Original Scientific Paper

Efficient Generation 1.5THz Pulses Using DASC/GaAs and DASB/GaAs Multilayer Structures via Difference Frequency Generation

 $1.5 \ \mu m$ Femtosecond Laser Pulses

Maryam Kashani and Hamid Reza Zangeneh *

Abstract

We present a study of high efficient terahertz (THz) wave generation in DASB/GaAs, DASC/GaAs and DAST/GaAs multilayer structures at 1.5THz via difference frequency generation (DFG) process with $1.5\mu m$ femtosecond laser pulses. We also compare the conversion efficiency in proposed structures with $DASB/SiO_2$, $DASC/SiO_2$ and $DAST/SiO_2$ multilayer structures and bulk crystals DASB, DASC and DAST. These structures compensate for phase mismatching in bulk crystals DASB, DASC and DAST and increase conversion efficiency from 10^{-5} in bulk organic crystals up to 10^{-3} in multilayer structures. We show that DASC/GaAs is the best structure to generate 1.5THz waves.

Keywords: terahertz waves (THz), difference frequency generation (DFG), nonlinear susceptibility, multilayer structure, organic crystals.

2020 Mathematics Subject Classification: 78A50, 78A60, 78M15.

How to cite this article

M. Kashani and H. R. Zangeneh, Efficient generation 1.5THz pulses using DASC/GaAs and DASB/GaAs multilayer structures via difference frequency generation 1.5 μm femtosecond laser pulses, *Math. Interdisc. Res.* 7 (2022) 239 - 248.

* Corresponding author (Email: hrzangeneh@kashanu.ac.ir)
 Academic Editor: Majid Monemzadeh
 Received 11 July 2021, Accepted 15 August 2022
 DOI: 10.22052/mir.2022.242950.1296

©2022 University of Kashan

E This work is licensed under the Creative Commons Attribution 4.0 International License.

1. Introduction

The tunable coherent terahertz (THz) sources are the important devices for imaging and time-domain spectroscopy (TDS) applications [13]. Recently, high power ultra-short waves with average frequency below 1.5THz have been generated via optical rectification of femtosecond laser pulses with tilted pulse fronts in lithium niobate $(LiNbO_3)$ crystal. But attempts for utilizing this method to generate laser pulses with frequencies higher than 1.5THz lead to decreases in THz efficiency owing to increases in THz absorption in this material [11]. High efficiency pump-to-THz conversion to generate the frequency range between 1 till 10THz, using DFG in organic salt crystals 4-dimethylamino-N'-methyl-4'-stilbazolium p-chlorobenzenesulfonate (DASC), 4-dimethylamino-N'-methyl-4'-stilbazolium pbromobenzenesulfonate (DASB), 4-dimethylamino-N'-methyl-4'-stilbazolium tosylate (DAST), 2-{3-(4-hydroxystyryl)-5, 5-dimethylcyclohex-2-enylidene} malononitrile (OH1), 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium 2,4,6trimethylbenzenesulfonate (DSTMS) have been established [6, 12, 13]. Multilayer structure $DAST/SiO_2$ has been proposed before to generate quasi-single-cycle pulses with average frequency 6THz by DFG femtosecond 800 nm laser pulses [10]. Here, we consider generation of 1.5THz pulses via DFG femtosecond $1.5\mu m$ laser pump in multilayer structures DASB/GaAs, DASC/GaAs, DAST/GaAs, $DASB/SiO_2$, $DASC/SiO_2$ and $DAST/SiO_2$ and compare their THz efficiencies with each other. The reason for utilizing pump laser with an average wavelength of $1.5\mu m$ for generating THz pulses is low absorption of pump waves and almost perfect phase matching in these materials.

Figure 1: Multilayer structure of DASC/GaAs.

