Lee Weight and Generalized Lee Weight for Codes Over $\mathbb{Z}_{2^{n}}$

Farzaneh Farhang Baftani*

Abstract

Let \mathbb{Z}_{m} be the ring of integers modulo m in which $m=2^{n}$ for arbitrary n. In this paper, we will obtain a relationship between $w t_{L}(x), w t_{L}(y)$ and $w t_{L}(x+y)$ for any $x, y \in \mathbb{Z}_{m}$. Let $d_{r}^{L}(C)$ denote the r-th generalized Lee weight for code C in which C is a linear code of length n over \mathbb{Z}_{4}. Also, suppose that C_{1} and C_{2} are two codes over \mathbb{Z}_{4} and C denotes the $(u, u+v)$ construction of them. In this paper, we will obtain an upper bound for $d_{r}^{L}(C)$ for all $r, 1 \leq r \leq \operatorname{rank}(C)$. In addition, we will obtain $d_{1}^{L}(C)$ in terms of $d_{1}^{L}\left(C_{1}\right)$ and $d_{1}^{L}\left(C_{2}\right)$.

Keywords: Linear code, Hamming weight, Lee weight, Generalized Lee weight, $(u, u+v)$ - Construction of codes.

2010 Mathematics Subject Classification: 94B05, 94B65.

How to cite this article

F. Farhang Baftani, Lee weight and generalized Lee weight for codes over $\mathbb{Z}_{2^{n}}$, Math. Interdisc. Res. 8 (1) (2023) 27-33.

1. Introduction

Consider Z_{m} as the code alphabet. The Lee weight of an integer i, for $0 \leq i \leq m$, denoted by $w t_{L}(i)$, is defined as $w t_{L}(i)=\min \{i, m-i\}$. For $m=4$, namely in Z_{4}, we have $w t_{L}(0)=0, w t_{L}(1)=w t_{L}(3)=1$ and $w t_{L}(2)=2$. The Lee metric on Z_{m}^{n} is defined by

$$
w t_{L}(a)=\sum_{i=1}^{n} w t_{L}\left(a_{i}\right),
$$

[^0][^1]where, the sum is taken over N_{0}, the set of non-negative integers. Also, Lee distance is defined as $d_{L}(x, y)=w t_{L}(x-y)$. For more information, see [1].
The concept of generalized Hamming weight (GHW) introduced by V. K. Wei in [2]. After Wei, several authors worked on this topic, see [3, 4]. Moreover, generalized Lee weight (GLW) for codes over Z_{4} introduced by B. Hove in [5] for the first time. He showed that there is a relationship between GHW and GLW. After him, several authors studied this concept, see [6, 7].
A code of length n over Z_{4} is a subset of the free module Z_{4}^{n} and it is called linear if it is a Z_{4} - submodule of Z_{4}^{n}. Let C be a linear code of length n over Z_{4} and let $M(C)$ be the $|C| \times n$ array of all codewords in C. Each arbitrary column of $M(C)$, say c, corresponds to the following three cases:
i) c contains only 0 ,
ii) contains 0 and 2 equally often,
iii) c contains all elements of \mathbb{Z}_{4} equally often.

We define the Lee support weight of these columns as 0,2 and 1 , respectively. Also, we define the Lee support weight of code C, denoted by $w t_{L}(C)$, as the sum of the Lee support weights of all columns of $M(C)$. As an example, let $C=\{(0,0,0),(2,1,2),(0,3,2),(0,2,0),(2,3,2),(2,0,2),(0,1,0),(2,2,0)\}$. Hence we have

$$
M(C)=\left(\begin{array}{lll}
0 & 0 & 0 \\
2 & 1 & 2 \\
0 & 3 & 2 \\
0 & 2 & 0 \\
2 & 3 & 2 \\
2 & 0 & 2 \\
0 & 1 & 0 \\
2 & 2 & 0
\end{array}\right)
$$

If c_{i} be the i-th column of $M(C)$, then we have $w t_{L}\left(c_{1}\right)=2, w t_{L}\left(c_{2}\right)=1$ and $w t_{L}\left(c_{3}\right)=2$. Hence we obtain that $w t_{L}(C)=2+1+2=5$. For code C with one generator, say x, we have $w t_{L}(C)=w t_{L}(x)$.
Note that in Z_{8}, we cannot present the similar definition for codes. As an example, let $x=(1,3,5)$, so we have $w t_{L}(x)=1+3+3=7$. For calculating the Lee weight for submodule $C=\langle x\rangle$, we have

$$
M(C)=\left(\begin{array}{lll}
1 & 3 & 5 \\
2 & 6 & 2 \\
3 & 1 & 7 \\
4 & 4 & 4 \\
5 & 7 & 1 \\
6 & 2 & 4 \\
7 & 5 & 3 \\
0 & 0 & 0
\end{array}\right)
$$

