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Abstract

Let G = (V (G), E(G)) be a simple and connected graph. The distance
between any two vertices x and y, denoted by dG(x, y), is defined as the
length of a shortest path connecting x and y in G. The degree of a vertex x
inG, denoted by degG(x), is defined as the number of vertices inG of distance
one from x. The eccentric adjacency index (briefly EAI) of a connected graph
G is defined as

ξad(G) =
∑

u∈V (G)

SG(u)εG(u)−1,

where SG(u) =
∑

v∈V (G)
dG(u,v)=1

degG(v) and εG(u) = max{dG(u, v) | v ∈ V (G)}.

In this article, we aim to obtain all extremal graphs based on the value of
EAI among all simple and connected graphs, all trees, and all trees with
perfect matching.
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1. Introduction

In this article, all graphs are finite, simple and connected. Let G be any finite,
simple and connected graph with the vertex set V (G) and the edge set E(G).
For two vertices u and v in V (G) their distance dG(u, v) is defined as the length
of a shortest path connecting u and v in G. The degree degG(u) of the vertex
u in G is defined as the number of neighbors of u in G, i.e., degG(u) = |{x ∈
V (G) | dG(u, x) = 1}|. If degG(u) = 1, then the vertex u is called pendant. The
eccentricity εG(u) of the vertex u of G is the distance from u to any vertex farthest
away from it in G, i.e., εG(u) = maxv∈V (G) dG(u, v). The diameter D(G) and the
radius R(G) of G is defined as

D(G) = max
u∈V (G)

εG(u), R(G) = min
u∈V (G)

εG(u).

An induced path P in G of length D(G) is called diametral. A vertex with min-
imum eccentricity in G is called central. A set of edges M ⊆ E(G) is called a
matching provided for any two edges e = xy and f = uv in M , {x, y}∩{u, v} = ∅.
A matching M is called perfect if every vertex of G is incident to exactly one edge
from M . One can see that a tree has a perfect matching only if it is of even order.

We denote by Sn, Pn, and Kn, respectively, the star graph, the path graph,
and the complete graph of order n. A connected graph with no cycles is called a
tree. One can see that a tree T has only one central vertex if D(T ) is even, and two
central vertices if D(T ) is odd. A vertex in a tree is called branching if its degree
is at least three. A tree with exactly one branching vertex is called a starlike.
We denote a starlike tree with maximum degree ∆ by T (l1, l2, . . . , l∆) such that
T (l1, l2, . . . , l∆) − v = Pl1 ∪ Pl2 · · · ∪ Pl∆ , where v is the vertex of degree ∆, and
l1, l2, · · · , l∆ are positive integers. For example, the starlike tree T (2, 2, 2, 1) is
depicted in Figure 1. A tree T is called a spanning tree of the connected graph G
if V (T ) = V (G) and E(T ) ⊆ E(G).

Chemical graph theory is a field of chemistry that uses graph theory to study
and analyze chemical structures. Graph theory is a mathematical framework used
to study relationships between objects, and it has proven to be useful in analyz-
ing molecular structures. By representing atoms and bonds as vertices and edges,
respectively, a molecular structure can be analyzed using various graph theoretic
tools and techniques. One application of chemical graph theory is in the study of
biological activity of molecules. The biological activity of a molecule depends on
its structure and how it interacts with biological targets such as proteins or en-
zymes. Chemical graph theory can be used to analyze the structure of molecules
and to identify patterns that correlate with specific biological activities. For ex-
ample, researchers may use chemical graph theory to analyze the structures of
compounds with known biological activity, and then develop models to predict
the biological activity of new compounds based on their structures. This can help
to accelerate the drug discovery process by identifying promising compounds more
quickly and efficiently. Overall, chemical graph theory has become an important
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tool for studying the structure and properties of molecules, and its applications
extend to a wide range of fields, including drug discovery, materials science, and
environmental chemistry.

