Original Scientific Paper

Lee Weight and Generalized Lee Weight for Codes Over \mathbb{Z}_{2^n}

Farzaneh Farhang Baftani*

Abstract

Let \mathbb{Z}_m be the ring of integers modulo m in which $m = 2^n$ for arbitrary n. In this paper, we will obtain a relationship between $wt_L(x), wt_L(y)$ and $wt_L(x+y)$ for any $x, y \in \mathbb{Z}_m$. Let $d_r^L(C)$ denote the r-th generalized Lee weight for code C in which C is a linear code of length n over \mathbb{Z}_4 . Also, suppose that C_1 and C_2 are two codes over \mathbb{Z}_4 and C denotes the (u, u+v)-construction of them. In this paper, we will obtain an upper bound for $d_r^L(C)$ for all $r, 1 \leq r \leq rank(C)$. In addition, we will obtain $d_1^L(C)$ in terms of $d_1^L(C_1)$ and $d_1^L(C_2)$.

Keywords: Linear code, Hamming weight, Lee weight, Generalized Lee weight, (u, u + v)- Construction of codes.

2010 Mathematics Subject Classification: 94B05, 94B65.

How to cite this article

F. Farhang Baftani, Lee weight and generalized Lee weight for codes over \mathbb{Z}_{2^n} , Math. Interdisc. Res. 8 (1) (2023) 27-33.

1. Introduction

Consider Z_m as the code alphabet. The Lee weight of an integer i, for $0 \le i \le m$, denoted by $wt_L(i)$, is defined as $wt_L(i) = \min\{i, m - i\}$. For m = 4, namely in Z_4 , we have $wt_L(0) = 0, wt_L(1) = wt_L(3) = 1$ and $wt_L(2) = 2$. The Lee metric on Z_m^n is defined by

$$wt_L(a) = \sum_{i=1}^n wt_L(a_i),$$

*Corresponding author (E-mail: far_farhang2007@yahoo.com) Academic Editor: Reza Sharafdini Received 16 May 2022, Accepted 14 April 2023 DOI: 10.22052/MIR.2023.246385.1348

© 2023 University of Kashan

E This work is licensed under the Creative Commons Attribution 4.0 International License.

where, the sum is taken over N_0 , the set of non-negative integers. Also, Lee distance is defined as $d_L(x, y) = wt_L(x - y)$. For more information, see [1].

The concept of generalized Hamming weight (GHW) introduced by V. K. Wei in [2]. After Wei, several authors worked on this topic, see [3, 4]. Moreover, generalized Lee weight (GLW) for codes over Z_4 introduced by B. Hove in [5] for the first time. He showed that there is a relationship between GHW and GLW. After him, several authors studied this concept, see [6, 7].

A code of length n over Z_4 is a subset of the free module Z_4^n and it is called linear if it is a Z_4 - submodule of Z_4^n . Let C be a linear code of length n over Z_4 and let M(C) be the $|C| \times n$ array of all codewords in C. Each arbitrary column of M(C), say c, corresponds to the following three cases:

i) c contains only 0,

ii) c contains 0 and 2 equally often,

iii) c contains all elements of \mathbb{Z}_4 equally often.

We define the Lee support weight of these columns as 0, 2 and 1, respectively. Also, we define the Lee support weight of code C, denoted by $wt_L(C)$, as the sum of the Lee support weights of all columns of M(C). As an example, let $C = \{(0,0,0), (2,1,2), (0,3,2), (0,2,0), (2,3,2), (2,0,2), (0,1,0), (2,2,0)\}$. Hence we have

$$M(C) = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 1 & 2 \\ 0 & 3 & 2 \\ 0 & 2 & 0 \\ 2 & 3 & 2 \\ 2 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 2 & 0 \end{pmatrix}.$$

If c_i be the *i*-th column of M(C), then we have $wt_L(c_1) = 2$, $wt_L(c_2) = 1$ and $wt_L(c_3) = 2$. Hence we obtain that $wt_L(C) = 2 + 1 + 2 = 5$. For code C with one generator, say x, we have $wt_L(C) = wt_L(x)$.