The above matrix shows that we cannot recognize which column is made by 1 or 3 or 5 . In other words, let c_{i} denote the i-th column of $M(C)$. If we define $w t_{L}\left(c_{1}\right)=w t_{L}(1), w t_{L}\left(c_{2}\right)=w t_{L}(3)$ and $w t_{L}\left(c_{3}\right)=w t_{L}(5)$, as defined for codes over Z_{4}, then c_{1}, c_{2} and c_{3} have different Lee weights but they are the same (each of them contains all elements of Z_{8}). It is a contradiction.

Let C be a code of length n over ring Z_{4}. The rank of C, denoted by $\operatorname{rank}(C)$, is defined as the minimum number of generators of C, see [6].

For $1 \leq r \leq \operatorname{rank}(C)$, the r-th generalized Lee weight with respect to $r a n k$ (GLWR) for C, denoted by $d_{r}^{L}(C)$, is defined as follows:

$$
d_{r}^{L}(C)=\min \left\{w t_{L}(D) \mid D \text { is a } \mathbb{Z}_{4}-\operatorname{submodule} \text { of } \mathrm{C} \text { with } \operatorname{rank}(\mathrm{D})=r\right\} .
$$

A linear code C of length n and $r a n k=k$, is called an $[n, k]$ code.

2. The results

In this section, we will derive several properties of Lee weight and GLW for codes over \mathbb{Z}_{m}.

Theorem 2.1. Let C_{i} be an $\left[n, k_{i}\right]$ linear code over \mathbb{Z}_{4}, for $i=1,2$. Then the $(u, u+v)$ - construction of C_{1} and C_{2} defined by

$$
C=\left\{\left(c_{1}, c_{1}+c_{2}\right) \mid c_{1} \in C_{1}, c_{2} \in C_{2}\right\}
$$

is a $\left[2 n, k_{1}+k_{2}\right]$ linear code over \mathbb{Z}_{4}.
Proof. The proof is easy.
Theorem 2.2. [6] Let C_{1} and C_{2} be $\left[n ; k_{1}, k_{2}\right]$ codes over \mathbb{Z}_{4}. Then,

$$
w t_{L}(C)=\frac{4}{|C|} \Sigma_{x \in C}\left(w t_{L}(x)-w t(x)\right)
$$

where $w t(x)$ is the Hamming weight for a vector x.
Lemma 2.3. For any x in ring \mathbb{Z}_{m}, where m is an arbitrary power of 2, we have

$$
w t_{L}(x)= \begin{cases}x & 0 \leq x \leq m / 2 \\ m-x & x>m / 2\end{cases}
$$

Proof. From the definition of Lee weight, we have $w t_{L}(x)=\min \{x, m-x\}$. It is sufficient to investigate x and $m-x$ in all possible cases. We have the following three cases:
i) If $0 \leq x<m / 2$, noticing that m, x and Lee weight are integers, we have $m-x>m / 2$. So, x is less than $m-x$. Based on this, we obtain $\min \{x, m-x\}=x$. Therefore, $w t_{L}(x)=x$.
ii) If $x=m / 2$, then $x=m-x=m / 2$. Hence, $\min \{x, m-x\}=m / 2$ and $w t_{L}(x)=x$.
iii) If $x>m / 2$, then $m-x$ is less than x. Therefore, $\min \{x, m-x\}=m-x$. Hence, we have $w t_{L}(x)=m-x$.

