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On w-Neat Rings
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Abstract

In this paper, a novel generalization of the neat ring known as w-neat
ring is investigated. Let R be a ring, R is called cleaned poorly (weakly
clean), if for every x ∈ R, we have x = u+ e or x = u− e, where u ∈ U(R)
and e ∈ Id(R). In particular, if all homomorphic images of R are considered
cleaned poorly, then R is said to be w-neat. We present some properties of
w-neat rings.
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1. Introduction

Assume that R is a commutative ring that has an identity. If for every x ∈ R with
x = u+ e where u ∈ U(R) and e ∈ Id(R), then R is clean [1]. Every clean ring is
considered an exchange ring [1]. Also, if all proper homomorphic images are clean,
then R is neat [2]. For every x ∈ R , x = u+ e or x = u− e where u ∈ U(R) and
e ∈ Id(R), then R is cleaned poorly (weakly clean) [3–6]. In [3] it is shown that all
homomorphic images on cleaned poorly ring is again cleaned poorly. So a w-neat
ring is defined. If all proper homomorphic images of R is cleaned poorly, then R
is a w-neat. We will obtain some properties of w-neat rings.
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2. Main results
Since all the homomorphic images of a cleaned poorly ring is cleaned poorly, a
w-neat ring is defined as follows.

Definition 2.1. Assume that R is a ring. Then R is called w-neat if every proper
homomorphic image is a cleaned poorly ring.

It is clear that all neat ring is w-neat. However by the next example the
converse is not generally holds.

Example 2.2. Let R = Z(3) ∩ Z(5) = {x/s | x, s ∈ Z, s 6= 0 , 3 - s, 5 - s}. Then
by [3], R is a cleaned poorly ring. Since all the homomorphic image on a cleaned
poorly ring is again cleaned poorly, R is a w-neat ring. But, R is not considered as
clean because a indecomposable ring is considered local, by [7, Theorem 3]. Thus,
R is not a neat ring.

Lemma 2.3. Let I be an ideal of R. Then, R/I is a w-neat ring.

Proof. It is straightforward.

Let P0 ⊂ P1 ⊂ · · · ⊂ Pn be a chain of prime ideals of length n. Then the
supremum of all chains of prime ideals length in R is Krull dimension of R. The
Krull dimension of a R ring is indicated by dim(R) [8].

Lemma 2.4. Assume that R is a domain of dim(R) = 1. Then, R is w-neat.

Proof. Given that R is a dim(R) = 1 domain, the Krull dimension of all homo-
morphic image of R is equal to zero. Hence every homomorphic image in R is
considered cleaned poorly, by [7, Corollary 11]. Therefore, R is w-neat.

Corollary 2.5. Every PID is a w-neat ring.

Proof. According to Lemma 2.4, it is obtained.

The following exapmle shows that every w-neat ring is generally not to be a
cleaned poorly ring.

Example 2.6. Assume A is a field and R = A[x, y]. Hence R/Ry ∼= A[x] is
considered not cleaned poorly, by [3, Theorem 1.9]. So R is not w-neat. Therefore,
A[x] is w-neat by Lemma 2.4 which is not weakly clean.

Lemma 2.7. Suppose that R is a w-neat ring considered not cleaned poorly.
Then R is reduced.

Proof. Assume that R is a w-neat ring which is considered not cleaned poorly and
Nil(R) 6= 0. Because R is a w-neat ring, R/Nil(R) is cleaned poorly. So by [3,
Theorem 1.9] R is cleaned poorly, which is impossible. Therefore, Nil(R) = 0.

Theorem 2.8. With a ring R, the sentences below are the same:
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(1) R is a w-neat ring.

(2) The ring R/xR is cleaned poorly for every 0 6= x ∈ R.

(3) If {Pλ}λ∈Λ is a family of nonzero prime ideals of R and Q =
⋂
λ∈Λ Pλ 6= 0,

then R/Q is considered cleaned poorly.

(4) The ring R/xR is w-neat for every x ∈ R.

(5) R/Q is a cleaned poorly ring for all nonzero semiprime ideal Q of R.

Proof. Similar to [2, Proposition 2.1].

Proposition 2.9. If R = A⊕B for a few A and B ideal of R so that either A or
B is not clean, then R is w-neat only when R is cleaned poorly.

Proof. Assume that there are nonzero ideals A and B of R so that R = A ⊕M .
Let R be a w-neat ring. Then B ∼= R/A and A ∼= R/B are cleaned poorly, and
thus R is a product directly from cleaned poorly rings. Therefore by [3, Theorem
1.7], R cleaned poorly. Conversely, is clear.

Assume that M is an R-module and R is a ring. If all the family of cosets
attaining limited intersection property with nonempty intersection, then M is an
R-module that is compact linearly. It is clear that a homomorphic image of an
R-module is compact linearly [8]. If R is a linearly compact R-module, R is said
to be maximal. Artinian rings are maximal. If R/A is a R-module that is linearly
compact for all nonzero ideal A of R, then R is said to be almost maximal [8, 9].

