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Abstract

Artificial neural networks with amazing properties, such as universal ap-
proximation, have been utilized to approximate the nonlinear processes in
many fields of applied sciences. This work proposes the rough-neural net-
works (R-NNs) for the one-step ahead prediction of chaotic time series. We
adjust the parameters of R-NNs using a continuous-time Lyapunov-based
training algorithm, and prove its stability using the continuous form of Lya-
punov stability theory. Then, we utilize the R-NNs to predict the well-known
Mackey-Glass time series, and Henon map, and compare the simulation re-
sults with some well-known neural models.
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1. Introduction

Time series prediction is one of the most important problems in many fields, such
as finance, economics, medical sciences, social sciences, and engineering [1]. The
nature of real processes and the effects of uncertainties make time series prediction
challenging in the literature. The researchers try to solve this problem using the
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new excellent approaches recently presented in computer science, such as artificial
neural networks (ANNs).

ANNs are motivated from the brain and nervous system of human beings [2].
Neurons are the basic units in the brain and nervous system, and the information
is processed by them. In ANNs, a neuron is a mathematical model of biological
neuron. It consists of the summation of weighted inputs, biases, and nonlinear
activation functions. The neurons are connected, and the parameters are adjusted
using some learning algorithms such that they can approximate the nonlinear
functions. Recently, neural networks have been utilized to solve many problems
in the applied sciences and engineering.

The effectiveness of ANNs in time series prediction has been shown in many
works. In 2001, Frank et al. utilized the neural networks for time series prediction
[3]. In 2006, Chen et al. used the local linear wavelet neural networks to forecast
the time series [4]. Gholipour et al. applied the neurofuzzy models for the chaotic
time series forecasting [5]. Faruk utilized the neural networks to predict the water
quality time series [6]. Deep learning models have recently been used for multi-
step ahead time series forecasting [7]. Tealab considered the most recent works
that are relevant to the usage of ANNs for nonlinear time series forecasting [8].

Due to the effects of uncertainties in the natural time series, their predictions
with the conventional ANNs is difficult. To deal with the uncertainties in predic-
tion of time series, this work proposes the rough-neural networks (R-NNs) for the
prediction of nonlinear chaotic time series. For the first time, Lingras propose the
R-NNs on the basis of rough set theory (RST) [9]. There are some rough neurons
(RNs) in R-NNs that help them to handle the uncertainties.

Recently, R-NNs have been applied to solve some important problems. In 1996,
Lingras has been used the R-NNs for traffic volume prediction [9]. Yamaguchi et
al. have been used them for medical diagnostic support system [10]. Nowicki has
been used them for data classification [11]. Sasirekha and Thangavel have been
used them for biometric face classification [12].

Recently, R-NNs have been used for the nonlinear system identification. Ale-
hasher and Teshnehlab implemented an special structure and learning algorithm of
R-NNs for system identification [13]. Ahmadi and Teshnehlab designed a sinusoidal
rough-neural identifier for discrete-time nonlinear systems with an interval-based
structure and a Lyapunov-based learning algorithm [14]. In [14], the discrete form
of Lyapunov stability theory is used for stability analysis with the long compu-
tations. In 2018, Ahmadi et al. employed the paradigm of emotional learning to
accelerate the performance of R-NNs in the system identification [15]. In 2020,
R-NNs with a stochastic gradient-based learning algorithm used for the identifica-
tion of multi input-multi output cement rotary kiln [16]. On the basis of R-NNs,
the rough extreme learning machines (RELMs) has been proposed for the iden-
tification of continuous-time nonlinear systems [17]. RELMs are some types of
R-NNs that their parameters in first layer are selected randomly and never up-
dated. Therefore, only the parameters between the hidden layer and outputs are
updated. In [17], the adjustable parameters of RELMs have been trained using a
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Lyapunov-based learning algorithm, and a continuous form of Lyapunov stability
theory is used for its stability analysis.

