Original Scientific Paper

On w-Neat Rings

Fatemeh Rashedi*

Abstract

In this paper, a novel generalization of the neat ring known as w-neat ring is investigated. Let R be a ring, R is called cleaned poorly (weakly clean), if for every $x \in R$, we have x = u + e or x = u - e, where $u \in U(R)$ and $e \in Id(R)$. In particular, if all homomorphic images of R are considered cleaned poorly, then R is said to be w-neat. We present some properties of w-neat rings.

Keywords: Clean ring, Cleaned poorly ring, w-Neat ring.

2010 Mathematics Subject Classification: 16U99, 16Z05.

How to cite this article F. Rashedi, On *w*-neat rings, *Math. Interdisc. Res.* 8 (1) (2023) 65-70.

1. Introduction

Assume that R is a commutative ring that has an identity. If for every $x \in R$ with x = u + e where $u \in U(R)$ and $e \in Id(R)$, then R is clean [1]. Every clean ring is considered an exchange ring [1]. Also, if all proper homomorphic images are clean, then R is neat [2]. For every $x \in R$, x = u + e or x = u - e where $u \in U(R)$ and $e \in Id(R)$, then R is cleaned poorly (weakly clean) [3–6]. In [3] it is shown that all homomorphic images on cleaned poorly ring is again cleaned poorly. So a w-neat ring is defined. If all proper homomorphic images of R is cleaned poorly, then R is a w-neat. We will obtain some properties of w-neat rings.

© 2023 University of Kashan

E This work is licensed under the Creative Commons Attribution 4.0 International License.

^{*}Corresponding author (E-mail: frashedi@tvu.ac.ir)

Academic Editor: Mojtaba Sedaghatjoo

Received 3 October 2022, Accepted 3 November 2022 DOI: 10.22052/MIR.2022.248393.1375

2. Main results

Since all the homomorphic images of a cleaned poorly ring is cleaned poorly, a w-neat ring is defined as follows.

Definition 2.1. Assume that R is a ring. Then R is called w-neat if every proper homomorphic image is a cleaned poorly ring.

It is clear that all neat ring is w-neat. However by the next example the converse is not generally holds.

Example 2.2. Let $R = \mathbb{Z}_{(3)} \cap \mathbb{Z}_{(5)} = \{x/s \mid x, s \in \mathbb{Z}, s \neq 0, 3 \nmid s, 5 \nmid s\}$. Then by [3], R is a cleaned poorly ring. Since all the homomorphic image on a cleaned poorly ring is again cleaned poorly, R is a *w*-neat ring. But, R is not considered as clean because a indecomposable ring is considered local, by [7, Theorem 3]. Thus, R is not a neat ring.

Lemma 2.3. Let I be an ideal of R. Then, R/I is a w-neat ring.

Proof. It is straightforward.

Let $P_0 \subset P_1 \subset \cdots \subset P_n$ be a chain of prime ideals of length n. Then the supremum of all chains of prime ideals length in R is Krull dimension of R. The Krull dimension of a R ring is indicated by dim(R) [8].

Lemma 2.4. Assume that R is a domain of dim(R) = 1. Then, R is w-neat.

Proof. Given that R is a dim(R) = 1 domain, the Krull dimension of all homomorphic image of R is equal to zero. Hence every homomorphic image in R is considered cleaned poorly, by [7, Corollary 11]. Therefore, R is w-neat.

Corollary 2.5. Every *PID* is a *w*-neat ring.

Proof. According to Lemma 2.4, it is obtained.

The following example shows that every w-neat ring is generally not to be a cleaned poorly ring.

Example 2.6. Assume A is a field and R = A[x, y]. Hence $R/Ry \cong A[x]$ is considered not cleaned poorly, by [3, Theorem 1.9]. So R is not w-neat. Therefore, A[x] is w-neat by Lemma 2.4 which is not weakly clean.

Lemma 2.7. Suppose that R is a *w*-neat ring considered not cleaned poorly. Then R is reduced.

