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Abstract

Let Zm be the ring of integers modulo m in which m = 2n for arbitrary
n. In this paper, we will obtain a relationship between wtL(x), wtL(y) and
wtL(x + y) for any x, y ∈ Zm. Let dLr (C) denote the r-th generalized Lee
weight for code C in which C is a linear code of length n over Z4. Also,
suppose that C1 and C2 are two codes over Z4 and C denotes the (u, u+ v)-
construction of them. In this paper, we will obtain an upper bound for dLr (C)
for all r, 1 ≤ r ≤ rank(C). In addition, we will obtain dL1 (C) in terms of
dL1 (C1) and dL1 (C2).
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1. Introduction

Consider Zm as the code alphabet. The Lee weight of an integer i, for 0 ≤ i ≤ m,
denoted by wtL(i), is defined as wtL(i) = min{i,m − i}. For m = 4, namely in
Z4, we have wtL(0) = 0, wtL(1) = wtL(3) = 1 and wtL(2) = 2 . The Lee metric
on Znm is defined by

wtL(a) = Σni=1wtL(ai),
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where, the sum is taken over N0, the set of non-negative integers. Also, Lee dis-
tance is defined as dL(x, y) = wtL(x− y). For more information, see [1].
The concept of generalized Hamming weight (GHW) introduced by V. K. Wei in
[2]. After Wei, several authors worked on this topic, see [3, 4]. Moreover, general-
ized Lee weight (GLW) for codes over Z4 introduced by B. Hove in [5] for the first
time. He showed that there is a relationship between GHW and GLW. After him,
several authors studied this concept, see [6, 7].
A code of length n over Z4 is a subset of the free module Zn4 and it is called linear
if it is a Z4− submodule of Zn4 . Let C be a linear code of length n over Z4 and
let M(C) be the |C| × n array of all codewords in C. Each arbitrary column of
M(C), say c, corresponds to the following three cases:
i) c contains only 0,
ii) c contains 0 and 2 equally often,
iii) c contains all elements of Z4 equally often.

We define the Lee support weight of these columns as 0, 2 and 1, respectively.
Also, we define the Lee support weight of code C, denoted by wtL(C), as the
sum of the Lee support weights of all columns of M(C). As an example, let
C = {(0, 0, 0), (2, 1, 2), (0, 3, 2), (0, 2, 0), (2, 3, 2), (2, 0, 2), (0, 1, 0), (2, 2, 0)}. Hence
we have

M(C) =



0 0 0
2 1 2
0 3 2
0 2 0
2 3 2
2 0 2
0 1 0
2 2 0


.

If ci be the i-th column of M(C), then we have wtL(c1) = 2, wtL(c2) = 1 and
wtL(c3) = 2. Hence we obtain that wtL(C) = 2 + 1 + 2 = 5. For code C with one
generator, say x, we have wtL(C) = wtL(x).
Note that in Z8, we cannot present the similar definition for codes. As an example,
let x = (1, 3, 5), so we have wtL(x) = 1 + 3 + 3 = 7. For calculating the Lee weight
for submodule C = 〈x〉, we have

M(C) =



1 3 5
2 6 2
3 1 7
4 4 4
5 7 1
6 2 4
7 5 3
0 0 0


.
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The above matrix shows that we cannot recognize which column is made by 1
or 3 or 5. In other words, let ci denote the i-th column of M(C). If we define
wtL(c1) = wtL(1), wtL(c2) = wtL(3) and wtL(c3) = wtL(5), as defined for codes
over Z4, then c1, c2 and c3 have different Lee weights but they are the same (each
of them contains all elements of Z8). It is a contradiction.

Let C be a code of length n over ring Z4. The rank of C, denoted by rank(C),
is defined as the minimum number of generators of C, see [6].

For 1 ≤ r ≤ rank(C), the r-th generalized Lee weight with respect to rank
(GLWR) for C, denoted by dLr (C), is defined as follows:

dLr (C) = min{wtL(D) | D is a Z4 − submodule of C with rank(D) = r}.

A linear code C of length n and rank = k, is called an [n, k] code.