A map Top from graphs into real numbers is called a topological index, if
G ' H implies that Top(G) = Top(H). Topological indices are graph invariants
which are useful tools for predicting and understanding the properties and behavior
of molecules. Eccentricity-based topological indices have important applications
in network analysis, including in social network analysis, transportation network
analysis, and biological network analysis. Several eccentricity based topological
indices have been proposed and/or used in QSAR and QSPR studies. The eccen-
tric connectivity index was defined in [1] as ξc(G) =

∑
u∈V (G) degG(u)εG(u). The

connective eccentricity index which is a modification of the eccentric connectivity

index was defined in [2] as Cξ(G) =
∑
u∈V (G)

degG(u)
εG(u) . The eccentric adjacency in-

dex (briefly EAI) was proposed in [3] as ξad(G) =
∑
u∈V (G)

SG(u)
εG(u) , where SG(u) =∑

v∈V (G)
dG(u,v)=1

degG(v). This index was also defined independently by Ediz in 2011

under the name Ediz eccentric connectivity index [4]. The eccentric distance sum
of a connected graph G was defined in [5] as ξd(G) =

∑
u∈V (G) degG(u)DG(u),

where DG(v) is the sum of distances between u and other vertices in G. The aug-
mented eccentric connectivity index of a connected graph G was introduced in [6]

as ξac(G) =
∑
u∈V (G)

MG(u)
εG(u) , where MG(u) =

∏
v∈V (G)
dG(u,v)=1

degG(v). Mathematical

properties of these indices were studied in [7–19]. Although, EAI was introduced
much earlier than augmented eccentric connectivity index, but it received less
attention from the mathematicians and so its mathematical properties have not
been studied much. In this article, inspired from [15], we aim to fill this gap by
characterizing all extremal graphs based on EAI among all simple and connected
graphs, all trees, and all trees with perfect matching.

In Proposition 1.1, the exact values of EAI are provided for some graphs which
will be later proven as extremal cases. The first three parts of this proposition
were proved in [4], the proof of the last one is straightforward.

Proposition 1.1. For paths Pn on n ≥ 4 vertices, the star Sn on n ≥ 3 vertices,

the starlikes T (

n
2−1︷ ︸︸ ︷

2, . . . , 2, 1) on n ≥ 6 and the complete graphs Kn on n ≥ 2 vertices
the following hold:

1. ξad(Pn) =
6

n− 2
+4

(
1

n− 1
+ 2Hn−3 −H⌊n

2

⌋
−1
−H⌊n−1

2

⌋), where Hk rep-

resents the kth harmonic number, defined as the sum of the reciprocals of the
first k positive integers.

2. ξad(Sn) =
(n− 1)2 + 2(n− 1)

2
,

3. ξad(Kn) = n(n− 1)2,
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k 

. . .

Figure 1: The starlike tree T (2, 2, 2, 1) of order eight and diameter four

4. ξad
(
T (

n
2−1︷ ︸︸ ︷

2, . . . , 2, 1)
)

=
n2 + 11n− 16

12
.

The rest of this article is organized as follows. In Section 2, we prove that
among all trees of order n, Pn is the unique minimal tree and Sn is the unique
maximal tree based on the value of EAI. In Section 3, we prove that among all
trees with perfect matching of order n, the path Pn is the unique minimal tree

and the starlike tree T (

n
2−1︷ ︸︸ ︷

2, . . . , 2, 1) is the unique maximal tree based on the value
of EAI.

2. Extremal trees

In this section, we aim to obtain trees with minimum and maximum value of
EAI. We will begin with the minimum case by using a graph transformation that
increases the diameter but reduces the value of EAI. This transformation was
inspired from that of J. Sedlar for augmented eccentric connectivity index [15],
however this is more straightforward and requires fewer computations to obtain
the desired inequality.

Transformation A ( [15]). Suppose that T 6= Pn is a tree of order n. Let us
choose a diametral path P = v0v1 · · · vD in T in which the first branching vertex is
the farthest from v0. Depending on the structure of P , select a vertex u as follows:

(A1) If the vertex v1 is branching, but v2 is not, set u = v1,

(A2) If both v1 and v2 are branching, set u = v2,

(A3) If the vertex v1 is not branching, set u = vi, where vi, i 6= 1 is the first
branching vertex on P .

Suppose that x1, . . . , xt are the neighbors of u not belonging to P (t = degT (u)−2).
We create a new tree T ∗ by deleting the edges ux1, . . . , uxt and adding the edges
v0x1, . . . , v0xt, i.e., T ∗ =

(
G− {ux1, . . . , uxt}

)
+ {v0x1, . . . , v0xt}, see Figure 2.
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Figure 2: Transformations A1, A2 and A3.

