
b
a )
,

where H(1)
1 and J1 are the Hankel function of the first kind of order one and Bessel

function of order one, respectively.
Also, in this region (0 < Z < L), the dispersion equation of the transmitted

wave from Z = 0 and reflected wave from Z = L are, respectively:

εd2
εp

J0(βpn
b
a )

H
(1)
0 (βdn

b
a )J0(βdn)−H(1)

0 (βdn)J0(βdn
b
a )

=

βdn
βpn

J1(βpn
b
a )

H
(1)
1 (βdn

b
a )J0(βdn)−H(1)

0 (βdn)J1(βdn
b
a )
, (4)

εd2
εp

J0(βpm′
b
a )

H
(1)
0 (βdm′

b
a )J0(βdm′)−H(1)

0 (βdm′)J0(βdm′
b
a )

=

βdm′

βpm′

J1(βpm′
b
a )

H
(1)
1 (βdm′

b
a )J0(βdm′)−H(1)

0 (βdm′)J1(βdm′
b
a )
, (5)

where εp = ε0(1− ω2
p

ω2 ) is the permittivity constants of the plasma in the cold and
collision less approximation. It must be mentioned that ω is the wave frequency
and ωp is the electron plasma frequency [1].

In continue, by using the Equations (2), (3), (4) and (5), the coefficients βpn,
βdn, βpm′ and βdm′ can be determined. It must be noted, to obtain these co-
efficients the condition b << a is used. Therefore, by extending the Equations
(2), (3), (4) and (5) in powers of b

a and equate the terms of the same orders, the
mentioned coefficients can be obtained [12], as

β
d

 n
m′

 =

(
γn
γm′

)
+
π

4

N0(

(
γn
γm′

)
)

J1(

(
γn
γm′

)
)

εd2 − εp
εd2

(

(
γn
γm′

)
)2(

b

a
)2,
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β
p

 n
m′

 =

√
(aΓp)2 − (aΓd2)2 + (

(
γn
γm′

)
)2

+
π

4

N0(

(
γn
γm′

)
)

J1(

(
γn
γm′

)
)

εd2 − εp
εd2

(

(
γn
γm′

)
)3√

(aΓp)− (aΓd2)2 + (

(
γn
γm′

)
)2

(
b

a
)2.

Finally, by applying the continuity condition of the components of electric and
magnetic fields on the boundaries z = 0 and z = L and using orthogonality of
the Bessel functions, the transmission and reflection coefficients of the reflected
and transmitted wave from boundaries z = 0 and z = L can be obtained in the
following form [2, 3]:

Rm = − γj
γm

δjm +
2

(J1(γm))2(γm)

[ ∞∑
n=1

Tn(Anm) +

∞∑
m′=1

rm′(Amm′)
]
,

t′n =
2

(J1(γn′))2(γn′)

[ ∞∑
n=1

Tn(gnn′) +

∞∑
m′=1

rm′ , (Hm′n′)
]
,

krzm(J1(γm))2γmδjm =

∞∑
n=1

Tn(Fnm) +

∞∑
m′=1

rm′(Em′m),

∞∑
n=1

Tn(Onn′) =

∞∑
m′=1

rm′(Pm′n′), (6)

where

Amn =
βpn
a

∫ b

0

J1(βpn
ρ

a
)J1(γm

ρ

a
)ρdρ

+

∫ a

b

(
x1(n)H

(1)
1 (

βdn
a
ρ) + x2(n)J1(

βdn
a
ρ)
)
× J1(γm

ρ

a
)ρdρ,

Fnm =
[βpn
a

∫ b

0

J1(βpn
ρ

a
)J1(γm

ρ

a
)ρdρ

] [
krzm + ktzn

εd1
εp

]
+
[βdn
a

∫ a

b

(
x1(n)H

(1)
1 (

βdn
a
ρ) + x2(n)J1(

βdn
a
ρ)
)
× J1(γm

ρ

a
)ρdρ

]
[
krzm + ktzn

εp
εd2

]
,

gnn′ =
[βpn
a

∫ b

0

J1(βpn
ρ

a
)J1(γn′

ρ

a
)ρdρ

+
βdn
a

∫ a

b

(
x1(n)H

(1)
1 (

βdn
a
ρ) + x2(n)J1(

βdn
a
ρ)
)
× J1(γ′n

ρ

a
)ρdρ

]
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ei(k
t
zn−k

t
zn′ )L,

Hm′n′ =
[βpm′

a

∫ b

0

J1(βpm′
ρ

a
)J1(γn′

ρ

a
)ρdρ

+
βdm′

a

∫ a

b

(
x1(m′)H

(1)
1 (

βdm′

a
ρ) + x2(m′)J1(

βdm′

a
ρ)
)
× J1(γ′n

ρ

a
)ρdρ

]
e−i(k

t
zm′−ktzn′ )L,

Onn′ =
( [βpn

a

∫ b

0

J1(βpn
ρ

a
)J1(γn′

ρ

a
)ρdρ

] [
(
εd1
εd2

)krzn + ktzn′)
]

