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Abstract

Consider a ring R with order p or p2, and let P(R) represent its multi-
plicative power graph. For two distinct rings R1 and R2 that possess identity
element 1, we define a new structure called the unit semi-cartesian prod-
uct of their multiplicative power graphs. This combined structure, denoted
as G.H, is constructed by taking the Cartesian product of the vertex sets
V (G) × V (H), where G = P(R1) and H = P(R2). The edges in G.H are
formed based on specific conditions: for vertices (g, h) and (g′, h′), an edge
exists between them if g = g′, g is a vertex in G, and the product hh′ forms
a vertex in H.

Our exploration focuses on understanding the characteristics of the multi-
plicative power graph resulting from the unit semi-cartesian product P(R1).P(R2),
where R1 and R2 represent distinct rings. Additionally, we offer insights into
the properties of the multiplicative power graphs inherent in rings of order
p or p2.
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1. Introduction
Graph theory is employed for examining the foundational structural properties
of algebraic structures, which encompass entities like rings. This approach has
demonstrated particular significance in uncovering specific traits inherent to al-
gebraic structures such as rings. Through the incorporation of various graph
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categories into the domain of rings, scholars have revealed a wide spectrum of
attributes, thereby illuminating novel dimensions of these mathematical forma-
tions [1–4]. We are dealing with undirected and simple graphs exclusively in this
context. Let’s denote the vertex set and edge set of a graph G as V (G) and
E(G), respectively. We first state some definitions and notations which are used
throughout the paper.

For a given semigroup S, the undirected power graph P(S) is defined by its
vertex set S. Notably, two distinct vertices x and y in this graph are connected if
and only if one of the following conditions holds: either xn = y or yn = x, where n
is a positive integer [5]. This concept of the power graph was initially introduced
in an influential work by Kelarev and Quinn [6], which was later expanded upon
in their subsequent papers [7–9].

When considering a ring R, the presence of two binary operations, namely "+"
and "×", leads to the existence of two distinct power graphs associated with it.
These graphs are known as the additive power graph P+(R) and the multiplicative
power graph P×(R). The former corresponds to the operation "+", while the latter
corresponds to "×".

Let’s revisit the definitions. A graph is termed connected when, for any pair
of distinct vertices x and y, there exists a finite sequence of distinct vertices
x = x1, · · · , xn = y such that each consecutive pair (xi, xi+1) forms an edge.
Conversely, a graph that lacks any edges is referred to as totally disconnected.

Given distinct vertices x and y, let d(x, y) represent the shortest length of a
path connecting them, and if no such path exists, let d(x, y) =∞. The "diameter"
of a graph G is established as diam(G) = sup{d(x, y)|x, y ∈ V (G)}, where V (G)
signifies the set of vertices within the graph.

For a given graph G, the degree of a vertex x within G is the count of edges in
G that are connected to x, and this degree is represented as deg(x). If a graph G
can be split into two vertex subsets V1, V2 in such a way that the complete set of
vertices in G is the union of V1 and V2, and V1 and V2 are disjoint (V1 ∩ V2 = ∅),
and every edge in G connects a vertex from V1 to a vertex in V2, then G is
termed bipartite. In the context of a bipartite graph, a complete bipartite graph
encompasses all possible edges connecting vertices within V1 and V2. When the
sizes of these vertex sets are denoted as m and n, the complete bipartite graph
is symbolized as Km,n. If m equals 1, then the outcome is a stargraph and a
complete graph featuring n vertices is designated as Kn.

A cycle within graph G is a path that both begins and ends at the same vertex.
The girth of graph G, denoted as gr(G), is the length of the shortest cycle present
within G, and if no cycle is found in G, then gr(G) is regarded as infinite.

In graph theory, a regular graph is one in which each vertex has an identical
number of neighbors, meaning every vertex has the same degree or valency. For a
graph G = (V (G), E(G)) and a subset S of the vertices in G, the set of vertices
in G that either belong to S or share an edge with a vertex from S is symbolized
as NG[S]. If NG[S] covers all vertices within V (G), then S is recognized as a
dominatingset. The domination number of a graph G, denoted as γ(G), signifies
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the smallest number of vertices required to form a dominating set in G. An
independent set X within the vertices of graph G is a subset where the subgraph
induced by X contains no edges. The largest size achievable for an independent
set within graph G is referred to as the independence number of G, denoted by
α(G). A splitgraph refers to a graph in which the vertices can be partitioned into
a clique (a complete subgraph) and an independent set.