Transformation A is a method for reducing the eccentric adjacency index (EAI)
of a given tree T . It involves selecting a diametral path in T and modifying the
tree by deleting certain edges and adding new edges. The specific modifications
depend on whether certain vertices on the path are branching or not. Let us show
that Transformation A decreases the value of EAI.

Lemma 2.1. Suppose that T 6= Pn is a tree of order n. If T ∗ is the tree of order
n obtained from T 6= Pn applying Transformation A, then

ξad(T ) > ξad(T ∗).

Proof. It is easy to verify that Transformation A increases the degree of v0 and
decreases that of u, i.e.,

degT∗(v0) = degT (v0) + t = 1 + t, degT∗(u) = degT (u)− t.

The eccentricity of vertices either increases or remains unchanged. For example,
εT∗(v0) = εT (v0), εT (u) ≤ εT∗(u). Let us distinguish the following three cases:
Case (1) If D = 2, then T = Sn, n ≥ 4. Therefore, we apply Transformation A1.
It follows that
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ξad(T )− ξad(T ∗) =
ST (v0)

εT (v0)
− ST∗(v0)

εT∗(v0)
+

ST (v1)

εT (v1)
− ST∗(v1)

εT∗(v1)
+

ST (v2)

εT (v2)
− ST∗(v2)

εT∗(v2)

+

t∑
i=1

ST (xi)

εT (xi)
−

t∑
i=1

ST∗(xi)

εT∗(xi)

=
t+ 2

2
− t+ 2

2
+
t+ 2

1
− t+ 2

2
+
t+ 2

2
− 2

3

+

t∑
i=1

t+ 2

2
−

t∑
i=1

t+ 1

3
> 0.

Case (2) For D = 3, we shall distinguish the following two subcases:

Case (2-1) If v1 is a branching vertex, then v2 must also be a branching vertex.
Therefore, we must apply Transformation A2. It follows that

ξad(T )− ξad(T ∗) =
ST (v0)

εT (v0)
− ST∗(v0)

εT∗(v0)
+

ST (v2)

εT (v2)
− ST∗(v2)

εT∗(v2)

+
ST (v3)

εT (v3)
− ST∗(v3)

εT∗(v3)
+

t∑
i=1

ST (xi)

εT (xi)
−

t∑
i=1

ST∗(xi)

εT∗(xi)

=
degT (v1)

3
− t+ degT (v1)

3
+
t+ degT (v1) + 1

2
− degT (v1) + 1

3

+
t+ 2

3
− 2

4
+

t∑
i=1

t+ 2

3
−

t∑
i=1

t+ 1

4
> 0.

Case (2-2) If v1 is not branching, then v2 must be a branching vertex since
T 6= P4. Therefore, we apply Transformation A3. It follows that

ξad(T )− ξad(T ∗) =
ST (v0)

εT (v0)
− ST∗(v0)

εT∗(v0)
+

ST (v1)

εT (v1)
− ST∗(v1)

εT∗(v1)
+

ST (v2)

εT (v2)
− ST∗(v2)

εT∗(v2)

+

t∑
i=1

ST (wi)

εT (wi)
−

t∑
i=1

ST∗(xi)

εT∗(xi)

=
2

3
− t+ 2

3
+
t+ 3

2
− 3

3
+
t+ 2

3
− 2

4
+

t∑
i=1

t+ 2

3
−

t∑
i=1

t+ 1

4
> 0.

Case (3) For D ≥ 4, we distinguish the following four subcases:

Case (3-1) The vertex v1 is a branching vertex, but v2 is not. Therefore, we
apply Transformation A1. It follows that
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ξad(T )− ξad(T ∗) > ST (v0)

εT (v0)
− ST∗(v0)

εT∗(v0)
+

ST (v1)

εT (v1)
− ST∗(v1)

εT∗(v1)
+

ST (v2)

εT (v2)
− ST∗(v2)

εT∗(v2)

+

t∑
i=1

ST (xi)

εT (xi)
−

t∑
i=1

ST∗(xi)

εT∗(xi)

=
t+ 2

D
− t+ 2

D
+

t+ 3

D − 1
− t+ 3

D − 1
+

degT (v3) + t+ 2

D − 2

− degT (v3) + 2

D − 2
+

t∑
i=1

t+ 2

D
−

t∑
i=1

t+ 1

D + 1
> 0.