+
[βdn
a

∫ a

b

(
x1(n)H

(1)
1 (

βdn
a
ρ) + x2(n)J1(

βdn
a
ρ)
)
× J1(γ′n

ρ

a
)ρdρ

]
[
(
εd1
εd2

)krzn + ktzn′

] )
× ei(k

t
zn−k

t
zn′ )L,

Pm′n′ =
( [βpm′

a

∫ b

0

J1(βpm′
ρ

a
)J1(γn′

ρ

a
)ρdρ

] [
(
εd1
εp

)krzm′ + ktzn′)
]

+
[βdm′

a

∫ a

b

(
x1(m′)H

(1)
1 (

βdm′

a
ρ) + x2(m′)J1(

βdm′

a
ρ)
)
× J1(γ′n

ρ

a
)ρdρ

]
[
(
εd1
εp

)krzm′ + ktzn′

] )
× ei(k

t
zm′−ktzn′ )L.

By solving the set of the coupled Equation (6), the reflection and transmission
coefficients of the reflected and transmitted waves from z = 0 and z = L are
obtained. The results of solving the above equations report that the mentioned
coefficients are the function of geometry dimensions, incident wave frequency and
type of the plasma in the plasma valve. Because of the transverse anisotropy in this
problem to apply the boundary conditions, the induced dipoles on the dielectric-
plasma interface cause radiation to propagate in either direction. Therefore, the
mathematical relation of a field in transient and reflective waves cannot contain
only one function. As mentioned in the manuscript, the reflected and transmitted
waves are considered as an infinite series of eigen modes based on mode matching
technique. Since, the solutions of the wave equations for the reflected and trans-
mitted waves are obtained as specific functions with different arguments, therefore
for one incident mode in quantum j, the existence of only one reflected mode and
one transmission mode cannot be satisfied the boundary conditions on z = 0 and
z = d. Therefore, the presence of other mode must be necessary to satisfy the
boundary conditions.

The transmission coefficients of the final transmitted wave from the plasma
valve (transmitted waves from the boundary z = L) have an important role in
control and filtering of the waves in this instrument. In continuum the dependence
of this coefficient to the properties of the structure, will be investigated in the next
section.
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Figure 2: The magnitude of the transmission coefficients of the dominate modes
(n′ = 1) and first produced mode (n′ = 2) of the final transmitted wave versus the
length of the plasma valve and the incident wave frequency.

3. Numerical Results and Discussion

In this section, the computer simulation results of the transmission coefficients of
the output wave from the plasma valve (tn′) are presented and discussed. The
numerical computations have been done by Maple software of version 10. The
input data are as follows:

a = 1cm, b = 0.02a, εd1 = 2.4ε0, εd2 = 9ε0, ωp = 6 × 1011Hz, j = m = n′ =
m′ = 1.

Figure 2, shows the magnitude of the transmission coefficients of the dominate
modes (n′ = 1) and first produced mode (n′ = 2) of the final transmitted wave
from the plasma versus the length of the plasma valve. The variations of the
transmission coefficients of all modes in terms of the incident frequency wave are
shown by the colored graphs in the mentioned diagrams.

As can be seen, by increasing the incident wave frequency, the magnitude of
the transmission coefficients of both modes are decreased. Physically, this plasma
valve behavior can be explained and interpreted based on the theory of permissi-
ble modes in Fabry-Prote resonators. As we can see in Figure 2, by changing the
length of the plasma valve (open plasma resonator), the transmission coefficient
of all modes reach their minimum values at certain lengths. It should be noted
that, in this case, we are not dealing with a completely closed plasma resonator.
As we know, in ideal electromagnetic resonators which are considered in a com-
pletely closed volume, the resonance frequencies are a function of all the geometric
dimensions of the resonator in all degrees of freedom. However, in this paper it
should be noted that the plasma valve is connected to the semi-bound waveguides
in two ways and the volume of the plasma resonator is an open volume. Since the
plasma rod is assumed to be almost non-washable, the minimum points for the
coefficients of passage in each mode in Figure 2 are not dependent on the length
of the plasma valve.