Let M be an R-module. If every family of cosets with the finite intersection
property has nonempty intersection, thenM is called a linearly compact R-module.
It is clear that a homomorphic image of a linearly compact R-module is linearly
compact [8]. If R is a linearly compact R-module, then R is said to be maximal.
It is clear that Artinian rings are maximal. If R/A is a linearly compact R-module
for every nonzero ideal A of R, then R is said to be almost maximal [8, 9].

Theorem 2.10 (Zelinsky). With R as a maximal ring, then R = R1 × · · · × Rn
so that all Ri(1 ≤ i ≤ n) is considered a local ring.

Corollary 2.11. If R is a maximal ring, then R is cleaned poorly. Moreover, if
R is an almost maximal ring, then R is w-neat.

Proof. By Theorem 2.10, R = R1 × · · · ×Rn. Thus, every Ri(1 ≤ i ≤ n) is a local
ring. Since every local ring is cleaned poorly, by [7, Proposition 2], every maximal
ring is cleaned poorly and every almost maximal ring is w-neat.

It is known that if all prime ideal of a ring R is limited to a maximal ideal that
is unique, then R is a pm-ring [10].
Assume R is a ring. If all elements in R are limited to a finite number of maximal
ideals and every proper homomorphic image of R is a pm-ring, then R is h-local
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[8]. Also, if each limited generated ideal of R is principal, then R is a Bezout ring
[8].
A ring R is said to be a torch ring if it meets:

(1) R is not local.

(2) There exists one minimal prime ideal P of R which is unique where is not
zero and the R-submodule creates a chain.

(3) R/P is an h-local domain.

(4) R is almost locally maximal Bezout ring.

To study the examples of a torch ring, see [8].

Theorem 2.12. If R is a commutative torch ring so that Id(R) = {1} and
2 ∈U(R), then R is never w-neat.

Proof. Assume P is minimal unique prime ideal of a torch ring R. Suppose that
R is w-neat. Hence R/P is a cleaned poorly ring which Id(R/P ) = {1 + P} and
2 + P ∈U(R/P ). Therefore by [3, Theorem 1.6], R is a local ring, which is a
contradiction.

Assume R a ring and all finitely generated R-module M ∼= ⊕Ki such that every
Ki is a cyclic R-module. Then R is considered an FGC ring [11].

Theorem 2.13 (Brandal). A ring R is an FGC-ring if and only if R = R1×· · ·×
Rn such that, among the following sentences, one is true.

(1) Every Ri(1 ≤ i ≤ n) is a maximal valuation ring.

(2) Every Ri(1 ≤ i ≤ n) is a almost maximal Bezout domain.

(3) Every Ri(1 ≤ i ≤ n) is a torch ring.

Proof. According to [8, Theorem 9.1], it is obtained.

Theorem 2.14. Assume that R is a commutative FGC-ring where Id(R) = {1}
and 2 ∈U(R). Therefore, R is cleaned poorly if and only if R = R1 × · · · × Rn
so that each Ri(1 ≤ i ≤ n) is a local ring. In particular each Ri(1 ≤ i ≤ n) are
almost maximal valuation ring.

Proof. Assume that R = R1×· · ·×Rn so that every Ri(1 ≤ i ≤ n) is considered a
local ring. Thus, R is considered a ring, which is cleaned poorly. Moreover, assume
that R is a cleaned poorly FGC-ring. Because R is FGC, R = R1 × · · · × Rn so
that Ri(1 ≤ i ≤ n) is a ring introduced in Theorem 2.13. Since R is cleaned poorly,
each Ri(1 ≤ i ≤ n) is cleaned poorly. Based on Theorem 2.12, there is no torch
ring in Ri(1 ≤ i ≤ n) and thus each Ri(1 ≤ i ≤ n) is a maximal Bezout domain
or maximal valuation ring. By Theorem 2.10, a maximal valuation ring and a
cleaned poorly domain is local. Since every local Bezout domain is a valuation
domain, R is a finite direct product of almost maximal valuation rings.
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Lemma 2.15. Assume that R is an FGC-ring. Then R is w-neat if and only if R
is either or an almost maximal Bezout domain that is not local or cleaned poorly.

Proof. Suppose that R is a w-neat FGC-ring. By Proposition 2.9, R is a cleaned
poorly ring. Conversely, assume that R is w-neat that such that R is not cleaned
poorly . Thus R is not local and so R is indecomposable. Now, R can be an almost
maximal Bezout domain or a maximal valuation ring. However, it may not be a
maximal ring as it means it is cleaned poorly. Therefore, R is a non-local almost
maximal Bezout domain.

Corollary 2.16. Every FGC-domain is w-neat.
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