Case (3-2) Both v1 and v2 are branching vertices. Therefore, we apply Trans-
formation A2. It follows that

ξad(T )− ξad(T ∗) > ST (v0)

εT (v0)
− ST∗(v0)

εT∗(v0)
+

ST (v1)

εT (v1)
− ST∗(v1)

εT∗(v1)
+

ST (v2)

εT (v2)
− ST∗(v2)

εT∗(v2)

+
ST (v3)

εT (v3)
− ST∗(v3)

εT∗(v3)
+

t∑
i=1

ST (xi)

εT (xi)
−

t∑
i=1

ST∗(xi)

εT∗(xi)

=
degT (v1)

D
−
(∑t

j=1 degT (xj)
)

+ degT (v1)

D
+

degT (v1) + t+ 1

D − 1

− degT (v1) + t+ 1

D − 1
+

(∑t
j=1 degT (xj)

)
+ degT (v1) + degT (v3)

D − 2

− degT (v1) + degT (v3)

D − 2
+
t+ 2 + degT (v4)

D − 3
− 2 + degT (v4)

D − 3

+

t∑
i=1

ST (xi)

D − 1
−

t∑
i=1

ST (xi)− 1

D + 1
> 0.

Case (3-3) The vertex v2 is the closest branching vertex to v0 in PD. Therefore,
we apply Transformation A3. It follows that

ξad(T )− ξad(T ∗)

>
ST (v0)

εT (v0)
− ST∗(v0)

εT∗(v0)
+

ST (v2)

εT (v2)
− ST∗(v2)

εT∗(v2)
+

t∑
j=1

ST (xj)

εT (xj)
−

t∑
j=1

ST∗(xj)

εT∗(xj)

≥ 2

D
−
(∑t

j=1 degT (xj)
)

+ 2

D
+

(∑t
j=1 degT (xj)

)
+ degT (v3) + 2

D − 2

− degT (v3) + 2

D − 2
+

t∑
j=1

ST (xj)

D − 1
−

t∑
j=1

ST (xj)− 1

D
> 0.
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Case (3-4) For some i > 3, vi is the closest branching vertex to v0 in PD.
Therefore, we apply Transformation A3. It follows that

ξad(T )− ξad(T ∗)

>
ST (v0)

εT (v0)
− ST∗(v0)

εT∗(v0)
+

ST (v1)

εT (v1)
− ST∗(v1)

εT∗(v1)
+

ST (vi−1)

εT (vi−1)
− ST∗(vi−1)

εT∗(vi−1)

+
ST (vi)

εT (vi)
− ST∗(vi)

εT∗(vi)
+

t∑
j=1

ST (xj)

εT (xj)
−

t∑
j=1

ST∗(xj)

εT∗(xj)

=
2

D
−
(∑t

j=1 degT (xj)
)

+ 2

D
+

3

D − 1
− t+ 3

D − 1
+

t+ 4

εT (vi−1)

− 4

εT∗(vi−1)
+

(∑t
j=1 degT (xj)

)
+ degT (vi+1) + 2

εT (vi)

− degT (vi+1) + 2

εT∗(vi)
+

t∑
j=1

ST (xj)

εT (xj)
−

t∑
j=1

ST (xj)− 1

D
> 0.

It is clear that Transformation A increases the diameter of trees containing
at least one branching vertex. Applying this transformation consecutively, by
Lemma 2.1 we conclude that among trees of order n, Pn is the unique tree with
the minimum value of EAI.

Corollary 2.2. Let T 6= Pn be a tree of order n. Then ξad(T ) > ξad(Pn).

Now by Proposition 1.1 and Corollary 2.2, we summarize our results as follows:

Theorem 2.3. Let T be a tree of order n. Then

ξad(T ) ≥ 6

n− 2
+ 4

(
1

n− 1
+ 2Hn−3 −H⌊n

2

⌋
−1
−H⌊n−1

2

⌋) . (1)

Equality holds in Equation (1) if and only if T = Pn.

Remark 1. In [4] Ediz proved the inequality of Theorem 2.3 in a different way,
however, he did not determine the equality case.