In the literature, the researchers have been utilized the R-NNs for forecasting
some time series. Lingras proposed and applied the R-NNs to predict the traffic
volume time series [9, 18]. Khodayar et al. have been proposed the deep R-NNs
for short-term wind speed forecasting [19]. On the basis of R-NNs, they have been
developed some rough extensions of auto-encoders and denoising auto-encoders
to cope with the uncertainties in wind speed prediction. Jahangir et al. utilized
the R-NNs for electricity price forecasting [20]. In other study, on the basis of
R-NNs, some feedforward and recurrent neural architectures have been developed
to forecast travel behavior in plug-in electric vehicles [21]. Cao et al. used the
fuzzy R-NNs with a multiobjective optimization algorithm for stock prediction
[22]. Sheikhoushaghi et al. applied the R-NNs to forecast the oil production rate
of an oil field [23]. They used the capabilities of R-NNs in handling the noisy and
nonlinear real data, and compared them with some well-known architectures such
as long-short-term memory.

In this work, extending the presented approach in [17], a Lyapunov-based learn-
ing algorithm is proposed to adjust the parameters of R-NNs, and a continuous
form of Lyapunov stability theory is used for its stability analysis. The proof of
the relevant theorem in this work, is very shorter and stronger than the presented
proof in [14]. Then, R-NNs are utilized for time series prediction. Two well-known
benchmarks Mackey-Glass time series (M-GTS) and Henon map are predicted us-
ing the R-NNs. The simulation results are compared with some well-known neural
predictors.

In contrast to our recent work in this context [24], we extend the literature
review, consider the relevant published papers, and compare the present work
with them. We give more explanations about the R-NNs, and state the main
result as Theorem 4.1, and prove it. We state the M-GTS prediction with more
details, predict the Henon map, and compare the results with some well-known
neural networks.

This paper is continued as follows. A short introduction about the time se-
ries prediction is given in Section 2. Then, R-NNs are described in Section 3.
Time series prediction using R-NNs is presented in Section 4, and a Lyapunov-
based training algorithm is suggested for R-NNs. The M-GTS and Henon map is
predicted using R-NNs in Section 5. The conclusion is drawn in Section 6.

2. Time series prediction

A time series is a set of data {x(t)}∞t=0 where t denotes the time index. We can
suppose that x(t) is a continuous function with the variable t [3]. In the natural
processes, to achieve a discrete dataset, the sampled data are utilized. In the
prediction of time series using the neural networks, the future values are forecasted
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Figure 1: Structure of R-NN in time series prediction.

using the past values. In fact, we try to find the function g such that

x(t+ d) = g(x(t), x(t− 1), · · · , x(t− T )), (1)

where T is the number of time steps. For d = 1, the one-step ahead prediction is
done, and for d > 1, the multi-step ahead prediction is done.

3. Rough-neural networks
R-NNs are introduced on the basis of RST. RST is a different approach for man-
aging the uncertain and imperfect knowledge that has been proposed by Pawlak in
1982 [25]. In this theory, the uncertain sets are defined using the upper and lower
approximations. Therefore, a clear relation exists between this theory and inter-
val analysis. Due to the wonderful properties of ANNs, the researchers try to use
them for modeling of nonlinear systems in the presence of uncertain and imperfect
data. Therefore, the idea of combining RST with ANNs has been appeared and
then, the R-NNs are proposed by Lingras in 1996 [9]. A RN contains two usual
neurons that are named the upper bound neurons (UBNs) and the lower bound
neurons (LBNs). The output of UBN is the maximum of their outputs, and the
output of LBN is the minimum of their outputs.

In other words, R-NNs have been proposed to give the neural networks the
ability of working with interval knowledge. The flexibility of computations in R-
NNs are more than interval neural networks and their computations are simpler
than interval computations.

This section explains the structure of R-NNs in time series prediction. Consider
the R-NN with hidden RNs (HRNs) and the usual output neurons, as shown in
Figure 1. We denote the outputs of R-NN with x̂(t + 1) and the inputs of R-NN
with

x(t) = [x(t), x(t), x(t− 1), x(t− 1), · · · , x(t− T ), x(t− T ), 1]T ,
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where x is the lower bound, and x is the upper bound of x, and T is the number
of time steps. In the vector x, the input of biases is shown with the component 1.
Let V and V be the weights of connections between the inputs and hidden LBNs
and the weights of connections between the inputs and hidden UBNs, respectively.
Suppose that W and W be the weights of connections between the hidden LBNs
and output neurons and the weights of connections between the hidden UBNs and
output neurons, respectively.

