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Abstract

This study concentrated on the numerical solution of a nonlinear Volterra
integral equation. The approach is accorded to a type of orthogonal wavelets
named the Chebyshev cardinal wavelets. The undetermined solution is ex-
tended concerning the Chebyshev cardinal wavelets involving unknown co-
efficients. Hence, a system of nonlinear algebraic equations is drawn out by
changing the introduced expansion to the predetermined problem, applying
the generated operational matrix, and supposing the cardinality of the basis
functions. Conclusively, the estimated solution is achieved by figuring out
the mentioned system. Relatively, the convergence of the founded procedure
process is reviewed in the Sobolev space. In addition, the results achieved
from utilizing the method in some instances display the applicability and
validity of the method.
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1. Introduction
Integral equations of numerous kinds exist in different majors and subfields of sci-
ence and engineering. Analytical and numerical study of integral equations (IEs)
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has been widely considered by researchers [3, 19, 38]. To achieve the solution of
IEs, various basis functions are presented. The widely used methods are based on
piecewise constant basis functions (PCBF) [34], Chebyshev polynomial [17] wavelet
methods [9,49], radial basis functions (RBFs) [4,5], Toeplitz matrix method [2], the
linear multistep method [28] and the triangular function method [31]. Also, with
the achievement and success of creating generalized metric spaces and the results
obtained from it, it can be mentioned that the metric fixed point theory has been
of interest to researchers and has been applied to solve IEs [1,40]. Some of the men-
tioned methods are just useable to linear IEs during which others are applicable to
specific cases of nonlinear IEs. The demand to progress an approach that is possible
to be extended to a general kind of nonlinear IEs is considered to be vital in order
to reach a single platform to be used for the numerical solution of such types of
problem. In this study, we provide a new procedure based on the Chebyshev cardi-
nal wavelets (ChC wavelets) that is planned for general types of nonlinear Volterra
IEs. The introduction of the Haar function was the prelude to the beginning of
the wavelet theory in 1910 [14]. The use of wavelets has achieved significance in
the last three decades. They have vast applications in scientific computing, and
also they have been widely applied in numerical estimation in the recent research.
It is extensively related to the fact that wavelets cause a natural mechanism for
decomposing the solution into a set of coefficients, that rely on scale and loca-
tion. Based on this speciality, the proportion of wavelets for numerical estimation
stays undisputed. Many researchers have utilized numerous methods in applying
wavelets to numerical estimations such as the wavelet collocation method [44],
the wavelet Galerkin method [27], and the wavelet meshless method [30]. The
researchers have utilized wavelets for numerical integration [6,43], and for numer-
ical solutions of IEs [9,49], integro-differential equations [41], ordinary differential
equations [15], fractional differential equations [37, 39], partial differential equa-
tions [35] and fractional partial differential equations [26, 47]. These approchs
include different kinds of wavelet. The instances involve Daubechies [16], Battle-
Lemarie [50], B-spline [15], Chebyshev [8,11], Coifman [32], CAS [41], Legendre [45]
and Haar wavelets [13]. Numerous kinds of wavelet have participated for numer-
ical solution of various types of IE. These involve Haar [7, 9, 29], Legendre [49],
trigonometric [18], CAS [48], Chebyshev [11], and Coifman [32] wavelets.

In the present paper, while using the ChC wavelets, we keep this in mind
that the ChC wavelets include numerous significant belongings, like orthogonality,
cardinality and spectral accuracy. Due to the mentioned properties, it is con-
sidered as a candidate for a set of powerful basis functions in the approximation
theory. In addition, both the wavelet features and the ChC polynomial are con-
currently collected in the ChC wavelets. These wavelets have been used in [42]
for solving nonlinear constrained optimal control problems. The key supremacy
of the wavelets in comparison with other popular ones mentioned above is their
cardinality. The cardinality feature rescues us from calculating integrals which
often arise in obtaining the coefficients of the ChC wavelets expansion of a func-
tion. Actually, the aimed coefficients are acquired by calculating the values of
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the considered function at some grid points, which are also used in producing
the wavelets [20, 21, 23, 24]. According to this feature, the nonlinear terms in the
studied problems are calculated efficiently. This study deals with the numerical
solution of nonlinear Volterra IE of second kind, which is as follows:

y(z) = g(z) +

∫ z

0

K(z, t)G(t, y(t))dt, z ∈ [0, 1]. (1)

A general form of Equation (1) is considered as follows:

y(z) = g(z) +

∫ z

0

K(z, t, y(t))dt, z ∈ [0, 1], (2)

where g(z) is a known function defined on [0, 1] also K(z, t, y(t)) is a nonlinear
function belonging to [0, 1] × [0, 1] × R, and y(z) is the unknown function to be
computed.