Let us find trees maximizing the value of EAI. To do so, we need to introduce
a transformation which increases the value of EAI of trees.

Transformation B. Let T be a tree with D(T ) > 4. Denote by u a central
vertex of T . Let w be a non-pendant and non-central vertex adjacent to u and
x1, . . . , xt be the non-central neighbors of w. We denote by T ∗, the tree obtained
from T by deleting the edges wx1, . . . , wxt and adding the edges ux1, . . . , uxt, i.e.,
T ∗ =

(
G− {wx1, . . . , wxt}

)
+ {ux1, . . . , uxt}.
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Let us show that Transformation B increases the value of EAI of trees.

Lemma 2.4. Suppose that T is a tree with D(T ) > 4. Let T ∗ be the tree obtained
from T applying Transformation B. Then ξad(T ) < ξad(T ∗).

Proof. We choose w in a way which w is a non-pendant and non-central vertex
adjacent to the central vertex u. Let y be the other neighbor of the central vertex
u (y 6= w). Also, assume that for each 1 ≤ i ≤ t, xi is a non-central vertex adjacent
to w. It follows that

ξad(T )− ξad(T ∗) < ST (u)

εT (u)
− ST∗(u)

εT∗(u)
+ (

ST (y)

εT (y)
− ST∗(y)

εT∗(y)
) +

ST (w)

εT (w)
− ST∗(w)

εT∗(w)

+

n∑
i=1

ST (xi)

εT (xi)
−

n∑
i=1

ST∗(xi)

εT∗(xi)

<
ST (u)

R(T )
−

ST (u) + (
∑t
i=1 deg(xi))− t
R(T )

− t

R(T )

+
(
∑t
i=1 deg(xi)) + deg(u)

R(T ) + 1
− t+ deg(u)

R(T ) + 1

+

∑t
i=1 ST (xi)

R(T ) + 2
−

(
∑t
i=1 ST (xi)) + deg(u)− 1

R(T ) + 1

= −
∑t
i=1 deg(xi)

R(T )
+

(∑t
i=1 deg(xi)

)
− t

R(T ) + 1
+

∑t
i=1 ST (xi)

R(T ) + 2

−
∑t
i=1 ST (xi) + deg(u)− 1

R(T ) + 1
< 0,

proving the result.

Applying Transformation B, consecutively, we obtain a tree of diameter three,
but such a tree is not maximal based on the value of EAI.

Lemma 2.5. Suppose that T is a tree of order n with D(T ) = 3 with the central
vertices u and v. Let x1, . . . , xt and y1, . . . , yl be the non-central neighbors of u and
v, respectively. Construct the tree T ∗ from T by deleting the edges ux1, . . . , uxt and
adding the edges vx1, . . . , vxt, i.e., T ∗ =

(
G − {ux1, . . . , uxt}

)
+ {vx1, . . . , vxt}.

Then T ∗ is nothing but the star graph Sn. Moreover, ξad(T ) < ξad(Sn).

Proof. The first part of the lemma is clear. Let us verify the second part:
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ξad(T )− ξad(T ∗) =
ST (u)

εT (u)
− ST∗(u)

εT∗(u)
+

ST (v)

εT (v)
− ST∗(v)

εT∗(v)
+

t∑
i=1

ST (xi)

εT (xi)

−
t∑
i=1

ST∗(xi)

εT∗(xi)
+

l∑
i=1

ST (yi)

εT (yi)
−

l∑
i=1

ST∗(yi)

εT∗(yi)

=
t+ l + 1

2
− t+ l + 1

2
+
t+ l + 1

2
− t+ l + 1

1

+

t∑
i=1

t+ 1

3
−

t∑
i=1

t+ l + 1

2
+

l∑
i=1

l + 1

3
−

l∑
i=1

t+ l + 1

2
< 0.

Corollary 2.6. Among trees of order n ≥ 3, the star graph Sn is the unique
maximal tree based on the value of EAI.

Proof. Let T be a tree of order n ≥ 3 and diameter D. The result is clear for
D = 2, since Sn is the unique tree of diameter 2. If D = 3, the result follows from
Lemma 2.5. If D ≥ 4, applying Transformation B on T , consecutively, we obtain a
tree of diameter 3, say T ∗. By Lemma 2.4, ξad(T ) < ξad(T ∗). Moreover, it follows
from Lemma 2.5 that ξad(T ) < ξad(T ∗) < ξad(Sn), concluding the result.