Further, let O, and O be the outputs of LBNs and the outputs of UBNs in
the hidden layer, respectively. Besides, φ shows the activation function of hidden
neurons. Then, according to the definition of RNs we have [9, 14]:

O = min
(
φ, φ

)
, O = max

(
φ, φ

)
,

where φ = φ(V x(t)), φ = φ(V x(t)). The output x̂(t+ 1) of R-NN is given by

x̂(t+ 1) = WO +WO = W min
(
φ, φ

)
+W max

(
φ, φ

)
. (2)

To simplify the relations in the next section, we try to substitute the min and max
operations with some algebraic equations. To this end, we define the n-vectors
δ = (δ1, δ2, · · · , δn) and δ = (δ

1
, δ

2
, · · · , δn) such that

δj , δ
j

= 0 or 1, δj + δ
j

= 1, j = 1, 2, · · · , n. (3)

δjφj + δ
j
φ
j ≤ φj , φj ≤ δjφj + δjφ

j
, (4)

where φj and φ
j
denote the jth components of φ and φ, respectively. Then, we

have

min
(
φj , φ

j
)

= δjφj + δ
j
φ
j
, (5)

max
(
φj , φ

j
)

= δ
j
φj + δjφ

j
. (6)

As a result,

min
(
φ, φ

)
= diag(δ)φ+ diag(δ)φ, (7)

max
(
φ, φ

)
= diag(δ)φ+ diag(δ)φ. (8)

Then, we introduce C = Wdiag(δ) + Wdiag(δ), and D = Wdiag(δ) + Wdiag(δ).
Therefore, using (2), (7) and (8), we have

x̂(t+ 1) = W min
(
φ, φ

)
+W max

(
φ, φ

)
= W

(
diag(δ)φ+ diag(δ)φ

)
+W

(
diag(δ)φ+ diag(δ)φ

)
=

(
Wdiag(δ) +Wdiag(δ)

)
φ+

(
diag(δ) + diag(δ)

)
φ

= Cφ+Dφ. (9)
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4. Time series prediction using R-NNs

The time evolution of time series can be defined in some state space model in
dynamical systems [26, 27]. The time series observations {x(t)}∞t=0 can be trans-
formed to the state vectors {z(t)}∞t=0 where z(t) ∈ Rn shows the system state.
The dynamics of these states can be defined as follows:

ż(t) = f(z(t)), (10)

where f is an unknown function. Suppose that A is a Hurwitz matrix and

f(z(t)) = Az(t) + g(z(t)), (11)

where g is the nonlinear part of f . To simplify the relations, in continue, we remove
the argument t. Suppose that R-NN can model the nonlinear function g using the
ideal weights C?,D?, V ?, and V ?. Then, according to the Equation (9), we have

ż = Az + C?φ(V ?x) +D?φ(V ?x). (12)

We construct the parametric model of (14) as follow:

˙̂z = Aẑ + Ĉφ(V̂ x) + D̂φ(V̂ x)

= Aẑ + Ĉφ+ D̂φ, (13)

where φ = φ(V̂ x), φ = φ(V̂ x), and Ĉ, D̂, V̂ , and V̂ denote the estimates of C?, D?,
V ?, and V ? respectively. We use the Taylor’s expansion for the nonlinear terms
in (12), and achieve the following relation:

ż = Az + Ĉφ+ C̃φ+ Ĉφ′Ṽ x +R2 + D̂φ+ D̃φ+ D̂φ′Ṽ x +R2, (14)

where R2 and R2 are the Taylor’s series reminders, φ′ and φ
′
are the derivatives

of φ and φ, and

C̃ = C? − Ĉ, D̃ = D? − D̂, Ṽ = V ? − V̂ , Ṽ = V ? − V̂ . (15)

More details about Equation (14) can be found in [14]. Now, we can compute
the state error as follows:

ė = ż− ˙̂z

= Az + Ĉφ+ C̃φ+ Ĉφ′Ṽ x + D̂φ+ D̃φ+ D̂φ′Ṽ x + ζ

− Aẑ− Ĉφ− D̂φ

= Ae + C̃φ+ Ĉφ
′
Ṽ x + D̃φ+ D̂φ

′

Ṽ x + ζ, (16)
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where

e = z− ẑ, Ṽ = V ? − V̂ , Ṽ = V ? − V̂ , (17)

D̃ = D? − D̂, C̃ = C? − Ĉ, ζ = R2 +R2. (18)

In [14], a Lyapunov-based algorithm is presented for R-NNs in the identification
of nonlinear systems where in the present work, a continuous-time Lyapunov-based
learning algorithm is derived. Recently, a Lyapunov-based algorithm is presented
for the RELMs in continuous-time systems identification [17]. In RELMs, the
weights of connections between the inputs and hidden layer are not adjusted where
in the R-NNs, all the weights are adjusted.