The outline of the paper is as follows: In Section 2, properties of the ChC
wavelets are described. Section 3 belongs to description of the proposed method.
In Section 4, we explain the convergence analysis. Numerical examples of our
study is presented in Section 5, and at the end, the conclusion is presented in
Section 6.

2. Properties of the ChC Wavelets

The ChC wavelets are evaluated in summary, and focused properties are reported
in this unit.

2.1 The ChC Wavelets

According to the process of building orthogonal polynomial wavelets that is stated
in [22], we are able to explain the ChC wavelets over [0, 1] as follows:

ϕ̂rs (z) =

{√
2S
π 2

k
2Cs(2

k+1z − 2r + 1), r−1
2k ≤ z < r

2k ,

0, otherwise,
(3)

where k ∈ R ∪ {0}, z is an independent variable defined on [0, 1], r = 1, 2, . . . , 2k

and Cs is the ChC function of order s. Notice that the coefficient
√

2S
π is applied

for normalizing. The set {ϕ̂rs(z)|r = 1, 2, . . . , 2k, s = 1, 2, . . . , S, S ∈ R} produces
an orthonormal basis for L2

wr
[0, 1], i.e.

〈ϕ̂rs(z), ϕ̂r′s′(z)〉wr
=

∫ 1

0

ϕ̂rs(z)ϕ̂r′s′(z)wr(z)dz =

{
1, (r, s) = (r′, s′),

0, (r, s) 6= (r′, s′),
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where

wr(z) =

{(
1− (2k+1z − 2r + 1)2

)− 1
2 , r−1

2k ≤ z < r
2k ,

0, otherwise.
(4)

By applying some simplifications, Equation (3) becomes as follows

ϕ̂rs (z) =


√

2S
π 2

k
2

S∏
l=1
l 6=s

(
z−γrl
γrs−γrl

)
, r−1

2k ≤ z < r
2k ,

0, otherwise,

(5)

in Equation (5) γrs = 1
2k+1 (λs+2r−1) for r = 1, 2, . . . , 2k and s = 1, 2, . . . , S, and

the values λs = − cos
(

(2s−1)π
2S

)
are the roots of the Chebyshev polynomial [12] of

order S defined on [−1, 1] for s = 1, 2, . . . , S.
To create a wavelet basis with interpolation property, we assume a modified

form of Equation (5) as follows:

ϕrs (z) =


S∏
l=1
l 6=s

(
z−γrl
γrs−γrl

)
, r−1

2k ≤ z < r
2k ,

0, otherwise.

We remind that the set {ϕrs(z)|r = 1, 2, . . . , 2k, s = 1, 2, . . . , S, S ∈ R} constructs
an orthogonal basis due to the weight function wr(z) for L2

wr
[0, 1] and

〈ϕrs(z), ϕr′s′(z)〉wr
=

∫ 1

0

ϕrs(z)ϕr′s′(z)wr(z)dz =

{
π

S2k+1 , (r, s) = (r′, s′),

0, (r, s) 6= (r′, s′).

2.2 Approximating a Function of a Variable
A function y(z) ∈ L2

wr
[0, 1] may be estimated by the ChC wavelets as follows:

y(z) '
2k∑
r=1

S∑
s=1

crsϕrs(z) = CTΦ(z), (6)

where

C = [c11, c12, . . . , c1S |c21, c22, . . . , c2S | . . . |c2k1, c2k2, . . . , c2kS ]T ,

Φ(z) = [ϕ11(z), ϕ12(z), . . . , ϕ1S(z)|ϕ21(z), . . . , ϕ2S(z)| . . . |ϕ2k1(z), . . . , ϕ2kS(z)]T

(7)

and
crs = y(γrs), r = 1, 2, . . . , 2k, s = 1, 2, . . . , S.

As it is known, crs are the entries of vector C.
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2.3 Approximating a Function of Two Variable
Suppose y(z, t) is a function of two variables defined over the interval z ∈ [0, 1]
and t ∈ [0, 1], then y(z, t) can be extended as following,

y(z, t) ' ΦT (z)YΦ(t).