Figure 3, shows the magnitude of the transmission coefficients of the dominate
modes (n′ = 1) and first produced mode (n′ = 2) of the final transmitted wave
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Figure 3: The magnitude of the transmission coefficients of the dominate modes
(n′ = 1) and first produced mode (n′ = 2) of the output wave from the plasma,
the radius of the plasma valve and the incident wave frequency.

Figure 4: The magnitude of transmission coefficients of dominate modes (n′ = 1)
and first produced mode (n′ = 2) of the final transmitted wave versus the plasma
frequency and the incident wave frequency.

versus the radius of the plasma rod. The characteristic of colored graphs is the
same as the Figure 2. In the mentioned diagrams, the length of the plasma valve
is considered L = 0.4cm. As it can be shown, by increasing the radius of the
plasma rod, the magnitude of the transmission coefficient of the dominate mode is
decreased and the magnitude of the transmission coefficient of the produced mode
is increased. Also, these graphs confirm decreasing the magnitude of transmission
coefficients of all modes with increasing of the incident wave frequency.

Figure 4 shows the effect of plasma electric carrier density on transmission
coefficients. The graphs of magnitude of variations of transmission coefficients for
dominate modes (n′ = 1) and the first produced mode (n′ = 2) in final transmitted
wave versus the variation of plasma frequency are presented in Figure 4. The
colored graphs in this figure are also the same as the Figure 2. It shows that by
increasing the plasma frequency, the magnitude of the transmission coefficient of
the dominate mode is increased and the magnitude of the transmission coefficient
of the produced mode is decreased.
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4. Summary and Conclusion

In this work, the presence of a plasma valve in the path of an infinite waveg-
uide with a cylindrical cross section was discussed. The plasma valve consisted
of a plasma rod located in the center of a metal-walled dielectric waveguide. The
calculations of transmission and reflection coefficients were performed on the as-
sumption that the plasma rod is in the non-collision cold approximation. By
injecting a downward wave from the left side of the plasma valve, and solving
the equations of electromagnetic fields in symmetric modes of type TM, it was
observed that the presence of system boundaries and the interaction of waves with
them can create new modes with new quantities for passing and reflecting waves.
The general vector potential solution was presented in different areas and after
applying the appropriate boundary conditions, the pass and reflection coefficients
for the final reflective waves and the final passing waves were obtained. It was
shown that the mentioned coefficients were function of geometry dimensions, in-
cident wave frequency and density of plasma valve. The graphs of the magnitude
of the transmission coefficient of the final transmitted wave versus the mentioned
quantities have been investigated. It was shown that at a constant frequency for
the incident wave, the variations in the transmittance of the final waves in terms
of variations in the length of the plasma valve are periodic and in some value of
plasma valve length have a minimum value and in some value of plasma valve
length have a maximum value.

Appendix

In this section, the law of conservation of energy in this configuration are inves-
tigated. As we know, the superposition rule for physical quantities is valid when
the governing differential equations of them mentioned quantity, to be linear. This
means that the linear combination of possible solutions of differential equation is
also the solution of the differential equation. Since each of the electric field (E),
the magnetic field(B) and the vector potential of an electromagnetic wave will be
satisfied in the linear Maxwell’s equations, therefore, in each point of space, the
electric fields of waves in different modes can be combined with each other, and
so for the magnetic field and vector potentials of the waves in different modes can
be combined with each other [3, 18]. For a parameter such as the poynting vector
which is derived from the product of two vectors H and E, it is obvious that the
governing differential equation of the poynting vector is not linear because, it is
obtained from the product of the two vectors H and E. In some cases, that the
electromagnetic waves are propagated in different modes simultaneously, the total
electric field and the total magnetic field can be obtained with the superposition
rule in each point and the poynting vector will be introduced by the product of
total vector H and total vector E in that point. This is also valid in configura-
tions that include bouncing and return waves, which is fully cited in each of the
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following references to address the issue of energy survival theorem. Therefore, it
should be noted that in our manuscript the relationship of energy conservation is
established on z = 0 and z = d and the energy conservation theorem is described
by the following:

[( ∞∑
n=1

−→
E n

)
×
( ∞∑
n=1

(
−→
Hn

)]
z=0

=
[( ∞∑

m=1

−→
Em

)
×
( ∞∑
m=1

−→
Hm

)]
z=0

+
[−→
E j ×

−→
H j

]
z=0

[( ∞∑
n=1

−→
E n

)
×
( ∞∑
n=1

(
−→
Hn

)]
z=d

+
[( ∞∑

m′=1

−→
Em′

)
×
( ∞∑
m′=1

−→
Hm′

)]
z=d

=
[( ∞∑

n′=1

−→
E n′

)
×
( ∞∑
n′=1

−→
Hn′

)]
z=d

.
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