Theorem 4.1. Suppose that R-NN can model the time series (10) where the fol-
lowing laws are used to train it:

˙̂
W = e

[
min(φ, φ)

]
Γ−11 , (19)

˙̂
W = e

[
max(φ, φ)

]
Γ−12 , (20)

˙̂
V = Γ−13 (φ

′
)T ĈTexT , (21)

˙̂
V = Γ−14 (φ

′

)T D̂TexT , (22)

where the positive definite matrices Γ1, Γ2, Γ3 and Γ4 are the learning gains.
Suppose that

‖e‖ ≥ ‖ζ‖
|λmin(A)|

, (23)

where λmin(A) is smallest eigenvalue of A. Then, the prediction error e tends to
zero.

Proof. Let

v =
1

2
eTe +

1

2
tr
(
W̃Γ1W̃

T
)

+
1

2
tr
(
W̃Γ2W̃

T
)

+
1

2
tr
(
Ṽ

T
Γ3Ṽ

)
+

1

2
tr
(
Ṽ

T

Γ4Ṽ

)
.

Then, using Equation (16), we have

v̇ = eT ė + tr
(

˙̃
WΓ1W̃

T
)

+ tr
(

˙̃
WΓ2W̃

T
)

+ tr
(

˙̃
V

T

Γ3Ṽ

)
+ tr

(
˙̃
V

T

Γ4Ṽ

)
= eTAe + eT C̃φ+ eT Ĉφ

′
Ṽ x+ eT D̃φ+ eT D̂φ

′

Ṽ x+ eT ζ + tr
(

˙̃
WΓ1W̃

T
)

+ tr
(

˙̃
WΓ2W̃

T
)

+ tr
(

˙̃
V

T

Γ3Ṽ

)
+ tr

(
˙̃
V

T

Γ4Ṽ

)
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= eTAe + eT ζ + tr
(
eφT C̃T

)
+ tr

(
eφ

T D̃T
)

+ tr
(
xeT Ĉφ

′
Ṽ +

˙̃
V

T

Γ3Ṽ

)
+ tr

(
xeT D̂φ

′

Ṽ +
˙̃
V

T

Γ4Ṽ

)
+ tr

(
˙̃
WΓ1W̃

T
)

+ tr
(

˙̃
WΓ2W̃

T
)

= eTAe + eT ζ + tr
(
eφT (W̃diag(δ) + +W̃diag(δ))T

)
+ tr

(
eφ

T
(W̃diag(δ) + W̃diag(δ))T

)
+ tr

(
xeT Ĉφ

′
Ṽ +

˙̃
V

T

Γ3Ṽ

)
+ tr

(
xeT D̂φ

′

Ṽ +
˙̃
V

T

Γ4Ṽ

)
+ tr

(
˙̃
WΓ1W̃

T
)

+ tr
(

˙̃
WΓ2W̃

T
)

= eTAe + eT ζ + tr
(
e
[
φTdiag(δ) + φ

T
diag(δ)

]
W̃

T
+

˙̃
WΓ1W̃

T
)

+ tr
(
e
[
φTdiag(δ) + φ

T
diag(δ)

]
W̃

T

+
˙̃
WΓ2W̃

T
)

+ tr
(
xeT Ĉφ

′
Ṽ +

˙̃
V

T

Γ3Ṽ

)
+ tr

(
xeT D̂φ

′

Ṽ +
˙̃
V

T

Γ4Ṽ

)
= eTAe + eT ζ + tr

(
emin(φ, φ)W̃

T
+

˙̃
WΓ1W̃

T
)

+ tr
(
emax(φ, φ)W̃

T

+
˙̃
WΓ2W̃

T
)

+ tr
(
xeT Ĉφ

′
Ṽ +

˙̃
V

T

Γ3Ṽ

)
+ tr

(
xeT D̂φ

′

Ṽ +
˙̃
V

T

Γ4Ṽ

)
.