2. Theory and Modeling

Many of stilbazulium salts have been established as high nonlinear optical crystals. Organic crystal DAST has large second-order optical nonlinearity (d_{11} =

Efficient Generation 1.5THz Pulses Using DASC/GaAs and DASB/GaAs Multilayei241

290pm/Vat1542nm [13]). For this reason, it is a very attractive material in nonlinear research and its applications [7]. Having high second-order susceptibility and velocity matching between pump waves and THz pulses in crystals are important factors for selecting crystals as THz sources [3]. But another important factors to increase the figure of merit (FM) for efficiently generating THz waves is low absorption in THz region [8]. Hence, some of stillbaulium salts with low THz absorption coefficient compared to DAST are more attractive as THzsources. DASC and DASB are DAST's derivatives with an ability to generate THz waves more efficiently than DAST [7]. DASB, DASC and DAST have approximately the same value of second - order optical nonlinearity as a result of similar structure. But, DASC and DASB have lower THz absorption coefficients than DAST. Thus, they have higher transmittance and THz output power compared with DAST. Moreover, the FMs of DASC and DASB are nearly twice that of DAST [7, 8, 9]. The absorption coefficients of DAST and DASB crystals at 1.5THz are equal to $115cm^{-1}$ and $80cm^{-1}$, respectively [2, 7], whereas the absorption coefficient of DASC at THz region is equal to $10cm^{-1}$ [8, 9]; therefore, it is expected that the FM of DASC is higher than that of DAST and DASB. Figure 2 shows that DASC, DASB and DAST crystals have the same value of THz refractive index.

Figure 2: THz refractive index of DASC, DASB and DAST crystals.

These curves have been calculated using:

$$T = \frac{16n_{THz}^2}{(n_{THz} + 1)^4} e^{-\alpha_{THz}z},$$

0

where T stands for transmittance, α_{THz} and n_{THz} are absorption coefficient and refractive index in THz region respectively, and z is the crystal thickness [7, 8, 9]. We can estimate that due to having the same molecule structure and symmetry versus axis, the group refractive indexes in DASC, DASB and DAST crystals have approximately the same value. We have used these crystals in multilayer structures DASB/GaAs, DASC/GaAs, DAST/GaAs, DASB/SiO₂, DASC/SiO₂ and DAST/SiO₂ to generate 1.5THz waves by DFG of two pump pulses with an average wavelength of 1.5 μm . Multilayer structures have been designed to compensate for phase mismatching that accompanies the generation of THz pulses in DASC, DASB, DAST [10]. The group refractive index of DAST at 1.5 μm ($n_g^{DAST} = 2.26[1]$) is higher than THz refractive index at 1.5THz ($n_T^{DAST} = 2[2]$) whereas in GaAs [4]:

$$n_a^{GaAs}(1.5\mu m) = 3.52 < n_T^{GaAs}(1.5THz) = 3.6.$$

In quartz in the same wavelength region for ordinary ray we have [4, 5]:

$$n_g^{0-quartz}(1.5\mu m) = 1.46 < n_T^{quartz}(1.5THz) = 2.1 - 2.2.$$

In fact, the aim of using these structures is to generate near- single- cycle pulses [10]. We use GaAs and SiO_2 layers to remove phase mismatching that appears in organic crystals. GaAs is a nonlinear media ($d_{14}^{GaAs} = 46.1 pm/V$ [14]), therefore this crystal acts as a THz source and in addition to compensating for phase mismatching, it can help to generate and increase intensity of THz waves and lead to increases in efficiency.

$$-\nabla^2 \tilde{E}_T + \frac{\epsilon^{(1)}}{c^2} \frac{\partial^2 \tilde{E}_T}{\partial t^2} = -\frac{4\pi}{c^2} \frac{\partial^2 \tilde{P}_T^{NL}}{\partial t^2},\tag{1}$$

where \tilde{E}_T and \tilde{P}_T^{NL} are the electric field of THz and nonlinear polarization of the THz wave, respectively, and $\epsilon^{(1)}$ is the dielectric constant. \tilde{E}_T and \tilde{P}_T^{NL} are described by the following equations:

$$\tilde{P}_T = P_T e^{-i\omega_T t},\tag{2}$$

$$P_T = 4d_{eff} E_1 E_2^\star,\tag{3}$$

$$E_1 = A_{p_1} e^{-ik_1 z} e^{\frac{\alpha_1}{2} z},$$
(4)

$$E_{2}^{\star} = A_{p_{2}}^{\star} e^{ik_{2}z} e^{\frac{\alpha_{2}}{2}z}.$$
 (5)