Theorem 2.4. For any x and y in ring \mathbb{Z}_{m}, where m is an arbitrary power of 2, we have

$$
w t_{L}(x)+w t_{L}(y) \geq w t_{L}(x+y) \geq w t_{L}(x)-w t_{L}(y)
$$

Proof. First, we show that $w t_{L}(x)+w t_{L}(y) \geq w t_{L}(x+y)$. It is clear that it is hold when one of x, y and $x+y$ is zero, so we can assume that x, y and $x+y$ are non-zero. The following cases should be considered:

1. Let $1 \leq x, y \leq m / 2$. From Lemma 2.3, we have $w t_{L}(x)=x$ and $w t_{L}(y)=y$. We have the following subcases:
i) If $x+y \leq m / 2$, then we have $w t_{L}(x+y)=x+y$ by Lemma 2.3. Hence,

$$
w t_{L}(x)+w t_{L}(y)=w t_{L}(x+y)
$$

ii) If $x+y>m / 2$, then we have $w t_{L}(x+y)=m-x-y$ by Lemma 2.3. Since x, y and Lee weight are integers, we have $x+y \geq m-x-y$. Hence,

$$
w t_{L}(x)+w t_{L}(y) \geq w t_{L}(x+y)
$$

2. For $1 \leq x \leq m / 2$ and $m / 2<y<m$, we have $w t_{L}(x)=x$ and $w t_{L}(y)=m-y$. The following cases can be occurred:
i) If $m / 2+1 \leq x+y<m$, then $w t_{L}(x+y)=m-x-y$. Now, we have $x+m-y \geq m-x-y$. Based on this inequality,

$$
w t_{L}(x)+w t_{L}(y) \geq w t_{L}(x+y)
$$

ii) If $m<x+y \leq \frac{3}{2} m$, there exists an integer, say a, in which $x+y=m+a$ and $a \leq m / 2$. Hence, $x+y \stackrel{m}{=} a$ and $w t_{L}(x+y)=w t_{L}(a)=a$. Now, we have $x+m-y \geq x+y-m(=a)$. Hence, $w t_{L}(x)+w t_{L}(y) \geq w t_{L}(x+y)$.
3. If $m / 2<x<m$ and $m / 2<y<m$, then $w t_{L}(x)=m-x$ and $w t_{L}(y)=m-y$. Since $m+1 \leq x+y \leq 2 m-1$, there exists an integer, say a, in which $x+y=m+a$. We have the following two subcases:
i) If $a \leq \frac{m}{2}$, then we have $w t_{L}(x+y)=a$ and $2 m-(m+a) \geq a$. Now, $m-x+m-y$
is greater than or equall to a. This means that $w t_{L}(x)+w t_{L}(y) \geq w t_{L}(x+y)$.
ii) If $a>m / 2$, then $w t_{L}(x+y)=m-a$. So, $2 m-(x+y) \geq m-a$. In other words, $m-x+m-y \geq m-a$. Therefore, $w t_{L}(x)+w t_{L}(y) \geq w t_{L}(x+y)$.

Also, by the similar method for $w t_{L}(x+y)$ and $w t_{L}(x)-w t_{L}(y)$, we obtain $w t_{L}(x+y) \geq w t_{L}(x)-w t_{L}(y)$.

Corollary 2.5. For any $x, y \in Z_{4}^{n}$, we have

$$
w t_{L}(x)+w t_{L}(y) \geq w t_{L}(x+y)
$$

Remark 1. It is easy to show that for any x in ring \mathbb{Z}_{m}, we have

$$
w t_{L}((m-1) x)=w t_{L}(x)
$$

In particular, for any $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in Z_{4}^{n}$, we have

$$
w t_{L}(x)=w t_{L}(3 x)
$$

The following theorem is similar to the theorem that we have for Hamming weight [8].

Theorem 2.6. Let C_{1} and C_{2} be linear codes over \mathbb{Z}_{4} and $C=\left\{\left(c_{1}, c_{1}+c_{2}\right) \mid\right.$ $\left.c_{1} \in C_{1}, c_{2} \in C_{2}\right\}$. Then

$$
d_{1}^{L}(C)=\min \left\{2 d_{1}^{L}\left(C_{1}\right), d_{1}^{L}\left(C_{2}\right)\right\}
$$