Now by Proposition 1.1 and Corollary 2.6, we have:

Theorem 2.7. Let T be a tree of order n. Then

ξad(T ) ≤ (n− 1)2 + 2(n− 1)

2
. (2)

Equality holds in Equation (2) if and only if T = Sn.

Now we utilize the previous results to obtain graphs maximizing and minimiz-
ing the value of EAI. First we recall the following trivial fact:

Lemma 2.8. Let G be a connected graph with an arbitrary edge uv. Let G∗ be the
connected graph obtained from G by deleting the edge uv. Then for each x ∈ {u, v},
we have:

εG(x) ≤ εG∗(x), degG∗(x) = degG(x)− 1.

Note that the contribution of every vertex to the value of EAI in the complete
graph Kn is the maximum possible. By Lemma 2.8, deleting any edge will decrease
the value of EAI. It follows that for a connected graph G of order n, we have
ξad(G) ≤ n(n−1)2, with equality if and only if G = Kn. Therefore, we obtain the
unique maximal graph with respect to the value of EAI. Now we shall obtain the
minimal one.
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Proposition 2.9. For a connected graph G of order n, we have

ξad(G) ≥ 6

n− 2
+ 4

(
1

n− 1
+ 2Hn−3 −H⌊n

2

⌋
−1
−H⌊n−1

2

⌋) . (3)

Equality holds in Equation (3) if and only if G = Pn.

Proof. If G is a tree, then the result follows from Theorem 2.3. If G is not a tree,
then G has a spanning tree, say T . It follows from the definition that T is obtained
from G by deleting some of its edges. So by Lemma 2.8, ξad(G) > ξad(T ). Besides,
by Theorem 2.3, ξad(T ) ≥ ξad(Pn), concluding the result.

3. Extremal trees with perfect matching

In this section, we assume trees have an even order, since only such trees can
have a perfect matching. If a tree has a perfect matching, then the matching is
unique, see [20]. Besides, in a tree with perfect matching, each vertex can obviously
be adjacent to at most one pendant vertex. Besides, consider a diametral path
P = v0v1 · · · vD in a tree with perfect matching. Note that v1 and vD−1 must be
of degree two since each of them are already adjacent to a pendant vertex and
can not be adjacent to more vertices. By the same reasoning the neighbors of v2

outside of P are either of degree two or degree one.
It is worth noting that the path Pn has a perfect matching if n is even. This

implies that Pn has the minimum value of EAI among trees of order n with a
perfect matching, according to Theorem 2.3. However, characterizing trees with
perfect matching and maximum value of EAI is challenging since the star Sn,
for n ≥ 3, does not have a perfect matching. To address this, we propose a
transformation that preserves the existence of a perfect matching and increases
the value of EAI.

Note that P2 is the unique tree with perfect matching of diameter one. The
unique tree with perfect matching of diameter three is P4. Besides, one can see

that the starlike tree T (

n
2−1︷ ︸︸ ︷

2, . . . , 2, 1) is the unique tree with perfect matching of
diameter four. We also know that trees of diameter two has no perfect matching.
Hence, we need to find maximal trees based on EAI among trees with perfect
matching of diameter D ≥ 4.

Transformation D. Let T be a tree with D(T ) ≥ 4, and let P = v0v1 · · · vD be
a diametral path in T . Denote by u the central vertex of P with the largest index.
Let x1, . . . , xt be all vertices of degree two from V (T )\ {v3} being adjacent to v2.
Let us denote by T ∗ the tree obtained from T by deleting the edges v2x1, . . . , v2xt
and adding the edges ux1, . . . , uxt, see Figure 3.