By substituting Equations (2-5) in (1) and solving differential equation, we derive the equation that describes amplitude of THz waves [15]:

$$\frac{dA_T}{dz} = -\frac{\alpha_T}{2}A_T - i\frac{8\pi\omega_T}{n_T c}d_{eff}A_{p_1}A_{p_2}^{\star}e^{-i\Delta kz},\tag{6}$$

where A_T , A_{p_1} and A_{p_2} are imaginary amplitudes of THz and laser pump waves respectively. Also α_T and n_T are absorption coefficient and refractive index of THz wave at ω_T frequency respectively. d_{eff} is the coupling constant; and $\Delta k = k_1 - k_2 - k_T$ propagation vector mismatching in organic crystals. By solving Equation (6):

$$A_T = -i\frac{8\pi\omega_T d_{eff} A_{p_1} A_{p_2}^*}{n_T c(\alpha_T/2 - i\Delta k)} e^{-i\Delta kL} + A_i e^{-\frac{\alpha_T}{2}L},$$
(7)

where A_i is integration constant for one layer. By solving Equation (6) for the first layer we have

$$A_{T} = -i\frac{8\pi\omega_{T}d_{eff}A_{p_{1}}A_{p_{2}}^{\star}}{n_{T}c(\alpha_{T}/2 - i\Delta k)}e^{-i\Delta kL} + i\frac{8\pi\omega_{T}d_{eff}A_{p_{1}}A_{p_{2}}^{\star}}{n_{T}c(\alpha_{T}/2 - i\Delta k)}e^{-\frac{\alpha_{T}}{2}L},$$
(8)

and for the second layer

$$A_T = i \frac{8\pi\omega_T d_{eff} A_{p_1} A_{p_2}^*}{n_T c(\alpha_T/2 - i\Delta k)} (e^{-\frac{\alpha_T}{2}L_1} - e^{-i\Delta kL_1}) e^{-\alpha_q(L_1 - L_2)}/2.$$
(9)

By using

$$\eta = \frac{P_{THz}(L)}{P_{optical}(0)},\tag{10}$$

for THz wave we have

$$\eta = \frac{128\pi^3 \omega_T^2 d_{eff}^2 I}{n_1 n_2 n_T^2 c^3 (\frac{\alpha_T^2}{4} + \Delta k^2)} [1 - e^{(-\frac{\alpha_T}{2} - i\Delta k)L} - e^{(-\frac{\alpha_T}{2} + i\Delta k)L} + e^{-\alpha_T L}], \quad (11)$$

where I is laser pump intensity, n_1 and n_2 are the refractive indexes of first and second laser pumps, respectively. Using equation below, we can estimate thickness ratios of layers to obtain full phase-mismatch compensation

$$t_g^{organic\ layer} + t_g^{quartz\ layer} = t_{THz}^{organic\ layer} + t_{THz}^{quartz\ layer},$$
(12)

where t_g and t_{THz} are times of propagation of optical and THz waves in organic and quartz layers, respectively.

$$\frac{1}{v_g^{organic\ crystal}} + \frac{\beta}{v_g^{quartz}} = \frac{1}{v_{THz}^{organic\ crystal}} + \frac{\beta}{v_{THz}^{quartz}},\tag{13}$$

$$\beta = \frac{v_{THz}^{quartz} v_g^{quartz} (v_{THz}^{organic\ layer} + v_g^{organic\ layer})}{v_{THz}^{organic\ layer} v_g^{organic\ layer} (v_g^{quartz} - v_{THz}^{quartz})},\tag{14}$$

where v_g and v_{THz} are group velocity in quartz layer and THz velocity in organic crystal layer, respectively; and β is the thickness ratio of quartz layer to organic crystal layer [15].

3. Results and Discussion

All of multilayer structures consist of 5 organic and 4 inorganic layers. Reflection from boundaries and phase matching are major factors in determining the number of layers and to obtain maximal efficiency. Gradually decreasing the thickness of organic and inorganic layers causes the best phase matching between optical and the THz waves and hence grater conversion efficiency. In fact, we can prevent THz absorption in deference layers by a smooth decrease in thickness of layer. The thickness values of layers in the structures under study have been summarized in Figure 5. In multilayer structures DASC/GaAs, DASB/GaAs and DAST/GaAs that have been proposed for generating 1.5THz waves, GaAs layers for obtaining complete phase matching have to be thicker than DASC, DASB and DASTlayers by a factor of 1.1; and the thickness ratios of layers in $DASC/SiO_2$ and $DASB/SiO_2$ structures which were proposed to generate 1.5THz waves are 1.1. But in the $DAST/SiO_2$ at this frequency, DAST and SiO_2 layers have the same thickness. Reflection of optical waves and THz waves from common surface in DASC, DASB and DAST/GaAs structures is 1.6% and 8.41% respectively, and reflection from the air and organic crystals is 5.07%. These same values in DASC, DASB and $DAST/SiO_2$ structure are 1.9% and 0.23%, respectively.