Proof. Let $d_{1}^{L}\left(C_{1}\right)=w t_{L}\left(D_{1}\right)$ where $D_{1}=\langle x\rangle$ for x in C_{1} and let $d_{1}^{L}\left(C_{2}\right)=$ $w t_{L}\left(D_{2}\right)$ where $D_{2}=\langle y\rangle$ for y in C_{2}. We have $d_{1}^{L}\left(C_{1}\right)=w t_{L}(x)$ and $d_{1}^{L}\left(C_{2}\right)=$ $w t_{L}(y)$. Note that $(x, x) \in C$. Let $D=\langle(x, x)\rangle$. Hence, $\operatorname{rank}(D)=1$. We have $w t_{L}(D)=w t_{L}(x, x)=2 w t_{L}(x)=2 d_{1}^{L}\left(C_{1}\right)$. Also, $(0, y) \in C$. Now, let $D^{\prime}=$ $\langle(0, y)\rangle$. So, we obtain $w t_{L}\left(D^{\prime}\right)=w t_{L}(0, y)=w t_{L}(y)=d_{1}^{L}\left(C_{2}\right)$. Since D and D^{\prime} satisfy $\left\{w t_{L}(H) ; H \leqslant C, \operatorname{rank}(H)=1\right\}$ and $\min \left\{w t_{L}(H) ; H \leqslant C, \operatorname{rank}(H)=\right.$ $1\}=d_{1}^{L}\left(C_{1}\right)$, we have

$$
\begin{aligned}
& d_{1}^{L}(C) \leqslant w t_{L}(D)=2 d_{1}^{L}\left(C_{1}\right) \\
& d_{1}^{L}(C) \leqslant w t_{L}\left(D^{\prime}\right)=d_{1}^{L}\left(C_{2}\right)
\end{aligned}
$$

Therefore, we obtain

$$
\begin{equation*}
d_{1}^{L}(C) \leqslant \min \left\{2 d_{1}^{L}\left(C_{1}\right), d_{1}^{L}\left(C_{2}\right)\right\} \tag{1}
\end{equation*}
$$

On the other hand, let $d_{1}^{L}(C)=w t_{L}(H)$. So, $\operatorname{rank}(H)=1$ and $H=<(x, x+y)>$ for $x \in C_{1}$ and $y \in C_{2}$. Now,

$$
w t_{L}(H)=w t_{L}(x, x+y)=w t_{L}(x)+w t_{L}(x+y) .
$$

We have the following three cases:
i) If $x=0, y \neq 0$ then $w t_{L}(H)=w t_{L}(y) \geq d_{1}^{L}\left(C_{2}\right)$.
ii) If $x \neq 0, y=0$ then $w t_{L}(H)=2 w t_{L}(x) \geq 2 d_{1}^{L}\left(C_{1}\right)$.
iii) If $x \neq 0, y \neq 0$ then by using Remark 1 and Theorem 2.4, we have

$$
w t_{L}(H)=w t_{L}(3 x)+w t_{L}(x+y) \geq w t_{L}(4 x+y)=w t_{L}(y) \geq d_{1}^{L}\left(C_{2}\right)
$$

Finally,

$$
\begin{equation*}
d_{1}^{L}(C) \geq \min \left\{2 d_{1}^{L}\left(C_{1}\right), d_{1}^{L}\left(C_{2}\right)\right\} \tag{2}
\end{equation*}
$$

By using Equations (1) and (2), the proof is completed.
Theorem 2.7. Let C_{1} and C_{2} be linear codes over \mathbb{Z}_{4}. Let $C=\left\{\left(c_{1}, c_{1}+c_{2}\right) \mid\right.$ $\left.c_{1} \in C_{1}, c_{2} \in C_{2}\right\}$. Then

$$
d_{r}^{L}(C) \leq \min \left\{2 d_{r}^{L}\left(C_{1}\right), d_{r}^{L}\left(C_{2}\right)\right\}
$$

Proof. Supppose that $d_{r}^{L}\left(C_{1}\right)=w t_{L}\left(D_{1}\right)$ in which $D_{1}=\left\langle x_{1}, x_{2}, \ldots, x_{r}\right\rangle$ and $d_{r}^{L}\left(C_{2}\right)=$ $w t_{L}\left(D_{2}\right)$ in which $D_{2}=\left\langle y_{1}, y_{2}, \ldots, y_{r}\right\rangle$.