Proof. Assume that R is a w-neat ring which is considered not cleaned poorly and $Nil(R) \neq 0$. Because R is a w-neat ring, R/Nil(R) is cleaned poorly. So by [3, Theorem 1.9] R is cleaned poorly, which is impossible. Therefore, Nil(R) = 0. \Box

Theorem 2.8. With a ring R, the sentences below are the same:

- (1) R is a w-neat ring.
- (2) The ring R/xR is cleaned poorly for every $0 \neq x \in R$.
- (3) If $\{P_{\lambda}\}_{\lambda \in \Lambda}$ is a family of nonzero prime ideals of R and $Q = \bigcap_{\lambda \in \Lambda} P_{\lambda} \neq 0$, then R/Q is considered cleaned poorly.
- (4) The ring R/xR is w-neat for every $x \in R$.
- (5) R/Q is a cleaned poorly ring for all nonzero semiprime ideal Q of R.

Proof. Similar to [2, Proposition 2.1].

Proposition 2.9. If $R = A \oplus B$ for a few A and B ideal of R so that either A or B is not clean, then R is w-neat only when R is cleaned poorly.

Proof. Assume that there are nonzero ideals A and B of R so that $R = A \oplus M$. Let R be a *w*-neat ring. Then $B \cong R/A$ and $A \cong R/B$ are cleaned poorly, and thus R is a product directly from cleaned poorly rings. Therefore by [3, Theorem 1.7], R cleaned poorly. Conversely, is clear.

Assume that M is an R-module and R is a ring. If all the family of cosets attaining limited intersection property with nonempty intersection, then M is an R-module that is compact linearly. It is clear that a homomorphic image of an R-module is compact linearly [8]. If R is a linearly compact R-module, R is said to be maximal. Artinian rings are maximal. If R/A is a R-module that is linearly compact for all nonzero ideal A of R, then R is said to be almost maximal [8, 9].

Let M be an R-module. If every family of cosets with the finite intersection property has nonempty intersection, then M is called a linearly compact R-module. It is clear that a homomorphic image of a linearly compact R-module is linearly compact [8]. If R is a linearly compact R-module, then R is said to be maximal. It is clear that Artinian rings are maximal. If R/A is a linearly compact R-module for every nonzero ideal A of R, then R is said to be almost maximal [8, 9].

Theorem 2.10 (Zelinsky). With R as a maximal ring, then $R = R_1 \times \cdots \times R_n$ so that all $R_i (1 \le i \le n)$ is considered a local ring.

Corollary 2.11. If R is a maximal ring, then R is cleaned poorly. Moreover, if R is an almost maximal ring, then R is *w*-neat.

Proof. By Theorem 2.10, $R = R_1 \times \cdots \times R_n$. Thus, every $R_i (1 \le i \le n)$ is a local ring. Since every local ring is cleaned poorly, by [7, Proposition 2], every maximal ring is cleaned poorly and every almost maximal ring is *w*-neat.

It is known that if all prime ideal of a ring R is limited to a maximal ideal that is unique, then R is a pm-ring [10].

Assume R is a ring. If all elements in R are limited to a finite number of maximal ideals and every proper homomorphic image of R is a pm-ring, then R is h-local

[8]. Also, if each limited generated ideal of R is principal, then R is a Bezout ring [8].

A ring R is said to be a torch ring if it meets:

- (1) R is not local.
- (2) There exists one minimal prime ideal P of R which is unique where is not zero and the R-submodule creates a chain.
- (3) R/P is an h-local domain.
- (4) R is almost locally maximal Bezout ring.

To study the examples of a torch ring, see [8].

Theorem 2.12. If R is a commutative torch ring so that $Id(R) = \{1\}$ and $2 \in U(R)$, then R is never w-neat.

Proof. Assume P is minimal unique prime ideal of a torch ring R. Suppose that R is w-neat. Hence R/P is a cleaned poorly ring which $Id(R/P) = \{1 + P\}$ and $2 + P \in U(R/P)$. Therefore by [3, Theorem 1.6], R is a local ring, which is a contradiction.

Assume R a ring and all finitely generated R-module $M \cong \bigoplus K_i$ such that every K_i is a cyclic R-module. Then R is considered an FGC ring [11].

Theorem 2.13 (Brandal). A ring R is an FGC-ring if and only if $R = R_1 \times \cdots \times R_n$ such that, among the following sentences, one is true.

- (1) Every $R_i (1 \le i \le n)$ is a maximal valuation ring.
- (2) Every $R_i (1 \le i \le n)$ is a almost maximal Bezout domain.
- (3) Every $R_i (1 \le i \le n)$ is a torch ring.

Proof. According to [8, Theorem 9.1], it is obtained.