Lemma 3.1. Let T be a tree of order n with D(T ) ≥ 4 with perfect matching M .
Suppose that T ∗ is a tree which is obtained from T by applying Transformation D.
Then T ∗ is a tree of order n with perfect matching M and ξad(T )− ξad(T ∗) < 0.
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. . . . . . . . . . . . 

k 

. . . 

k 

. . 
. 

v2 vu v2 vu 

D 
. . . . . . 

u vD-1 

t-1
 

. . 
. v1 

v2 x v3 

v0 

. . . . . . 

u vD-1 

t-1
 

. . 
. v1 

v0 

v2 x v3 

Figure 3: Transformations D

Proof. Since for each 1 ≤ i ≤ t, v2xi 6∈ M , we conclude that M is a perfect
matching for T ∗. Note that v1 belongs to {x1, . . . , xt}. Also, assume x as a
possible pendant vertex adjacent to v2. We shall distinguish the following cases:

Case (1) D = 5:

ξad(T )− ξad(T ∗)

≤ t
(ST (v0)

εT (v0)
− ST∗(v0)

εT∗(v0)
+

ST (v1)

εT (v1)
− ST∗(v1)

εT∗(v1)

)
+
(ST (v2)

εT (v2)
− ST∗(v2)

εT∗(v2)

)
+

ST (x)− ST∗(x)

εT (x)
+
(ST (u)

R(T )
− ST∗(u)

R(T )− 1

)
+
(ST (vu+1)

R(T ) + 1
− ST∗(vu+1)

R(T )

)
< t
(2

5
− 2

4
+

degT (v2) + 1

4
− deg(u) + t+ 1

3

)
+ (

t

3
) +

t

4
− (

t

2
)− (

t

3
) < 0.

Case (2) D = 6:

ξad(T )− ξad(T ∗)

≤ t
(ST (v0)

εT (v0)
− ST∗(v0)

εT∗(v0)
+

ST (v1)

εT (v1)
− ST∗(v1)

εT∗(v1)

)
+
(ST (v2)

εT (v2)
− ST∗(v2)

εT∗(v2)

)
+

ST (x)− ST∗(x)

εT (x)
+
(ST (u)

R(T )
− ST∗(u)

R(T )− 1

)
+
(ST (vu+1)

R(T ) + 1
− ST∗(vu+1)

R(T )

)
< t
(2

6
− 2

5
+

degT (v2) + 1

5
− deg(u) + t+ 1

4

)
+ (

t

4
) +

t

5
− (

2t

3
) < 0.
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Case (3) D = 7:

ξad(T )− ξad(T ∗)

≤ t
(ST (v0)

εT (v0)
− ST∗(v0)

εT∗(v0)
+

ST (v1)

εT (v1)
− ST∗(v1)

εT∗(v1)

)
+
(ST (v2)

εT (v2)
− ST∗(v2)

εT∗(v2)

)
+

ST (x)− ST∗(x)

εT (x)
+
(ST (u)

R(T )
− ST∗(u)

R(T )− 1

)
+
( ST (vu+1)

R(T )(T ) + 1
− ST∗(vu+1)

R(T )(T )

)
< t
(2

7
− 2

6
+

degT (v2) + 1

6
− deg(u) + t+ 1

5

)
+ (

2t

5
) +

t

6
− (

2t

3
)

− (
t

4
) < 0.

Case (4) D = 8:

ξad(T )− ξad(T ∗)

≤ t
(ST (v0)

εT (v0)
− ST∗(v0)

εT∗(v0)
+

ST (v1)

εT (v1)
− ST∗(v1)

εT∗(v1)

)
+
(ST (v2)

εT (v2)
− ST∗(v2)

εT∗(v2)

)
+

ST (x)− ST∗(x)

εT (x)
+

ST (v3)− ST∗(v3)

εT (v3)
+
(ST (u)

R(T )
− ST∗(u)

R(T )− 1

)
+
(ST (vu+1)

R(T ) + 1
− ST∗(vu+1)

R(T )

)
< t
(2

8
− 2

7
+

degT (v2) + 1

7
− deg(u) + t+ 1

6

)
+ (

2t

6
) +

t

7
− (

3t

4
) < 0.