The above statement is clarified by the following explanation:

Remark 1. Equation (6) can be shown in a simpler form as follows

y(z) '
ŝ∑
p=1

ypϕp(z) = YTΦ(z),

where ŝ = 2kS, yp = yrs and ϕp(z) = ϕrs for the index p = (r − 1)S + s.

For example, we have shown the function y(z) = sin(z) and its approximation
y(z) ≈ Y TΦ(z) for S = 2, k = 2 in Figure 1.

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

y(x)

Figure 1: The function sin(z) and its approximatin with the ChC wavelets for
S = 2, k = 2.

Remark 2. The ChC wavelets could be utilized to develop all kind of function
y(z, t) ∈ L2

wr.r′
([0, 1]× [0, 1])

y(z, t) '
ŝ∑
p=1

ŝ∑
q=1

y(zp, tq)ϕp(z)ϕq(t) = ΦT (z)YΦ(t), (8)

where ŝ = 2kS, Y = [ypq] and its elements are determined as ypq = y(zp, tq).

For example, the function y(z, t) = t − cos(10zt) and its approximations with
S = 3, k = 1 and S = 3, k = 2, are shown in Figures 2, 3 and 4, respectively.
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Figure 2: y(z, t) = t− cos(10zt).

Figure 3: y(z, t) ' ΦT (z)Y Φ(t) with S = 3, k = 1.
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Figure 4: y(z, t) ' ΦT (z)Y Φ(t) with S = 3, k = 2.

2.4 ChC Wavelets Operational Matrix
The operational matrix of integration of the ChC wavelets has been derived in [22].
The integration of the vector Φ(t) defined in Equation (7) can be obtained as∫ z

0

Φ(τ)dτ ' PΦ(z),

where P is an ŝ× ŝ operational matrix for integration and is given by

P =



W V V V . . . V

0 W V V . . . V

0 0
. . . . . . . . . V

...
...

. . . W V V

0 0 . . . 0 W V

0 0 0 . . . 0 W


ŝ×ŝ

. (9)

In Equation (9),W = [wij ] and V = [vij ] are S×S matrices, and their components
are obtained via using the relations below:

wij =
1

2k+1

∫ λj

−1

( S∏
l=1
l 6=i

( τ − λl
λi − λl

))
dτ, vij =

1

2k+1

∫ 1

−1

( S∏
l=1
l 6=i

( τ − λl
λi − λl

))
dτ.
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As an explanatory instance for k = 1, S = 2 and k = 1, S = 3 we have

P =


1
8 −

1
16
√

2
1
8 + 3

16
√

2
1
4

1
4

1
8 −

3
16
√

2
1
8 + 1

16
√

2
1
4

1
4

0 0 1
8 −

1
16
√

2
1
8 + 3

16
√

2

0 0 1
8 −

3
16
√

2
1
8 + 1

16
√

2


4×4

,

P =



1
18

− 1

32
√
3

1
18

+ 1

8
√
3

1
18

+
√
3

32
1
9

1
9

1
9

5
36

− 1

4
√
3

5
36

5
36

+ 1

4
√
3

5
18

5
18

5
18

1
18

−
√
3

32
1
18

− 1

8
√
3

1
18

+ 1

32
√
3

1
9

1
9

1
9

0 0 0 1
18

− 1

32
√
3

1
18

+ 1

8
√
3

1
18

+
√
3

32

0 0 0 5
36

− 1

4
√
3

5
36

5
36

+ 1

4
√
3

0 0 0 1
18

−
√
3

32
1
18

− 1

8
√
3

1
18

+ 1

32
√

3


6×6

.

3. The Proposed Computational Scheme
In order to search a solution using the ChC wavelets, at first, we will explain the
following theorem.

Theorem 3.1. Suppose T : [0, 1] × [0, 1] × R −→ R be a continuous real-valued
operation and Y TΦ(t) is an estimation of the function y(t) using the ChC wavelets.
Then we have

T (z, t, y(t)) ' ΦT (z)YΦ(t),

where Y = [ypq] and its elements are calculated as ypq = T (zp, tq, yq) for p =
1, 2, . . . , ŝ and q = 1, 2, . . . , ŝ.

Proof. The evidence is clear via assuming Equation (8).