Note that in Z_8 , we cannot present the similar definition for codes. As an example, let x = (1, 3, 5), so we have $wt_L(x) = 1 + 3 + 3 = 7$. For calculating the Lee weight for submodule $C = \langle x \rangle$, we have

$$M(C) = \begin{pmatrix} 1 & 3 & 5\\ 2 & 6 & 2\\ 3 & 1 & 7\\ 4 & 4 & 4\\ 5 & 7 & 1\\ 6 & 2 & 4\\ 7 & 5 & 3\\ 0 & 0 & 0 \end{pmatrix}.$$

The above matrix shows that we cannot recognize which column is made by 1 or 3 or 5. In other words, let c_i denote the *i*-th column of M(C). If we define $wt_L(c_1) = wt_L(1), wt_L(c_2) = wt_L(3)$ and $wt_L(c_3) = wt_L(5)$, as defined for codes over Z_4 , then c_1, c_2 and c_3 have different Lee weights but they are the same (each of them contains all elements of Z_8). It is a contradiction.

Let C be a code of length n over ring Z_4 . The rank of C, denoted by rank(C), is defined as the minimum number of generators of C, see [6].

For $1 \leq r \leq rank(C)$, the *r*-th generalized Lee weight with respect to rank (GLWR) for *C*, denoted by $d_r^L(C)$, is defined as follows:

$$d_r^L(C) = min\{wt_L(D) \mid D \text{ is a } \mathbb{Z}_4 - \text{submodule of } C \text{ with } rank(D) = r\}.$$

A linear code C of length n and rank = k, is called an [n, k] code.

2. The results

In this section, we will derive several properties of Lee weight and GLW for codes over \mathbb{Z}_m .

Theorem 2.1. Let C_i be an $[n, k_i]$ linear code over \mathbb{Z}_4 , for i = 1, 2. Then the (u, u + v)- construction of C_1 and C_2 defined by

$$C = \{ (c_1, c_1 + c_2) \mid c_1 \in C_1, c_2 \in C_2 \},\$$

is a $[2n, k_1 + k_2]$ linear code over \mathbb{Z}_4 .

Proof. The proof is easy.

Theorem 2.2. [6] Let C_1 and C_2 be $[n; k_1, k_2]$ codes over \mathbb{Z}_4 . Then,

$$wt_L(C) = \frac{4}{|C|} \Sigma_{x \in C}(wt_L(x) - wt(x)),$$

where wt(x) is the Hamming weight for a vector x.

Lemma 2.3. For any x in ring \mathbb{Z}_m , where m is an arbitrary power of 2, we have

$$wt_L(x) = \begin{cases} x & 0 \le x \le m/2, \\ m-x & x > m/2. \end{cases}$$

Proof. From the definition of Lee weight, we have $wt_L(x) = min\{x, m - x\}$. It is sufficient to investigate x and m - x in all possible cases. We have the following three cases:

i) If $0 \le x < m/2$, noticing that m, x and Lee weight are integers, we have m-x > m/2. So, x is less than m-x. Based on this, we obtain $min\{x, m-x\} = x$. Therefore, $wt_L(x) = x$.

ii) If x = m/2, then x = m - x = m/2. Hence, $min\{x, m - x\} = m/2$ and $wt_L(x) = x$.

iii) If x > m/2, then m - x is less than x. Therefore, $min\{x, m - x\} = m - x$. Hence, we have $wt_L(x) = m - x$.

Theorem 2.4. For any x and y in ring \mathbb{Z}_m , where m is an arbitrary power of 2, we have

$$wt_L(x) + wt_L(y) \ge wt_L(x+y) \ge wt_L(x) - wt_L(y).$$

Proof. First, we show that $wt_L(x) + wt_L(y) \ge wt_L(x+y)$. It is clear that it is hold when one of x, y and x + y is zero, so we can assume that x, y and x + y are non-zero. The following cases should be considered:

1. Let $1 \le x, y \le m/2$. From Lemma 2.3, we have $wt_L(x) = x$ and $wt_L(y) = y$. We have the following subcases:

i) If $x + y \le m/2$, then we have $wt_L(x + y) = x + y$ by Lemma 2.3. Hence,

$$wt_L(x) + wt_L(y) = wt_L(x+y)$$

ii) If x + y > m/2, then we have $wt_L(x + y) = m - x - y$ by Lemma 2.3. Since x, y and Lee weight are integers, we have $x + y \ge m - x - y$. Hence,

$$wt_L(x) + wt_L(y) \ge wt_L(x+y).$$

2. For $1 \le x \le m/2$ and m/2 < y < m, we have $wt_L(x) = x$ and $wt_L(y) = m - y$. The following cases can be occurred:

i) If $m/2 + 1 \leq x + y < m$, then $wt_L(x + y) = m - x - y$. Now, we have $x + m - y \geq m - x - y$. Based on this inequality,

$$wt_L(x) + wt_L(y) \ge wt_L(x+y)$$

ii) If $m < x + y \le \frac{3}{2}m$, there exists an integer, say a, in which x + y = m + a and $a \le m/2$. Hence, $x + y \stackrel{m}{\equiv} a$ and $wt_L(x + y) = wt_L(a) = a$. Now, we have $x + m - y \ge x + y - m(=a)$. Hence, $wt_L(x) + wt_L(y) \ge wt_L(x + y)$.