From the fact that

W̃ = W ? − Ŵ , W̃ = W ? − Ŵ , Ṽ = V ? − V̂ , Ṽ = V ? − V̂ , (24)

we have

˙̃
W = − ˙̂

W,
˙̃
W = −

˙̂
W,

˙̃
V = − ˙̂

V ,
˙̃
V = −

˙̂
V . (25)

Therefore, using the assumptions (19)-(22), we conclude that

v̇ = eTAe + eT ζ
≤ −‖e‖2|λmin(A)|+ ‖e‖‖ζ‖. (26)

The expression (26) is a polynomial of degree two with the variable ‖e‖. Using
Equation (23), v̇ < 0. Thus, v is a decreasing function. We conclude that for every
t > 0, v < v(0). Then, for every t > 0, we conclude that 0 < v < v(0), v ∈ L∞,
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and e ∈ L∞. using the relation (26), we have

0 <

∫ ∞
0

‖e‖2λmin(A)dt−
∫ ∞
0

‖e‖‖ζ‖dt

≤ −
∫ ∞
0

v̇dt = v(0)− v(∞) <∞, (27)

that implies e ∈ L2. At result, e ∈ L∞ ∩ L2, and according to the Barbalat’s
lemma [28], we conclude that e −→ 0 as t −→∞.

Table 1: MSEs of different models in the prediction of M-GTS.
Model nh Para. Epochs A Γi SNR Testing MSE

ANN+PSO[29] - - 1500 - - - 0.00019
ANN+PSO[29] - - 1500 - - 10 0.01664
ANN+PSO[29] - - 1500 - - 20 0.00026

WNN[4] 10 90 3000 - - - 0.00005
RBF 10 - 10 - - 20 0.00270
RBF 20 - 10 - - 20 0.00200
ANFIS 34 50 10 - - - 0.00062
ANFIS 34 50 10 - - 15 0.00506
ANFIS 158 292 10 - - 15 0.00464
MLP 64 320 - -25 100I64 15 0.00097
MLP 96 480 - -25 100I96 15 0.00090
MLP 128 640 - -25 100I128 15 0.00082
LeNN 44 44 - -25 10I44 15 0.00087
LeNN 124 124 - -25 10I124 15 0.00071
R-NN 20 320 - -30 30I20 - 0.00018
R-NN 30 480 - -30 30I20 20 0.00023
R-NN 10 160 - -25 100I10 15 0.00091
R-NN 20 320 - -25 100I20 15 0.00068
R-NN 40 640 - -25 100I40 15 0.00052
R-NN 30 480 - -40 20I30 15 0.00041
R-NN 30 480 - -30 20I30 15 0.00036
R-NN 30 480 - -20 20I30 15 0.00053
R-NN 30 480 - -40 50I30 15 0.00044
R-NN 30 480 - -30 50I30 15 0.00035
R-NN 30 480 - -20 50I30 15 0.00034
R-NN 30 480 - -40 100I30 15 0.00047
R-NN 30 480 - -30 100I30 15 0.00054

Remark 1. In Theorem 4.1, the learning laws are stated using the differential
equations (continuous-time form) where in [14], the learning laws are stated using
the difference equations (discrete-time form). For this reason, we used the contin-
uous form of the Lyapunov stability theory for stability analysis. The presented
proof in this work is much shorter and stronger than the proof presented in [14].



80 G. Ahmadi et al. / Chaotic Time Series Prediction Using...

Figure 2: The M-GTS, its prediction and the error in testing of MLP with 128
hidden neurons, in the presence of noises (SNR=20).

Remark 2. Theorem 4.1 is an extension of the Theorem 1 in [17] for RELMs.
In RELMs, only the parameters of hidden layer have been updated where in R-
NNs, all the parameters are updated. Therefore, the situation for R-NNs are more
complex than RELMs.
Remark 3. Time series usually contain big data, and a deep network may be use-
ful for forecasting. In this work, due to the shallowness of the proposed structure
for R-NNs, we concentrate on training them with a Lyapunov-based learning algo-
rithm with an elegant and short stability proof in the continuous-time description.
However, utilizing the deep R-NNs for time series prediction is a very attractive
field to track by the researchers in the future [19].