Case (5) 9 ≤ D and D is odd:

ξad(T )− ξad(T ∗)

≤ t
(ST (v0)

εT (v0)
− ST∗(v0)

εT∗(v0)
+

ST (v1)

εT (v1)
− ST∗(v1)

εT∗(v1)

)
+
(ST (v2)

εT (v2)
− ST∗(v2)

εT∗(v2)

)
+

ST (x)− ST∗(x)

εT (x)
+

ST (v3)− ST∗(v3)

εT (v3)
+

ST (u)− ST∗(u)

R(T )

+
(ST (vu−1)− ST∗(vu−1)

R(T )
+

ST (vu+1)− ST∗(vu+1)

R(T ) + 1

)
≤ t
( 2

D
− 2

R(T ) + 2
+

degT (v2) + 1

D − 1
− deg(u) + t+ 1

R(T ) + 1

)
+ (

2t

D − 2
) +

t

D − 1
+

t

D − 3
− 2t

R(T )
−
( t

R(T )
+

t

R(T ) + 1

)
< 0.
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Case (6) 9 ≤ D and D is even:

ξad(T )− ξad(T ∗)

≤ t
(ST (v0)

εT (v0)
− ST∗(v0)

εT∗(v0)
+

ST (v1)

εT (v1)
− ST∗(v1)

εT∗(v1)

)
+
(ST (v2)

εT (v2)
− ST∗(v2)

εT∗(v2)

)
+

ST (x)− ST∗(x)

εT (x)
+

ST (v3)− ST∗(v3)

εT (v3)
+

ST (u)− ST∗(u)

R(T )

+
(ST (vu−1)− ST∗(vu−1)

R(T ) + 1
+

ST (vu+1)− ST∗(vu+1)

R(T ) + 1

)
≤ t
( 2

D
− 2

R(T ) + 2
+

degT (v2) + 1

D − 1
− degT (u) + t+ 1

R(T ) + 1

)
+ (

2t

D − 2
) +

t

D − 1
+

t

D − 3
− 2t

R(T )
− 2t

R(T ) + 1
< 0.

It follows from Lemma 3.1 that the starlike tree T (

n
2−1︷ ︸︸ ︷

2, . . . , 2, 1) maximizes the
value of EAI among all trees with perfect matching of order n.

Corollary 3.2. Suppose that T 6= T (

n
2−1︷ ︸︸ ︷

2, . . . , 2, 1) is a tree of order n. If T has a
perfect matching, then

ξad(T ) < ξad
(
T (

n
2−1︷ ︸︸ ︷

2, . . . , 2, 1)
)
.

Proof. Note that Transformation D decreases the diameter by at least one, and at
most two. If we apply consecutively Transformation D on T , then we eventually
arrive at a tree with perfect matching of order n and diameter four. Such a tree

is nothing but the starlike tree T (

n
2−1︷ ︸︸ ︷

2, . . . , 2, 1). Hence, by Lemma 3.1 we conclude
the result.

Example 3.3. Consider the tree T depicted in Figure 4. Applying Transfor-
mation D on T , consecutively, we obtain a sequence of trees T1, T2, T3 and

T4 = T (

8︷ ︸︸ ︷
2, . . . , 2, 1), satisfying the following:

ξad(T ) < ξad(T1) < ξad(T2) < ξad(T3) < ξad(T4).

Now by Proposition 1.1 and Corollary 3.2, we obtain a sharp upper bound for
the value of EAI among all trees with perfect matching of order n.
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v1 

v2 x 

v3 

v0 

v4 v5 v7 

T 

v6 v8 
v2 v0 

v3 

T1 

v1 

v4 

T2 

T2 

v1 
v2 v3 

v2 

v0 

v0 v1 

v3 

T3 T4 

Figure 4: A sequence of trees obtained from T applying Transformation D.

Theorem 3.4. Let T be a tree with perfect matching of order n. Then

ξad(T ) ≤ n2 + 11n− 16

12
. (4)

Equality holds in Equation (4) if and only if T = T (

n
2−1︷ ︸︸ ︷

2, . . . , 2, 1).

Conclusion In this article, we prove that among all trees of order n, the path Pn
is the unique minimal tree and the star Sn is the unique maximal tree based on the
value of EAI. Moreover, we prove that among all trees with perfect matching of

order n, the path Pn is the unique minimal tree and the starlike tree T (

n
2−1︷ ︸︸ ︷

2, . . . , 2, 1)
is the unique maximal tree based on the value of EAI.
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extremal graphs and values, Iranian J. Math. Chem. 1 (2010) 45–56,
https://doi.org/10.22052/IJMC.2010.5154.

[10] M. Ghorbani, K. Malekjani and A. Khaki, Eccentric Connectivity In-
dex of Some Dendrimer Graphs, Iranian J. Math. Chem. 3 (2012) 7–18,
https://doi.org/ 10.22052/IJMC.2012.5270.
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