3. If m/2 < x < m and m/2 < y < m, then $wt_L(x) = m - x$ and $wt_L(y) = m - y$. Since $m+1 \le x+y \le 2m-1$, there exists an integer, say a, in which x+y = m+a. We have the following two subcases:

i) If
$$a \leq \frac{m}{2}$$
, then we have $wt_L(x+y) = a$ and $2m - (m+a) \geq a$. Now, $m - x + m - y$

is greater than or equall to a. This means that $wt_L(x) + wt_L(y) \ge wt_L(x+y)$.

ii) If a > m/2, then $wt_L(x+y) = m-a$. So, $2m - (x+y) \ge m-a$. In other words, $m-x+m-y \ge m-a$. Therefore, $wt_L(x) + wt_L(y) \ge wt_L(x+y)$.

Also, by the similar method for $wt_L(x + y)$ and $wt_L(x) - wt_L(y)$, we obtain $wt_L(x + y) \ge wt_L(x) - wt_L(y)$.

Corollary 2.5. For any $x, y \in \mathbb{Z}_4^n$, we have

$$wt_L(x) + wt_L(y) \ge wt_L(x+y).$$

Remark 1. It is easy to show that for any x in ring \mathbb{Z}_m , we have

$$wt_L((m-1)x) = wt_L(x).$$

In particular, for any $x = (x_1, x_2, ..., x_n) \in \mathbb{Z}_4^n$, we have

$$wt_L(x) = wt_L(3x).$$

The following theorem is similar to the theorem that we have for Hamming weight [8].

Theorem 2.6. Let C_1 and C_2 be linear codes over \mathbb{Z}_4 and $C = \{(c_1, c_1 + c_2) \mid c_1 \in C_1, c_2 \in C_2\}$. Then

$$d_1^L(C) = min\{2d_1^L(C_1), d_1^L(C_2)\}.$$

Proof. Let $d_1^L(C_1) = wt_L(D_1)$ where $D_1 = \langle x \rangle$ for x in C_1 and let $d_1^L(C_2) = wt_L(D_2)$ where $D_2 = \langle y \rangle$ for y in C_2 . We have $d_1^L(C_1) = wt_L(x)$ and $d_1^L(C_2) = wt_L(y)$. Note that $(x,x) \in C$. Let $D = \langle (x,x) \rangle$. Hence, rank(D) = 1. We have $wt_L(D) = wt_L(x,x) = 2wt_L(x) = 2d_1^L(C_1)$. Also, $(0,y) \in C$. Now, let $D' = \langle (0,y) \rangle$. So, we obtain $wt_L(D') = wt_L(0,y) = wt_L(y) = d_1^L(C_2)$. Since D and D' satisfy $\{wt_L(H); H \leq C, rank(H) = 1\}$ and $min\{wt_L(H); H \leq C, rank(H) = 1\}$

$$d_1^L(C) \leq wt_L(D) = 2d_1^L(C_1),$$

 $d_1^L(C) \leq wt_L(D') = d_1^L(C_2).$

Therefore, we obtain

$$d_1^L(C) \leqslant \min\{2d_1^L(C_1), d_1^L(C_2)\}.$$
(1)

On the other hand, let $d_1^L(C) = wt_L(H)$. So, rank(H) = 1 and $H = \langle (x, x+y) \rangle$ for $x \in C_1$ and $y \in C_2$. Now,

$$wt_L(H) = wt_L(x, x+y) = wt_L(x) + wt_L(x+y).$$

We have the following three cases:

i) If $x = 0, y \neq 0$ then $wt_L(H) = wt_L(y) \ge d_1^L(C_2)$. ii) If $x \neq 0, y = 0$ then $wt_L(H) = 2wt_L(x) \ge 2d_1^L(C_1)$. iii) If $x \neq 0, y \neq 0$ then by using Remark 1 and Theorem 2.4, we have

$$wt_L(H) = wt_L(3x) + wt_L(x+y) \ge wt_L(4x+y) = wt_L(y) \ge d_1^L(C_2).$$

Finally,

$$d_1^L(C) \ge \min\{2d_1^L(C_1), d_1^L(C_2)\}.$$
(2)

By using Equations (1) and (2), the proof is completed.