The Theorem 3.1 and the outcome achieved for the ChC wavelets are applied in
order to figure out the issue shown in Equation (2). For this aim, the target solution
by the ChC wavelets with unknown coefficients is estimated. The cardinality of
the stated basic functions as well as the resulted operational matrix are applied for
converting the principal problem to an adaptive algebraic system of equations. An
answer is approximately acquired by resolving the resulted system and computing
the coefficients of the expansion by a sutiable approch. Due to that, consider this

y(z) ' Y TΦ(z), (10)

where Y is an ŝ-column vector which has the unknown coefficients and the vector
Φ(z) is supposed as in Equation (7).

The ChC wavelets are applied to state the function g(z) as

g(z) ' GTΦ(z), (11)
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whereas the coefficients of the ChC wavelets cover in the ŝ-column vector G.
Replacing Equations (10) and (11) into Equation (2), we have

Y TΦ(z) ' GTΦ(z) +

∫ z

0

K(z, t, Y TΦ(t))dt. (12)

In addition, using Theorem 3.1, leads to

K(z, t, Y TΦ(t)) ' ΦT(z)KΦ(t), (13)

whereas

K = [kpq] = K(zp, tq, yq), p = 1, 2, . . . , ŝ, q = 1, 2, . . . , ŝ.

Equation (13) is replaced in Equation (12) which results in

Y TΦ(z) ' GTΦ(z) +

∫ z

0

ΦT(z)KΦ(t)dt, (14)

or the following equivalent

Y TΦ(z) ' GTΦ(z) + ΦT(z)K

∫ z

0

Φ(t)dt. (15)

By means of operational matrix, the mentioned relation is potentially shown as

Y TΦ(z) ' GTΦ(z) + ΦT(z)KPΦ(z). (16)

Also, using cardinality of the basic function, this equation is achieved as

ΦT(z)KPΦ(z) ' diag(KP)Φ(z) = ΓTΦ(z). (17)

Hence, Equations (10)-(17) give

Y TΦ(z) ' GTΦ(z) + ΓTΦ(z),

and we attain the below system of nonlinear algebraic equations by employing the
orthogonal property of the ChC wavelets:

Y T −GT − ΓT = 0.

The resulting system can be solved with a suitable method for determining Y . At
last, the estimated solution is gained by placing Y in Equation (2).

4. Convergence Analysis
Here, the convergence of the proposed approach is investigated. For this purpose,
we analyze some of the mathematical prerequisites required in this unit.
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Definition 4.1. [12] Consider that the weight function w is on the interval (ε, δ)
and s̄ ≥ 0 is assumed to be a nonnegative integer. The Sobolev space Ss̄w(ε, δ) is
illustrated as follows

Ss̄w(ε, δ) = {y ∈ L2
w(ε, δ) : for p = 0, 1, . . . , s̄, y(p) ∈ L2

w(ε, δ)}.

Remark 3. The weighted inner product, introdued here, is mostly utilized in han-
dling the Sobolev space mentioned above

< y, v >s̄,w=

s̄∑
p=0

∫ δ

ε

y(p)(t)v(p)(t)w(t)dt.

Then, Ss̄w(ε, δ) with the equipped norm

‖ y ‖Ss̄w(ε,δ) =
( s̄∑
p=0

‖y(p)‖2L2
w(ε,δ)

)1/2

,

produces a Hilbert space.
Remark 4. The semi-norm in relation with the mentioned norm is described as

|y|Ss̄;S
w (ε,δ) =

( s̄∑
p=min(s̄,S+1)

‖y(p)‖2L2
w(ε,δ)

)1/2

.

Remark 5. Recall that |y|Ss̄;S
w (ε,δ) ≤ ‖ y ‖Ss̄w(ε,δ). Whenever s̄ ≤ S + 1, there is

|y|Ss̄;S
w (ε,δ) = ‖ y(s̄) ‖

2

L2
w(ε,δ) = |y|Ss̄w(ε,δ).

Theorem 4.2. (Truncation error of the ChC wavelets expansion [22]) Assume
that y ∈ Ss̄wr

(0, 1), wr(t) as in Equation (4) is the weight function, Pk,Sy(t) =∑2k

r=1

∑S
s=1 crsϕrs, where the functions ϕrs(t) are illustrated in Equation (5), and

crs = y(γrs). Hence, the truncation error y − Pk,Sy complies

‖ y − Pk,Sy ‖L2
w(0,1) ≤ C̄s̄(S − 1)−s̄

( 2k∑
r=1

s̄∑
q=min(s̄,S)

( 1

2k+1

)2q‖ y(q) ‖
2

L2
wr

(Ikr)

