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Abstract

In this paper, we present an exact analytical solution for five interacting
quarks. We solve the Schrödinger equation for pentaquarks in the framework
of five-body and two-body problems. For this purpose, we utilize Yukawa po-
tential in Jacobi coordinates. Also finding the relation between the reduced
masses and coupling constants of pentaquarks, we obtain the coupling con-
stant of Yukawa potential for pentaquark systems. We calculate the energy
of these systems in their ground state. The results are well consistent with
the theoretical results. Our procedure to obtain these results is appropriate
for other potentials and n-body systems.
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1. Introduction

Nucleons are the building blocks of nuclei and are composite extended objects.
The internal structure of these particles at low energies may be attributed to
their three bound quarks q3. Nucleons and their excited states, i.e. baryons,
are accommodated into flavor singlets, octets, and decuplets. The strangeness of
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baryons is zero (nucleon, ∆) or negative (Λ, Σ, Ξ and Ω). Baryons whose quantum
numbers cannot be derived from triplets of quarks are known as exotic.

LEPS Collaboration discovered the first exotic baryon Θ(1540) with the pos-
itive strangeness of S = +1, and this encouraged further theoretical and experi-
mental studies. The width of this state is below 20MeV . The NA49 Collaboration
[1] detected traces of the exotic baryon Ξ (1862) with an strangeness of S = −2.
The Ξ−− and Θ+ resonances are perceived as q4q pentaquarks belonging to a fla-
vor antidecuplet whose quark structures are ddssu and uudds, respectively. The
heavy pentaquark Θc (3099) may be also observed. In this system, an anticharm
quark replaces an antistrange quark in the Θ+.

There are theoretical studies of the parities and spins of these states. Some of
the studies include chiral constituent quark models [2], correlated quark (or cluster)
models [3], and chiral soliton models [4] which stimulated experimental studies.
Ref. [5] presents a review of the theoretical literature on pentaquark models.
Ref. [6] holds that a pentaquark with hidden-charm occurring in weak decays
of Λb0 emerges in proton-nucleus collisions without electroweak intermediaries. It
studies the cross-section of production for several scenarios of internal structure
and reports a sizable cross-section. Azizi et al. make use of QCD sum-rules
analyses on hidden-charm pentaquark states with the spin parities JP = 5

2

± and
JP = 3

2

± in order to calculate their residues and masses [7].

Ref. [8] investigated pentaquarks and tetraquarks in lattice QCD Monte Carlo
simulations. It is inspired by the findings of multi-quark systems. They studied
the multi-quark potential in lattice QCD, explained the inter-quark interactions
that occur in multi-quark systems and dealt with the accurate calculations of
masses of low-lying 5Q states. Ruilin Zhu et al. [9] studied the spectra of doubly-
heavy tetraquarks and pentaquarks in the non-relativistic constituent quark model.
To solve the Schrödinger equation, they used the model-independent variational
method. The chosen test radial functions in this equation are symmetric for the
light quarks. They classified tetraquarks and pentaquarks based on the heavy
quark symmetry and investigated the respective decay attributes.

A system composed of interacting non-relativistic constituent quarks may be
the simplest yet most realistic model of hadronic systems. Many-body Schrödinger
equation must be solved to identify the wave function in the model. That is of
course a challenging task as the quark-quark interaction is dependent upon color,
flavor, and spin. A variety of approximate methods are traditionally employed
to solve the equation [10–14]. In this work, we use an alternative method for
determining the wave function of five interacting constituent quarks in the flavor-
exotic multiquark hadronic sector.

It is worth mentioning that the central part of Yukawa potential was used in
this paper, and we will consider the tensor part in our subsequent works too.
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2. Formalism
The Schrödinger equation may be studied in arbitrary n-dimensional spaces. Then,
it will be easy to calculate the radial wave function via arbitrary n-dimensional
Schrödinger equation. Jacobi coordinates can be utilized to illustrate the rela-
tive motions of the constituents. The hyperspherical formalism can be used for
submitting a method to solve Schrödinger equation [15].

In spherical coordinates with an r-dependent potential, nonrelativistic
Schrödinger equation is as follows:

HΨn,m,l(x,ΩD) = EΨn,m,l(x,ΩD),

where (−~2

2µ
∇2
D + V (x)− En,l

)
ψn,m,l(x,ΩD) = 0.