THz generation efficiency as a function of distance in bulk DASC, DASB and DAST crystals and multilayer structures have been shown in Figures 3 and 4.

Figure 3: THz conversion efficiency in bulk DASC, DASB and DAST at 1.5THz.

Figure 4: THz efficiency in multilayer Str. DASC/GaAs, DASB/GaAs, DAST/GaAs, $DASB/SiO_2$, $DASC/SiO_2$ and $DAST/SiO_2$ at 1.5THz.

We can see that bulk DASC shows higher efficiency than DASB and DAST due to its lower THz absorption. Figure 4 shows that DASC/GaAs multilayer structure has a higher efficiency than all other structures, because GaAs is a nonlinear medium; hence it is known as a source of THz waves and therefore increasing optical-to-THz conversion efficiency, but SiO_2 is a linear medium and only fixes the conversion efficiency.

4. Conclusion

In this numerical study, we have presented multilayer structures for generating single-cycle 1.5THz pulses via DFG process at $1.5 \ \mu m$ femtosecond optical waves because these structures are more efficient than bulk crystals. In this wavelength, phase matching is almost perfect and absorption of pump waves is low. GaAs and SiO_2 layers prevent decrease in efficiency in multilayer structures in spite of phase mismatching in bulk organic crystals. GaAs is a source of THz generation therefore it increases laser-to-THz energy conversion efficiency whereas SiO_2 fixes conversion efficiency and also DASC crystal has lower absorption at 1.5THz than DASB and DAST crystals. Hence among all of alternating structures, conversion efficiency of DASC/GaAs structure is higher than other multilayer structures. In addition multilayer structures are a new trend to generate high efficient THz pulses with an average frequency below 2 THz which was difficult to obtain previously.

DASC/SiO₂ at 1.5THz

Thickness

(µm)

70

80

65.7

75.48

67 73.7

66

72.6

65

Material

DASC

 SiO_2

DASC

 SiO_2

DASC

 ${\rm SiO}_2$

DASC

SiO₂

DASC

	DASB/SiO ₂ at 1.5THz		
Layer number	Material	Thickness (µm)	Layer number
1	DASB	70	1
2	SiO ₂	80	2
3	DASB	65.7	3
4	SiO ₂	75.48	4
5	DASB	67	5
6	SiO ₂	73.7	6
7	DASB	66	7
8	SiO ₂	72.6	8
9	DASB	65	9

	DAST/SiO ₂ at 1.5THz		TBC(DAST, DASB, DASC)/ <u>GaAs</u> at 1.5THz		
Layer number	Material	Thickness (μm)	Layer number	Material	Thickness (µm)
1	DAST	70	1	TBC	70
2	SiO ₂	70	2	GaAs	80
3	DAST	75	3	TBC	65.7
4	SiO_2	76	4	GaAs	75.48
5	DAST	67	5	TBC	67
6	SiO ₂	67	6	GaAs	73.7
7	DAST	66	7	TBC	66
8	SiO_2	66	8	GaAs	72.6
9	DAST	65	9	TBC	65

Figure 5: Thicknesses of layers in studied structures at 1.5THz.

Conflicts of Interest. The authors declare that there are no conflicts of interest regarding the publication of this article.