5. Simulation results

In this section, two benchmark chaotic time series are simulated using the pro-
posed approach, and the results are compared with multi-layer perceptron (MLP),
Legendre neural network (LeNN) [30], radial basis function (RBF), fuzzy neural
networks, and some other neural predictors in the literature. The M-GTS and the
Henon map are selected for this purpose. The M-GTS refer to a delayed differ-
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Figure 3: The M-GTS, its prediction and the errors in testing of LeNN with 124
neurons, in the presence of noises (SNR=20).

ential equation that governs some behaviors in the biological systems [31]. The
Henon map is a simple model of a certain part of Lorenz model [32].

To compare the proposed predictor R-NN with some of the well-known neural
predictors, the testing mean squared errors (MSEs) are shown in the Tables 1
and 2.In these tables, nh shows the number of hidden (rough) neurons. To show
the capabilities of R-NNs, some noises with different signal to noise ratio (SNR)
are added to the datasets. The following formula is used for SNR:

SNR = 10 log10

(
σ2
s

σ2
n

)
, (28)

where σ2
s and σ2

n denote the variance of signal and the variance of noise, respec-
tively. To implement the R-NNs, the upper and lower bounds of data are needed.
Remark 4. In the presented learning algorithm (Equations (19)-(22)), and there-
fore, in the Tables 1 and 2, Γi(i = 1, 2, 3, 4) is a positive definite matrix of learning
rates. For the simulation in this work, we choose some diagonal matrices for learn-
ing rates Γi, such as 100In where In shows the identity matrix of order n. It must
be mentioned that in the structure of learning laws, Γ−1i is used.
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Figure 4: The M-GTS, its prediction and the errors in testing of R-NN with 40
HRNs, in the presence of noises (SNR=20).

5.1 The Mackey-Glass time series prediction
The M-GTS is generated using the equation

ż(t) =
0.2z(t− τ)

1 + z10(t− τ)
− 0.1z(t), (29)

where τ = 17. The one-step ahead prediction of (29) is done by MLP, LeNN,
RBF, adaptive neuro fuzzy inference system (ANFIS), and R-NN where the acti-
vation functions of hidden neurons in MLP and R-NN are sinusoidal. Besides, the
results are compared with some other works in the literature such as wavelet neu-
ral network (WNN) [4], and ANN with particle swarm optimization (ANN+PSO)
[29].

The initial values of the weights in models are random numbers in the interval
[−0.5, 0.5]. The input vector of MLP and LeNN is x(t) = [z(t), z(t − 6), z(t −
12), 1]T , the input vector of ANFIS is x(t) = [z(t), z(t−6), z(t−12), z(t−18), 1]T ,
and the input vector of R-NN is

x(t) = [z(t), z(t), z(t− 6), z(t− 6), z(t− 12), z(t− 12), 1]
T
, (30)

where z is the upper bound of z, and z is the lower bound of z. The MSEs of
one-step ahead prediction of M-GTS with different models are listed in Table 1.
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Figure 5: The testing MSEs of R-NN in the prediction of M-GTS, obtained by
changing the learning rates Γi(i = 1, 2, 3, 4), parameter A, the number of HRNs
(nh), and SNR.

In this table, Γ1, Γ2, Γ3 and Γ4 denote the learning rates, and Inh
is the identity

matrix of size nh. The hyper-parameters for LeNN are chosen as

nh = 24, 44, 84, 124, Γ1, Γ2 = 10Inh
. (31)

Besides, the simulation results for different hyper-parameters A and Γi (i =
1, 2, 3, 4) in the usage of R-NN (with 30 HRNs) are stated in Table 1. According
to these results, we can conclude that the optimal value for A is near to −30 and
the optimal value for Γi (i = 1, 2, 3, 4) is near to 50I30, empirically.

The M-GTS, its predictions and the errors in testing of MLP with 128 hidden
neurons, LeNN with 124 neurons, and R-NN with 40 HRNs (in the presence of
noises (SNR=20)) are shown in Figures 2 to 4.