)1/2

,

where Ikr =
(
r−1
2k ,

r
2k

)
. Additionally, we have

‖ y − Pk,Sy ‖L∞(0,1) ≤

Ĉs̄(S − 1)
1
2−s̄2(k+1)/2 max

r=1,2,...,2k

( s̄∑
q=min(s̄,S)

( 1

2k+1

)2q‖ y(q) ‖
2

L2
wr

(Ikr)

)1/2

, (18)

at the maximum norm, Ĉs̄ is a positive constant that depends on s̄ and is inde-
pendent of k and S.
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Definition 4.3. (Lipschitz continuous function [25]). Suppose K ∈ C([0, 1] ×
[0, 1] × R,R). This function is named Lipschitz continuous functions considering
their third arguments if there exist real and non-negative constant µ, where

|K(z, t, y)−K(z, t, v)| ≤ µ|y − v|, ∀y, v ∈ R. (19)

Theorem 4.4. Consider that g ∈ Ss̄1wr
(0, 1), K complies the conditions described

in Equation (19) and y ∈ Ss̄2wr
(0, 1) be the exact solution of the issue given in

Equation (2). If gŝ be the ChC wavelets expansion of g where ŝ = 2kS, and yŝ
be the estimated solution of Equation (2) with the usage of the presented method,
then we have

‖y − yŝ‖L∞(0,1) <∼
ν1 + µν2,

where

ν1 = Ĉs̄1(S − 1)
1
2−s̄12(k+1)/2 max

r=1,2,...,2k

( s̄1∑
q=min(s̄1,S)

( 1

2k+1

)2q‖ g(q) ‖
2

L2
wr

(Ikr)

)1/2

,

ν2 = Ĉs̄2(S − 1)
1
2−s̄22(k+1)/2 max

r=1,2,...,2k

( s̄2∑
q=min(s̄2,S)

( 1

2k+1

)2q‖ y(q) ‖
2

L2
wr

(Ikr)

)1/2

,

and Ĉs̄1 as well as Ĉs̄2 are positive constants that depend on s̄1 and s̄2 and are
independent of ŝ.

Proof. Due to the presented process, we get

yŝ(z) ' gŝ(z) +

∫ z

0

K(z, t, yŝ(t))dt. (20)

Subducting Equation (20) from Equation (2) there is

y(z)− yŝ(z) ' g(z)− gŝ(z) +

∫ z

0

K(z, t, y(t))−
∫ z

0

K(z, t, yŝ(t))dt. (21)

Equation (21) can be rewritten equivalently as

y(z)− yŝ(z) ' g(z)− gŝ(z) +

∫ z

0

[K(z, t, y(t))−K(z, t, yŝ(t))]dt.

Then, we achieve

|y(z)− yŝ(z)| <
∼
|g(z)− gŝ(z)|+

∫ z

0

|K(z, t, y(t))−K(z, t, yŝ(t))|dt.

Utilizing Equation (19), leads to

|y(z)− yŝ(z)| <
∼
|g(z)− gŝ(z)|+ µ

∫ z

0

|y(t)− yŝ(t)|dt.
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So we have

‖y − yŝ‖L∞(0,1) <∼
‖g − gŝ‖L∞(0,1) + µ‖y − yŝ‖L∞(0,1). (22)

At last, replacing Equation (22) and Equation (18) in Theorem 4.2 leads to the
proof.

5. Numerical Examples

In this part, we propose several instances to estimate the solution of Volterra IEs
of the second kind using the numerical method described in the previous sections.
In order to demonstrate the performance of the method and clarify the efficiency
and the accuracy of the presented method, we compare the results of our method
with the results of some previous methods. The results are reported in Tables
1, 2, 3 and 4. Where y(t) and Y TΦ(t) are the exact solution and the calculated
solution by the proposed method, respectively. The numerical experiments are
implemented in the software Mathematica 7.

Example 5.1. Consider the nonlinear VIE (see [33,46])

y(z) =
sin(z)

sin(z) + cos(z)
+

∫ z

0

2tet−z cos y(t)

sin(z) + cos(z)
dt, z ∈ [0, 1].

The exact solution is y(z) = z.