For few-body systems, Jakobian variable change is employed. If the quarks are
assumed to lie in the points

∇2
D =

∂2

∂x2
+
D − 1

x

∂

∂x
− l(l +D − 2)

x2
,

then the few-body equation is converted into a one-variable equation by using the
hyper-radius. The coordinates’ origin is assumed to be on the mass center of the
few-body system.

~ρ1 =

√
µ1,2

µ
(~r1 − ~r2),

~ρ2 =

√
µ3

µ
(
~r1 + ~r2

2
− ~r3),

...

−→ρi =

√
i

i+ 1
(−−→ri+1 −

1

i

i∑
j=1

−→rj ),

where

µ1,2 =
m1m2

m1 +m2
, µ3 =

(m1 +m2)m3

m1 +m2 +m3
, µ =

m1 +m2 + · · ·+mN+1

N + 1
,

and
~R =

∑
mi~ri∑
mi

.

With equal masses of quarks, these equations turn out as:

~R =

∑N+1
i ~ri
N + 1

, r = (

N∑
i=1

ρ2
i )

1
2 .
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The angular section of the wave function is excluded from our consideration.

ψn,l,m(x,ΩD) = Rn,l(x)Y ml (ΩD). (1)

The radial Schrödinger equation is further simplified by applying the variable
change (1):( d2

dx2
+
D − 1

x

d

dx
− l(l +D − 2)

x2

)
Rn,l(x) +

2µ

~2

(
E − V (r)

)
Rn,l(x) = 0.

3. Pentaquark systems composed of mesons
and baryons

Multi-hadron systems have recently become important issues of interest in hadron
physics. A common case is the atomic nucleon as the bound state of neutrons and
protons. However, similar systems of baryon number one or zero have been rarely
detected. Perhaps the typical example is Λ(1405), a quasi-bound state of KN and
πΣ [16]. Also, the isoscalar meson could be among the quasi-bound states of two
mesons [17]. These hadronic components result from hadron-hadron interactions
and may exist in a variety of baryonic and mesonic systems. Hadron composites
may also be utilized to investigate hadron dynamics in nuclear matter [18].

A structure in exotic channels containing only one heavy quark has been also
suggested: DN with a quark content of uuddc [19]. It is the charm counterpart of
pentaquark Θ+ ∼ uudds . Charm pentaquarks of different forms have also been
investigated [20, 21]. The one-pion exchange interaction was used to arrive at a
bound system consisting of a nucleon and a D meson.

To simplify the Schrödinger equation we use the following variable change

Rn,l(x) = x−
D+1

2 φn,l(x).

In general, we considered the number of particles A = N + 1 and D = 3N . In
this part, we analyze pentaquarks as systems consisting of mesons and baryons.
Therefore A = 2, N = 1, D = 3, then

R(x) = x−1φn,l(x). (2)

Using the variable change (2), the Schrödinger equation becomes:( d2

dx2
+

2

x

d

dx

)
Rn,l(x) +

2µ

~2

(
E − V (x)

)
Rn,l(x) = 0. (3)

Using Equations (2) and (3) for the ground state (l = 0) can be reformulated
as this compact form:

2µ

~2

(
E − V (x)

)
φ(x) +

d2φ(x)

dx2
= 0. (4)
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Yukawa potential was first introduced in the 1930s to study strong interaction of
nucleons through meson exchange [22]. In solid-state physics and plasma physics,
it is called Thomas-Fermi potential and Debye-Huckel potential, respectively [23].
Unlike Yukawa potential, the corresponding Schrödinger equation cannot be solved
precisely and analytically. Various approximations to the problem have been al-
ready adopted [24, 25].

Gonul et al. solved the bound state problem for the potentials of Yukawa type
within the framework of Riccati equation [26]. Karakoc and Boztosun also solved
the radial Schrödinger equation for these potentials through asymptotic iteration
technique [27]. Liverts et al. solved the Schrödinger equation with a Yukawa
potential via the quasi-linearization method [22]. The central section of Yukawa
potential is

V (r) = −g2 e
−kx

x
, (5)

where k = mπ and g2 is the coupling constant. Using Yukawa potential extension,
we arrive at

V (r) = −g2(−a1x
6 + b1x

5 − c1x4 + d1x
3 − e1x

2 + f1x− h1 +
L1

x
), (6)

thus, 

a1 = k7

7! , a = 2µg2a1,

b1 = k6

6! , b = 2µg2b1,

c1 = k5

5! , c = 2µg2c1,

d1 = k4

4! , d = 2µg2d1,

e1 = k3

3! , e = 2µg2e1,

f1 = k2

2! , f = 2µg2f1,

h1 = k, h = 2µg2h1,

L1 = 1, L = 2µg2L1.