Figure 5 shows the testing MSEs of R-NN in the prediction of M-GTS (SNR=20),
obtained by changing the different parameters in the algorithm design. These pa-
rameters include the learning rates Γi (i = 1, 2, 3, 4), number of HRNs nh, SNR,
and the parameter A, where Ax models the linear part of the time series as de-
scribed in (11). According to the Figure 5, we can conclude that the increasing
of the learning rates Γi (i = 1, 2, 3, 4) results in the increasing of testing MSEs.
Besides, due to the numerical errors, very small value for Γi (i = 1, 2, 3, 4) does
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not lead to the best results.
Due to the quadratic form of the MSEs, the curve obtained with changing

the parameter A in Figure 5, is similar to a parabolic curve and its minimum
occurs near the A = −30. Therefore, we can conclude that in the prediction of
the M-GTS, to approximate the linear part, the best value for A belongs to the
interval [−35,−20]. It seems that the nonsmoothness of this curve, is related to
the numerical errors and the continuity of M-GTS. According to the Figure 5,
increasing the number of HRNs results in decreasing the testing MSEs. In this
figure, there is no regularity in the curve obtained by changing the SNR for M-
GTS dataset, and the dataset is not very affected from the noises. The Remark 5
in Section 5.2 gives more details about this graph.

From the Table 1 and Figures 2 to 5, we can conclude the following results in
the prediction of M-GTS:

• In the presence of noises, the performance of R-NN is better than the other
models.

• The performance of LeNN is better than MLP, RBF, and ANFIS.

• The performance of WNN (without noises) is better than R-NN.

• The performance of R-NN (with or without noises) is a bit better than
ANN+PSO.

• Increasing the number of HRNs results in decreasing the testing MSE.

• The dataset of M-GTS is robust against the noises.

5.2 Henon map prediction

The Henon map is generated using the equation

z(k + 1) = 1− αz(k)2 + βz(k − 1). (32)

In this work, we suppose that α = 1.4 and β = 0.3. It is possible to write the
equation (32) with two variables z1 and z2 as follow:{

z1(k + 1) = 1− αz1(k)2 + βz2(k),
z2(k + 1) = z1(k).

(33)

The one-step ahead prediction of (32) is done by MLP, LeNN, and R-NN where the
activation function of hidden neurons in MLP and R-NN is the hyperbolic tangent.
Besides, the results are compared with some other models such as interval type 2
fuzzy neural networks (IT2FNN) [33], RBF [34], deep belief net (DBN) [35].



Mathematics Interdisciplinary Research 8 (2) (2023) 71 − 92 85

Table 2: MSEs of different models in the prediction of Henon map time series.
Model nh Para. Epochs A Γi SNR MSE

IT2FNN[33] 8 rules 128 100 - - - 0.00094
RBF[34] 16 - 1000 - - - 0.00220
RBF[34] 25 - 1000 - - - 0.00012
RBF[34] 101 - 1000 - - - 0.00007
DBN[35] - - - - - - 0.00004
MLP 20 140 - 0.05 10I20 40 0.00023
MLP 40 280 - 0.05 10I40 40 0.00014
MLP 63 441 - 0.05 10I63 40 0.00011
LeNN 24 24 - 0.05 10I24 40 0.00010
LeNN 44 44 - 0.05 10I44 40 0.00009
LeNN 64 64 - 0.05 10I64 40 0.00007
R-NN 20 440 - 0.05 10I20 - 0.00001
R-NN 6 140 - 0.05 10I6 40 0.00006
R-NN 12 280 - 0.05 10I12 40 0.00004
R-NN 20 440 - 0.05 10I20 40 0.00002
R-NN 12 280 - 0 10I12 50 0.00071
R-NN 12 280 - 0.05 10I12 50 0.00005
R-NN 12 280 - 0.1 10I12 50 0.00053
R-NN 12 280 - 0 20I12 50 0.00057
R-NN 12 280 - 0.05 20I12 50 0.00002
R-NN 12 280 - 0.1 20I12 50 0.00053
R-NN 12 280 - 0 30I12 50 0.00064
R-NN 12 280 - 0.05 30I12 50 0.00009
R-NN 12 280 - 0.1 30I12 50 0.00058

The initial values of the weights in models are random numbers in the interval
[−0.05, 0.05]. The input vector of MLP and LeNN is x = [z1(k), z2(k), z1(k −
1), z2(k − 2)]T , and the input vector of R-NN is

x = [z1(k), z1(k), z2(k), z2(k), z1(k − 1), z1(k − 1), z2(k − 1), z2(k − 1), 1]
T
. (34)