Let $D_{1}^{\prime}=\left\langle\left(x_{1}, x_{1}\right),\left(x_{2}, x_{2}\right), \ldots,\left(x_{r}, x_{r}\right)\right\rangle$. By using Theorem 2.2, we have

$$
\begin{aligned}
w t_{L}\left(D_{1}^{\prime}\right) & =\frac{4}{\left|D_{1}^{\prime}\right|} \Sigma_{\alpha_{1}, \ldots, \alpha_{r} \in Z_{4}}\left[w t_{L}\left(\alpha_{1}\left(x_{1}, x_{1}\right)+\ldots+\alpha_{r}\left(x_{r}, x_{r}\right)\right)\right. \\
& \left.-w t\left(\alpha_{1}\left(x_{1}, x_{1}\right)+\ldots+\alpha_{r}\left(x_{r}, x_{r}\right)\right)\right] \\
& =\frac{4}{\left|D_{1}^{\prime}\right|} \Sigma 2 w t_{L}\left(\alpha_{1} x_{1}+\ldots+\alpha_{r} x_{r}\right)-2 w t\left(\alpha_{1} x_{1}+\ldots+\alpha_{r} x_{r}\right) \\
& =\frac{2 \times 4}{\left|D_{1}\right|} \Sigma_{t \in D_{1}} w t_{L}(t)-w t(t)=2 w t_{L}\left(D_{1}\right)=2 d_{r}^{L}\left(C_{1}\right)
\end{aligned}
$$

Hence, $w t_{L}\left(D_{1}^{\prime}\right)=2 d_{r}^{L}\left(C_{1}\right)$. By using the above method for $D_{2}^{\prime}=\left\langle\left(0, y_{1}\right), \ldots,\left(0, y_{r}\right)\right\rangle$, we have $w t_{L}\left(D_{2}^{\prime}\right)=w t_{L}\left(D_{2}\right)=d_{r}^{L}\left(C_{2}\right)$. Since D_{1}^{\prime} and D_{2}^{\prime} are submodule of C of rank r in which satisfy $\left\{w t_{L}(H) ; H \leq C, \operatorname{rank}(H)=r\right\}$ and $\min \left\{w t_{L}(H) ; H \leq\right.$ $C, \operatorname{rank}(H)=r\}=d_{r}^{L}(C)$, we have

$$
d_{r}^{L}(C) \leq w t_{L}\left(D_{1}^{\prime}\right)=2 d_{r}^{L}\left(C_{1}\right), \quad d_{r}^{L}(C) \leq w t_{L}\left(D_{2}^{\prime}\right)=d_{r}^{L}\left(C_{2}\right)
$$

Finally, we obtain

$$
d_{r}^{L}(C) \leq \min \left\{2 d_{r}^{L}\left(C_{1}\right), d_{r}^{L}\left(C_{2}\right)\right\}
$$

Conflicts of Interest. The author declare that she has no conflicts of interest regarding the publication of this article.

References

[1] J. H. Van Lint, Introduction to Coding Theory, Springer- Verlag, 1999.
[2] V. K. Wei, Generalized Hamming weights for linear codes, IEEE Trans. Inform. Theory 37 (1991) 1412-1418.
[3] S. T. Dougherty and S. Han, Higher weights and generalized MDS codes, J. Korean Math. Soc. 47 (2010) 1167 - 1182, https://doi.org/10.4134/JKMS.2010.47.6.1167.
[4] F. Farhang Baftani and H. R. Maimani, The weight hierarchy of hadamard codes, Facta Univ. Ser. Math. Inform. 34 (2019) 797 - 803, https://doi.org/10.22190/FUMI1904797F.
[5] B. Hove, Generalized Lee Weight for Codes over Z/sub4, Proc. IEEE Int. Symp. Inf. Theory, Ulm, Germany, (1997) p. 203, https://doi.org/10.1109/ISIT.1997.613118.
[6] S. T. Dougherty, M. K. Gupta and K. Shiromoto, On generalized weights for codes over \mathbb{Z}_{k}, Australas. J. Combin. 31 (2005) $231-248$.
[7] B. Yildiz and Z. Odemis Ozger, A generalization of the Lee weight to $\mathbb{Z}_{p^{k}}$, TWMS J. App. Eng. Math. 2 (2012) $145-153$.
[8] S. Ling and C. Xing, Coding Theory: A First Course, Cambridge university press, 2004.

Farzaneh Farhang Baftani
Department of Mathematics,
Ardabil Branch, Islamic Azad University,
Ardabil, I. R. Iran
e-mail: far_farhang2007@yahoo.com
f.farhang@iauardabil.ac.ir

[^0]: *Corresponding author (E-mail: far_farhang2007@yahoo.com)
 Academic Editor: Reza Sharafdini
 Received 16 May 2022, Accepted 14 April 2023
 DOI: 10.22052/MIR.2023.246385.1348

[^1]: This work is licensed under the Creative Commons Attribution 4.0 International License.