References

- F. D. J. Brunner, O. -P. Kwon, S. -J. Kwon, M. Jazbinšek, A. Schneider and P. Günter, A hydrogen-bonded organic nonlinear optical crystal for highefficiency terahertz generation and detection, *Opt. Express* 16 (21) (2008) 16496 - 16508.
- [2] P. D. Cunningham and L. Michael Hayden, Optical properties of DAST in the THz range, Opt. Express 18 (23) (2010) 23620 – 23625.
- [3] C. Hunziker, S. -J. Kwon, H. Figi, F. Juvalta, O. -P. Kwon, M. Jazbinsek and P. Gunter, Configurationally locked, phenolic polyene organic crystal 2-{3-(4hydroxystyryl)-5,5-dimethylcyclohex-2-enylidene} malononitrile: linear and nonlinear optical properties, J. Opt. Soc. Am. B 25 (10) (2008) 1678-1683.
- [4] Y. -S. Lee, *Principles of Terahertz Science and Technology*, Springer New York, NY, USA, 2008.
- [5] I. H. Malitson, Interspecimen comparison of the refractive index of fused silica, J. Opt. Soc. Am. 55 (10) (1965) 1205 - 1208.
- [6] T. Matsukawa, Y. Mineno, T. Odani, S. Okada, T. Taniuchi and H. Nakanishi, Synthesis and terahertz-wave generation of mixed crystals composed of 1methyl-4-2-[4-(dimethylamino)phenyl]ethenyl pyridinium p-toluenesulfonate and p-chlorobenzenesulfonate, J. Crystal Growth 299 (2) (2007) 344 – 348.
- [7] T. Matsukawa, T. Notake, K. Nawata, S. Inada, S. Okada and H. Minamide, Terahertz-wave generation from 4-dimethylamino-N'-methyl-4'-stilbazolium p-bromobenzenesulfonate crystal: Effect of halogen substitution in a counter benzenesulfonate of stilbazolium derivatives, *Opt. Mater.* **36** (12) (2014) 1995 – 1999.
- [8] T. Matsukawa, Y. Yoshida, A. Hoshikawa, S. Okada and T. Ishigaki, Neutron crystal structure analysis of stilbazulium derivatives for terahertz-wave generation, *CrystEngComm* 17 (13) (2015) 2616 – 2619.
- [9] T. Matsukawa, M. Yoshimura, Y. Takahashi, Y. Takemoto, K. Takeya, I. Kawayama, S. Okada, M. Tonouchi, Y. Kitaoka, Y. Mori and T. Sasaki, Bulk crystal growth of stilbazolium derivatives for terahertz waves generation, *Jpn. J. Appl. Phys.* 49 (7R) (2010) 075502.
- [10] A. G. Stepanov, L. Bonacina and J. -P. Wolf, DAST/SiO₂ multilayer structure for efficient generation of 6THz quasi-single-cycle electromagnetic pulses, Opt. Letters 37 (13) (2012) 2439 – 2441.
- [11] A. G. Stepanov, A. Rogov, L. Bonacina, J. -P. Wolf and C. P. Hauri, Tailoring single-cycle electromagnetic pulses in the 2-9 THz frequency range using

 $DAST/SiO_2$ multilayer structures pumped at Ti: sapphire wavelength, *Opt.* Express **22** (18) (2014) 21618 - 21625.

- [12] A. G. Stepanov, C. Ruchert, J. Levallois, C. Erny and C. P. Hauri, Generation of broadband THz pulses in organic crystal OH1 at room temperature and 10 K, Opt. Mater. Express 4 (4) (2014) 870 – 875.
- [13] T. Taniuchi, S. Ikeda, Y. Mineno, S. Okada and H. Nakanishi, Terahertz properties of a new organic crystal, 4'-Dimethylamino-N-methyl-4-stilbazolium p-Chlorobenzenesulfonate, Jpn. J. Appl. Phys. 44 (7L) (2005) L932 – L934.
- [14] K. L. Vodopyanov, Optical THz-wave generation with periodically-inverted GaAs, Laser & Photon. Rev. 2 (1-2) (2008) 11 – 25.
- [15] H. R. Zangeneh and M. Kashani, Generation of high efficient quasi-singlecycle 3 and 6 THz pulses using multilayer structures $OH1/SiO_2$ and $DSTMS/SiO_2$, Math. Interdisc. Res. 3 (1) (2018) 1 - 13.

Maryam Kashani Department Photonics and Plasmas, Faculty of Physics, University of Kashan, Kashan, I. R. Iran e-mail: mkashani@grad.kashanu.ac.ir

Hamid Reza Zangeneh Department Photonics and Plasmas, Faculty of Physics, University of Kashan, Kashan, I. R. Iran e-mail: hrzangeneh@kashanu.ac.ir