Theorem 2.7. Let C_1 and C_2 be linear codes over \mathbb{Z}_4 . Let $C = \{(c_1, c_1 + c_2) \mid c_1 \in C_1, c_2 \in C_2\}$. Then

$$d_r^L(C) \le min\{2d_r^L(C_1), d_r^L(C_2)\}\$$

Proof. Suppose that $d_r^L(C_1) = wt_L(D_1)$ in which $D_1 = \langle x_1, x_2, ..., x_r \rangle$ and $d_r^L(C_2) = wt_L(D_2)$ in which $D_2 = \langle y_1, y_2, ..., y_r \rangle$.

Let $D'_1 = \langle (x_1, x_1), (x_2, x_2), ..., (x_r, x_r) \rangle$. By using Theorem 2.2, we have

$$\begin{split} wt_L(D'_1) &= \frac{4}{|D'_1|} \Sigma_{\alpha_1,\dots,\alpha_r \in Z_4} [wt_L(\alpha_1(x_1,x_1) + \dots + \alpha_r(x_r,x_r)) \\ &- wt(\alpha_1(x_1,x_1) + \dots + \alpha_r(x_r,x_r))] \\ &= \frac{4}{|D'_1|} \Sigma 2wt_L(\alpha_1x_1 + \dots + \alpha_rx_r) - 2wt(\alpha_1x_1 + \dots + \alpha_rx_r) \\ &= \frac{2 \times 4}{|D_1|} \Sigma_{t \in D_1} wt_L(t) - wt(t) = 2wt_L(D_1) = 2d_r^L(C_1). \end{split}$$

Hence, $wt_L(D'_1) = 2d_r^L(C_1)$. By using the above method for $D'_2 = \langle (0, y_1), \ldots, (0, y_r) \rangle$, we have $wt_L(D'_2) = wt_L(D_2) = d_r^L(C_2)$. Since D'_1 and D'_2 are submodule of C of rank r in which satisfy $\{wt_L(H); H \leq C, rank(H) = r\}$ and $min\{wt_L(H); H \leq C, rank(H) = r\} = d_r^L(C)$, we have

$$d_r^L(C) \le wt_L(D_1') = 2d_r^L(C_1), \quad d_r^L(C) \le wt_L(D_2') = d_r^L(C_2).$$

Finally, we obtain

$$d_r^L(C) \le \min\{2d_r^L(C_1), d_r^L(C_2)\}.$$

Conflicts of Interest. The author declare that she has no conflicts of interest regarding the publication of this article.

References

[1] J. H. Van Lint, Introduction to Coding Theory, Springer- Verlag, 1999.

- [2] V. K. Wei, Generalized Hamming weights for linear codes, *IEEE Trans. In*form. Theory 37 (1991) 1412 - 1418.
- [3] S. T. Dougherty and S. Han, Higher weights and generalized MDS codes, J. Korean Math. Soc. 47 (2010) 1167 – 1182, https://doi.org/10.4134/JKMS.2010.47.6.1167.
- [4] F. Farhang Baftani and H. R. Maimani, The weight hierarchy of hadamard codes, *Facta Univ. Ser. Math. Inform.* **34** (2019) 797 – 803, https://doi.org/10.22190/FUMI1904797F.
- [5] B. Hove, Generalized Lee Weight for Codes over Z/sub4, Proc. IEEE Int. Symp. Inf. Theory, Ulm, Germany, (1997) p. 203, https://doi.org/10.1109/ISIT.1997.613118.
- [6] S. T. Dougherty, M. K. Gupta and K. Shiromoto, On generalized weights for codes over Z_k, Australas. J. Combin. **31** (2005) 231 − 248.
- [7] B. Yildiz and Z. Odemis Ozger, A generalization of the Lee weight to \mathbb{Z}_{p^k} , TWMS J. App. Eng. Math. 2 (2012) 145 153.
- [8] S. Ling and C. Xing, *Coding Theory: A First Course*, Cambridge university press, 2004.

Farzaneh Farhang Baftani Department of Mathematics, Ardabil Branch, Islamic Azad University, Ardabil, I. R. Iran e-mail: far_farhang2007@yahoo.com f.farhang@iauardabil.ac.ir