Theorem 2.14. Assume that R is a commutative FGC-ring where $Id(R) = \{1\}$ and $2 \in U(R)$. Therefore, R is cleaned poorly if and only if $R = R_1 \times \cdots \times R_n$ so that each $R_i(1 \le i \le n)$ is a local ring. In particular each $R_i(1 \le i \le n)$ are almost maximal valuation ring.

Proof. Assume that $R = R_1 \times \cdots \times R_n$ so that every $R_i (1 \le i \le n)$ is considered a local ring. Thus, R is considered a ring, which is cleaned poorly. Moreover, assume that R is a cleaned poorly FGC-ring. Because R is FGC, $R = R_1 \times \cdots \times R_n$ so that $R_i (1 \le i \le n)$ is a ring introduced in Theorem 2.13. Since R is cleaned poorly, each $R_i (1 \le i \le n)$ is cleaned poorly. Based on Theorem 2.12, there is no torch ring in $R_i (1 \le i \le n)$ and thus each $R_i (1 \le i \le n)$ is a maximal Bezout domain or maximal valuation ring. By Theorem 2.10, a maximal valuation ring and a cleaned poorly domain is local. Since every local Bezout domain is a valuation domain, R is a finite direct product of almost maximal valuation rings. \Box

Lemma 2.15. Assume that R is an FGC-ring. Then R is w-neat if and only if R is either or an almost maximal Bezout domain that is not local or cleaned poorly.

Proof. Suppose that R is a *w*-neat FGC-ring. By Proposition 2.9, R is a cleaned poorly ring. Conversely, assume that R is *w*-neat that such that R is not cleaned poorly. Thus R is not local and so R is indecomposable. Now, R can be an almost maximal Bezout domain or a maximal valuation ring. However, it may not be a maximal ring as it means it is cleaned poorly. Therefore, R is a non-local almost maximal Bezout domain.

Corollary 2.16. Every *FGC*-domain is *w*-neat.

Conflicts of Interest. The author declare that she has no conflicts of interest regarding the publication of this article.

Acknowledgments. The author thanks the respected referees who carefully read the article.

References

- W. K. Nicholson, Lifting idempotents and exchange rings, *Trans. Amer. Math. Soc.* 229 (1977) 269-278, https://doi.org/10.1090/S0002-9947-1977-0439876-2.
- W. Wm. McGovern, Neat rings, J. Pure Appl. Algebra 205 (2006) 243 265, https://doi.org/10.1016/j.jpaa.2005.07.012.
- [3] M. S. Ahn and D. D. Anderson, Weakly clean rings and almost clean rings, *Rocky Mountain J. Math.* 36 (2006) 783 – 798, https://doi.org/10.1216/rmjm/1181069429.
- [4] A. Y. M. Chin and K. T. Qua, A note on weakly clean rings, Acta Math Hung. 132 (2011) 113 – 116, https://doi.org/10.1007/s10474-011-0100-8.
- [5] P. V. Danchev, On weakly clean and weakly exchange rings having the strong property, *Publ. Inst. Math. (Beograd)* (N.S.) **101** (2017) 135 – 142, https://doi.org/10.2298/PIM1715135D.
- [6] T. Kosan, S. Sahinkaya and Y. Zhou, On weakly clean rings, Comm. Algebra 45 (2017) 3494 3502, https://doi.org/10.1080/00927872.2016.1237640.
- [7] D. D. Anderson and V. P. Camillo, Commutative rings whose elements are a sum of a unit and an idempotent, *Comm. Algebra* **30** (2002) 3327 – 3336, https://doi.org/10.1081/AGB-120004490.
- [8] W. Brandal, Commutative Rings Whose Finitely Generated Modules Decompose, Lecture Notes in Mathematics, Springer, Berlin, 1979.

- [9] L. Fuchs and L. Salce, *Modules over Non-Noetherian Domains, Mathematical Surveys and Monographs*, American Mathematical Society, Providence, 2001.
- [10] G. De Marco and A. Orsatti, Commutative rings in which every prime ideal is contained in a unique maximal ideal, *Proc. Amer. Math. Soc.* **30** (1971) 459 – 466, https://doi.org/10.2307/2037716.
- [11] I. Kaplansky, Modules over dedekind rings and valuation rings, Trans. Amer. Math. Soc. 72 (1952) 327 - 340.

Fatemeh Rashedi Department of Mathematics, Technical and Vocational University (TVU), Tehran, Iran e-mail: frashedi@tvu.ac.ir