2. The results
In this section, we will derive several properties of Lee weight and GLW for codes
over Zm.

Theorem 2.1. Let Ci be an [n, ki] linear code over Z4, for i = 1, 2. Then the
(u, u+ v)- construction of C1 and C2 defined by

C = {(c1, c1 + c2) | c1 ∈ C1, c2 ∈ C2},

is a [2n, k1 + k2] linear code over Z4 .

Proof. The proof is easy.

Theorem 2.2. [6] Let C1 and C2 be [n; k1, k2] codes over Z4. Then,

wtL(C) =
4

|C|
Σx∈C(wtL(x)− wt(x)),

where wt(x) is the Hamming weight for a vector x.

Lemma 2.3. For any x in ring Zm, where m is an arbitrary power of 2, we have

wtL(x) =

{
x 0 ≤ x ≤ m/2,
m− x x > m/2.

Proof. From the definition of Lee weight, we have wtL(x) = min{x,m− x}. It is
sufficient to investigate x and m − x in all possible cases. We have the following
three cases:
i) If 0 ≤ x < m/2, noticing that m,x and Lee weight are integers, we have
m−x > m/2. So, x is less thanm−x. Based on this, we obtainmin{x,m−x} = x.
Therefore, wtL(x) = x.
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ii) If x = m/2, then x = m − x = m/2. Hence, min{x,m − x} = m/2 and
wtL(x) = x.

iii) If x > m/2, then m − x is less than x. Therefore, min{x,m − x} = m − x.
Hence, we have wtL(x) = m− x.

Theorem 2.4. For any x and y in ring Zm, where m is an arbitrary power of 2,
we have

wtL(x) + wtL(y) ≥ wtL(x+ y) ≥ wtL(x)− wtL(y).

Proof. First, we show that wtL(x) + wtL(y) ≥ wtL(x + y). It is clear that it is
hold when one of x, y and x+ y is zero, so we can assume that x, y and x+ y are
non-zero. The following cases should be considered:

1. Let 1 ≤ x, y ≤ m/2. From Lemma 2.3, we have wtL(x) = x and wtL(y) = y.
We have the following subcases:

i) If x+ y ≤ m/2, then we have wtL(x+ y) = x+ y by Lemma 2.3. Hence,

wtL(x) + wtL(y) = wtL(x+ y).

ii) If x + y > m/2, then we have wtL(x + y) = m − x − y by Lemma 2.3. Since
x, y and Lee weight are integers, we have x+ y ≥ m− x− y. Hence,

wtL(x) + wtL(y) ≥ wtL(x+ y).

2. For 1 ≤ x ≤ m/2 and m/2 < y < m, we have wtL(x) = x and wtL(y) = m− y.
The following cases can be occurred:

i) If m/2 + 1 ≤ x + y < m, then wtL(x + y) = m − x − y. Now, we have
x+m− y ≥ m− x− y. Based on this inequality,

wtL(x) + wtL(y) ≥ wtL(x+ y).

ii) If m < x+ y ≤ 3

2
m, there exists an integer, say a, in which x+ y = m+ a and

a ≤ m/2. Hence, x+ y
m≡ a and wtL(x+ y) = wtL(a) = a. Now, we have

x+m− y ≥ x+ y −m(= a). Hence, wtL(x) + wtL(y) ≥ wtL(x+ y).

3. If m/2 < x < m and m/2 < y < m, then wtL(x) = m− x and wtL(y) = m− y.
Sincem+1 ≤ x+y ≤ 2m−1, there exists an integer, say a, in which x+y = m+a.
We have the following two subcases:

i) If a ≤ m

2
, then we have wtL(x+y) = a and 2m−(m+a) ≥ a. Now, m−x+m−y
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is greater than or equall to a. This means that wtL(x) + wtL(y) ≥ wtL(x+ y).

ii) If a > m/2, then wtL(x + y) = m − a. So, 2m − (x + y) ≥ m − a. In
other words, m− x+m− y ≥ m− a. Therefore, wtL(x) + wtL(y) ≥ wtL(x+ y).

Also, by the similar method for wtL(x + y) and wtL(x) − wtL(y), we obtain
wtL(x+ y) ≥ wtL(x)− wtL(y).

Corollary 2.5. For any x, y ∈ Zn4 , we have

wtL(x) + wtL(y) ≥ wtL(x+ y).

Remark 1. It is easy to show that for any x in ring Zm, we have

wtL((m− 1)x) = wtL(x).