The MSEs of one-step ahead prediction of Henon map with the models are listed
in Table 2. In this table, the hyper-parameters for MLP are chosen as

nh = 20, 40, 63, Γ1,Γ2 = 10Inh
, (35)

and the hyper-parameters for LeNN are chosen as

nh = 24, 44, 64, Γ1,Γ2 = 10Inh
, (36)

where Γ1, and Γ2 denote the learning rates, and Inh
shows the identity matrix of

size nh. The hyper-parameters for R-NN are chosen as

nh = 6, 12, 20, Γ1, Γ2, Γ3, Γ4 = 10Inh
, 20Inh

, 30Inh
. (37)
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Figure 6: The Henon map, its prediction, and the error in the testing of MLP with
40 hidden neurons, in the presence of noises (SNR=40).

where Γ1, Γ2, Γ3, and Γ4 denote the learning rates.
Besides, the simulation results for different hyper-parameters A and Γi (i =

1, 2, 3, 4) in the usage of R-NN (with 12 HRNs) are stated in Table 2. According
to these results, we can conclude that the optimal value for A is near to 0.05, and
the optimal value for Γi (i = 1, 2, 3, 4) is near to 20I12, empirically.

The Henon map, its prediction, and the error in the testing of MLP with 40
hidden neurons, LeNN with 64 neurons, and R-NN with 12 HRNs are shown in
Figures 6 to 8, in the presence of noises (SNR=40).

Figure 9 shows the testing MSEs of R-NN in the prediction of Henon map time
series (SNR=50), obtained by changing the different parameters in the algorithm
design. These parameters include the learning rates Γi (i = 1, 2, 3, 4), number of
HRNs nh, SNR, and the parameter A, where Ax models the linear part of the
time series as described in (11). According to the Figure 9, we can conclude that
the increasing of the learning rates Γi (i = 1, 2, 3, 4) results in the increasing of
testing MSEs.

Besides, this figure shows the testing MSEs of R-NN with 12 HRNs in the pre-
diction of Henon map time series (SNR=50), obtained by changing the parameter
A. Due to the quadratic form of the MSEs, this graph is a parabolic curve and
its minimum occurs in A = 0.05. Therefore, we can conclude that in the predic-
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Figure 7: The Henon map, its prediction, and the error in testing of LeNN with
64 neurons, in the presence of noises (SNR=40).

tion of Henon map time series, to approximate the linear part, the best value for
A is 0.05. According to the Figure 9, increasing the number of HRNs results in
decreasing the testing MSEs. In this figure, increasing the SNR for Henon map
dataset results in decreasing the testing MSE.
Remark 5. In Figure 5, there was no regularity in the curve obtained by changing
the SNR for M-GTS, where in Figure 9, increasing the SNR for Henon map dataset
results in decreasing the testing MSE. The reason of this event is concerned with
the nature of these datasets. The M-GTS dataset arises from a continuous-time
formula, where the Henon map dataset arises from a discrete-time formula. The
discrete-time systems are very vulnerable against the noises, where the continuous-
time systems are robust against the noises [17]. Therefore, the continuous-time
models are more reliable than the discrete-time models.

From Table 2, and Figures 6 to 9, we can conclude the following results in the
prediction of Henon map time series:

• The performance of R-NN is better than the other predictors.

• The performance of LeNN is better than MLP, and IT2FNN.

• The performance of DBN (without noises) is better than IT2FNN, RBF, and
LeNN.
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Figure 8: The Henon map, its prediction, and the error in the testing of R-NN
with 12 hidden rough neurons, in the presence of noises (SNR=40).

• Increasing the number of HRNs in R-NN results in decreasing the testing
MSE.

• The dataset of Henon map time series is very vulnerable against the noises.

6. Conclusion

This work proposed the R-NNs for the prediction of chaotic time series where
they are trained with a continuous-time Lyapunov-based learning algorithm, and
its stability is proved. Simulation results show the efficiencies of R-NNs in the
prediction of time series. Time series usually contain big data, and a deep network
may be useful for forecasting. Therefore, future works focus on the usage of deep
R-NNs for time series prediction. Besides, we try to use the R-NNs to solve the
regression problems in the other applied sciences.

Conflicts of Interest. The authors declare that they have no conflicts of interest
regarding the publication of this article.
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Figure 9: The testing MSEs of R-NN in the prediction of Henon map time series,
obtained by changing the learning rates Γi(i = 1, 2, 3, 4), parameter A, the number
of HRNs (nh), and SNR.
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