(7)

By introducing Equations (6) and (7) into Equation (2), the following equation is
obtained

d2

dx2
φ+2µg2(−a1x

6 +b1x
5−c1x4 +d1x

3−e1x
2 +f1rx−h1 +

L1

x
)+2µEφ = 0. (8)

To solve this equation, we use the anastz method [28]. In this method the general
form of the proposed wave fanction is as follows

φ(x) = N0M(x), (9)

where N0 is the normalized constant and

M(x) = xγfν(x) exp[Z(x)],
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fν(x) =

{∏ν
c=1(x− ανi ), ν = 1, 2, 3,

1, ν = 0.

In the proposed wave function, Z(x) is analogous to Hermite Polynomial. For the
ground state we suppose v = 0. The wave function that is proposed will be

Z(x) = −1

4
αx4 − 1

3
βx3 − 1

2
ηx2 − τx.

By inserting wave function into Equation (9), the wave function coefficients are
obtained as

α =
√
a, β = − b

2α
, η =

c− β2

2α
, τ =

−d+ 2β

2α
.

E is obtained through

E = − 1

2µ
[h− τ2 − η(1 + 2γ)].

Through solving the Schrödinger equation, we also arrived at the following equa-
tion to calculate the coupling constant for these systems

g = −γτ
µ
.

It must be notified that we arrived at the equations based on the proposed wave

Table 1: Binding energies and masses of heavy pentaquarks (MeV).
Pentaquark Meson + Baryon g2 Eb Mass Mass in Ref
θc(uuddc̄) uud+ dc̄ 0.163 −8.22 2903.27 2985 ±50 [29]
θb(uuddb̄) uud+ db̄ 0.13 −6.7 6245.3 6391 ±50 [29]

function with order-4 approximation. As the approximations change, so do the
equations.

4. Pentaquark systems composed of five quarks
For the pentaquark systems composed of five quarks A = 5, N = 4 and D = 12.
The five components’ relative motion is described against the Jacobi coordinates.

ρ1 =
−→r1−−→r2√

2
,

ρ2 =
−→r1+−→r2−2−→r3√

6
,

ρ3 =
−→r1+−→r2+−→r3−3−→r4√

12
,

ρ4 =
−→r1+−→r2+−→r3+−→r4−4−→r5√

20
.
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In this section, the ground state energy and coupling constant of pentaquarks Θc

and Θb are identified and shown in Table 2. We calculate pentaquark masses by

M =
∑
i

mi + E.

Our results presented in Table 1 show a good agreement with other theoretical

Table 2: Heavy meson masses and binding energies (MeV).
Pentaquark g2 Eb Mass
θc(uuddc̄) 37.15 −530.09 2259.9
θb(uuddb̄) 35.97 −510 5589.2

findings in [29]. By fitting the masses in the pentaquarks, constituent mesons and
baryons, we can come up with appropriate findings on pentaquark masses.

In Ref. [30], the pentaquark Θc is considered as consisting of two different
mesons and baryons so that Θc(uuddc̄) is composed of a mesonmud = 72MeV and
a baryon whose mass is mudc̄ = 2430MeV and Θc mass is mΘc

= 2985± 50MeV .
With this new combination of meson and baryon, we obtain the pentaquark mass
with the order-2 approximation of the wave function as mΘc

= 3139.85MeV and
E = −10.143MeV .

Ref. [29] also considers mΘb
as composed of ud and udb in which the triquark

effective mass is mudc̄ = 5770MeV . The reduced mass is taken as µ = 4640MeV ,
and then mΘb

= 6398± 50MeV is derived.

5. Conclusion

The N -body potential problem is used in both quantum mechanics and classical.
The interacting potential in hypercentral formalism depends just on the hyper-
radius in Jacobi relative coordinates. In this paper, we suggested an exact analyt-
ical solution for five quarks systems. Also we solved the Schrödinger equation for
pentaquark systems in the framework of two five-body and two-body problems.

We used five-body Yukawa potential and an ansatz for the eigen-function to
solve Schrödinger equation accurately for pentaquark quark system in three dimen-
sions. Our results comply well with other theoretical works. The same procedure
could be followed with some other potentials for interacting quarks and other
states of energy. We will obtain the energy spectra and eigen-functions in our
next studies.

Conflicts of Interest. The authors declare that they have no conflicts of interest
regarding the publication of this article.
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