In particular, for any x = (x1, x2, ..., xn) ∈ Zn4 , we have

wtL(x) = wtL(3x).

The following theorem is similar to the theorem that we have for Hamming weight
[8].

Theorem 2.6. Let C1 and C2 be linear codes over Z4 and C = {(c1, c1 + c2) |
c1 ∈ C1, c2 ∈ C2}. Then

dL1 (C) = min{2dL1 (C1), dL1 (C2)}.

Proof. Let dL1 (C1) = wtL(D1) where D1 = 〈x〉 for x in C1 and let dL1 (C2) =
wtL(D2) where D2 = 〈y〉 for y in C2. We have dL1 (C1) = wtL(x) and dL1 (C2) =
wtL(y). Note that (x, x) ∈ C. Let D = 〈(x, x)〉. Hence, rank(D) = 1. We have
wtL(D) = wtL(x, x) = 2wtL(x) = 2dL1 (C1). Also, (0, y) ∈ C. Now, let D′ =
〈(0, y)〉. So, we obtain wtL(D′) = wtL(0, y) = wtL(y) = dL1 (C2). Since D and
D′ satisfy {wtL(H);H 6 C, rank(H) = 1} and min{wtL(H);H 6 C, rank(H) =
1} = dL1 (C1), we have

dL1 (C) 6 wtL(D) = 2dL1 (C1),

dL1 (C) 6 wtL(D′) = dL1 (C2).

Therefore, we obtain

dL1 (C) 6 min{2dL1 (C1), dL1 (C2)}. (1)

On the other hand, let dL1 (C) = wtL(H). So, rank(H) = 1 and H =< (x, x+y) >
for x ∈ C1 and y ∈ C2. Now,

wtL(H) = wtL(x, x+ y) = wtL(x) + wtL(x+ y).
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We have the following three cases:
i) If x = 0, y 6= 0 then wtL(H) = wtL(y) ≥ dL1 (C2).
ii) If x 6= 0, y = 0 then wtL(H) = 2wtL(x) ≥ 2dL1 (C1).
iii) If x 6= 0, y 6= 0 then by using Remark 1 and Theorem 2.4, we have

wtL(H) = wtL(3x) + wtL(x+ y) ≥ wtL(4x+ y) = wtL(y) ≥ dL1 (C2).

Finally,
dL1 (C) ≥ min{2dL1 (C1), dL1 (C2)}. (2)

By using Equations (1) and (2), the proof is completed.

Theorem 2.7. Let C1 and C2 be linear codes over Z4. Let C = {(c1, c1 + c2) |
c1 ∈ C1, c2 ∈ C2}. Then

dLr (C) ≤ min{2dLr (C1), dLr (C2)}.

Proof. Supppose that dLr (C1) = wtL(D1) in whichD1 = 〈x1, x2, ..., xr〉 and dLr (C2) =
wtL(D2) in which D2 = 〈y1, y2, ..., yr〉.

Let D′
1 = 〈(x1, x1), (x2, x2), ..., (xr, xr)〉. By using Theorem 2.2, we have

wtL(D′
1) =

4

|D′
1|

Σα1,...,αr∈Z4
[wtL(α1(x1, x1) + ...+ αr(xr, xr))

− wt(α1(x1, x1) + ...+ αr(xr, xr))]

=
4

|D′
1|

Σ2wtL(α1x1 + ...+ αrxr)− 2wt(α1x1 + ...+ αrxr)

=
2× 4

|D1|
Σt∈D1

wtL(t)− wt(t) = 2wtL(D1) = 2dLr (C1).

Hence, wtL(D′
1) = 2dLr (C1). By using the above method forD′

2 = 〈(0, y1), . . . , (0, yr)〉,
we have wtL(D′

2) = wtL(D2) = dLr (C2). Since D′
1 and D′

2 are submodule of C of
rank r in which satisfy {wtL(H);H ≤ C, rank(H) = r} and min{wtL(H);H ≤
C, rank(H) = r} = dLr (C), we have

dLr (C) ≤ wtL(D′
1) = 2dLr (C1), dLr (C) ≤ wtL(D′

2) = dLr (C2).

Finally, we obtain
dLr (C) ≤ min{2dLr (C1), dLr (C2)}.
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