Table 1: Absolute errors for Example 5.1.
Proposed method Proposed method Method in [33]

z with S = 7, k = 3 with S = 9, k = 3 with m = 5, N = 10 and p = 4
0.2 1.16573E − 16 8.32667E − 17 6.6761E − 10
0.3 1.47105E − 15 5.55112E − 17 8.7809E − 10
0.4 2.88658E − 15 1.38778E − 16 9.3511E − 10
0.6 3.77476E − 15 5.55112E − 17 2.0606E − 08
0.7 2.83107E − 15 2.08167E − 16 1.1895E − 07
0.8 2.91434E − 15 6.93889E − 16 4.7716E − 07
1 7.63278E − 15 2.22045E − 16 1.2962E − 06

Example 5.2. Consider the nonlinear VIE (see [10]):

y(z) =
1

2
z(2+z)−2z arctan(z)+ln(1+z2)+

∫ z

0

(−y(t)+2 arctan(y(t))dt, 0 ≤ z ≤ 1.

The analytical solution of this example is y(z) = z.
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Table 2: Absolute errors for Example 5.2.
Proposed method Proposed method Method in [10]

z with S = 7, k = 3 with S = 9, k = 3 with j = 129
0.125 2.97540E − 14 4.16334E − 17 1.17E − 7
0.250 5.52058E − 14 5.55112E − 17 6.74E − 8
0.375 7.69385E − 14 2.22045E − 16 4.52E − 6
0.5 5.38944E − 14 9.02056E − 17 2.16E − 5
0.625 2.46192E − 14 2.49800E − 16 1.68E − 5
0.750 6.73073E − 15 4.85723E − 16 3.89E − 5
0.875 7.07767E − 16 2.63678E − 16 2.77E − 5
1 4.16334E − 16 5.27356E − 16 9.51E − 5

Example 5.3. Consider the VIE (see [10]):

y(z) =
1

3
z cos(z3) + z3 − z

3
+

∫ z

0

zt2 sin(y(t))dt, 0 ≤ z ≤ 1,

has the exact solution y(z) = z3.

Table 3: Absolute errors for Example 5.3.
Proposed method Proposed method Method in [10]

z with S = 7, k = 3 with S = 9, k = 3 with j = 129
0.125 4.90927E − 15 2.27682E − 17 1.43E − 6
0.250 6.69846E − 14 8.50015E − 17 4.74E − 6
0.375 3.65291E − 13 2.15106E − 16 7.99E − 6
0.5 1.21364E − 12 2.68882E − 16 6.57E − 5
0.625 2.59269E − 12 1.09981E − 15 2.53E − 5
0.750 2.00723E − 12 6.43929E − 15 6.41E − 5
0.875 1.05443E − 11 1.73819E − 14 5.21E − 5
1 1.57594E − 11 5.19029E − 15 3.35E − 4

Example 5.4. Consider the VIE (see [31,36]):

y(z) =
3

2
− 1

2
e−2z −

∫ z

0

(y(t)2 + y(t))dt, 0 ≤ z ≤ 1.

The exact solution of this equation is y(z) = e−z.

6. Conclusion
An efficient approach for finding an estimated solution for Volterra integral equa-
tions of the second kind has been implemented in this paper using the Chebyshev
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Table 4: Absolute errors for Example 5.4.
Proposed method Proposed method Method in [36]

z with S = 7, k = 3 with S = 9, k = 3 with M = 3, N = 6
0 2.22045E − 16 0.00000000000 0.00000000000
0.1 1.75415E − 14 3.33067E − 16 1.626820E − 4
0.2 1.38778E − 14 5.55112E − 16 2.438211E − 4
0.3 4.88498E − 15 2.22045E − 16 1.275379E − 4
0.4 3.80251E − 15 2.63678E − 16 2.858734E − 4
0.5 3.16414E − 15 1.42247E − 16 3.999309E − 4
0.6 8.82627E − 15 2.22045E − 16 2.250428E − 4
0.7 7.71605E − 15 1.80411E − 16 3.594621E − 4
0.8 3.66374E − 15 6.93889E − 17 1.043774E − 4
0.9 2.9976E − 15 1.97758E − 16 2.968310E − 4

cardinal wavelets. A nonlinear system of algebraic equations using the exceptional
properties of the Chebyshev cardinal wavelets is obtained from the mentioned
problem. The numerical instances showed the good standing and relevance of our
method. In order to illustrate the applicability of the present method, the corre-
sponding convergence was analytically reviewed in the Sobolev space. Research
to find more applications of these orthogonal basis functions and the method of
using these bases is one of the goals of our research group. It can also be men-
tioned that our method has the potential to be easily extended and implemented
to the nonlinear Volterra and Fredholm integral equations of the first kind and
nonlinear systems of integral Volterra equations and solve nonlinear constrained
optimal control problems.
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