Assuming p is a prime, Fine [10] categorized all rings of order p2 as follows:

A = 〈a : p2a = 0, a2 = a〉 ∼= Zp2 ,

B = 〈a : p2a = 0, a2 = pa〉,
C = 〈a : p2 = 0, a2 = 0〉,
D = 〈a, b : pa = pb = 0, a2 = a, b2 = b, ab = ba = 0〉 = Zp ⊕ Zp,

E = 〈a, b : pa = pb = 0, a2 = a, b2 = b, ab = a, ba = b〉,
F = 〈a, b : pa = pb = 0, a2 = a, b2 = b, ab = b, ba = a〉,
G = 〈a, b : pa = pb = 0, a2 = 0, b2 = 0, ab = ba = a〉,
H = 〈a, b : pa = pb = 0, a2 = 0, b2 = b, ab = ba = 0〉,
I = 〈a, b : pa = pb = 0, a2 = b, ab = 0〉,
J = 〈a, b : pa = pb = 0, a2 = b2 = 0〉,

K =

{
〈a, b : 2a = 2b = 0, a2 = a, b2 = a+ b, ab = b, ba = b〉, p = 2,
〈a, b : pa = pb = 0, a2 = a, b2 = ja, ab = ba = b〉, p 6= 2,

where j is not a square in Zp. According to the reference [5], the additive power
graph of a ring is indicative of the ring’s additive structure. As a result, our atten-
tion is directed towards the multiplicative power graph denoted as P(R) = P×(R),
as it holds significance in understanding the multiplicative aspects of the ring. The
multiplicative power graphs of these 11 non-isomorphic rings have already been
studied. Simply we can see P(A) ∼= P(G), P(B) ∼= P(I), P(C) ∼= P(J) and
P(E) ∼= P(F ). Accordingly, it is sufficient to consider the rings A, B, C, D, E,
H and K in order to investigate the multiplicative power graphs of rings of order
p2. Consider a prime number p, and let R be a ring with an order of p. Regarding
its additive group, R is isomorphic to the ring of integers modulo p, represented
as Zp. Consequently, there are two distinct rings with an order of p: the ring Zp

and the zero ring associated with the additive group, denoted as Np.
In this document, we denote the "cardinality" of a set A as |A|, and we use

P∗(R) to indicate the power graph of R excluding the vertex 0. Euler’s phi func-
tion, denoted by ϕ(n), plays a role in number theory by counting the positive
integers up to a given integer n that are coprime with n.

In Section 2 of the paper, we introduce the concept of the unit semi-cartesian
product of power graphs for specific rings of order p and p2. This unit semi-
cartesian product involves two distinct simple graphs, referred to as G and H.
The notation G.H represents this product, defined as an undirected graph with a
vertex set V (G.H) = V (G)×V (H) and an edge set E(G.H) = {(g, h)(g′, h′) | g =
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g′, g1 ∈ E(G) and hh′ ∈ E(H)}. In other sections, we study some graph properties
of the power graph P(R) of a ring R and also P(R1).P(R2) where R, R1, and R2

are rings of order p or p2. Note that in this paper we consider only rings with an
identity element showed by 1.

Our other notations are standard and can be found in the major survey articles
on power graphs [11–16] and the books [17–20].

2. Unit semi-cartesian product
In this section, we introduce the unit semi-cartesian product of two simple graphs
G and H, denoted by G.H, as the undirected graph that has the set V (G.H) =
V (G) × V (H) as vertices set and the edges set E(G.H) = {(g, h)(g′, h′) | g =
g′, g1 ∈ E(G) and hh′ ∈ E(H)}. Now we mention this product for our graph.
In fact, we investigate the graphs P(R1).P(R2), where R1 and R2 are two rings
of order pi or qj for i, j = 1 or 2 and prime numbers p and q, respectively.

Theorem 2.1. Suppose R1 and R2 are two rings with orders p and q, respectively.
Then, in this context one of the following statements hold:
(1) P(R1).P(R2) is empty.
(2) P(R1).P(R2) has 2q isolated vertices and p− 2 connected components K1,q−1.
(3) The graph P(R1).P(R2) has p+ 2q− 2 isolated vertices and q− 2 components
isomorphic to P∗(Zq).

Proof. First, We will examine three distinct scenarios:
Case 1: If R1

∼= Nq and R2
∼= Zq ,or R2

∼= Nq. Then this graph is empty since R1

is a ring without identity.
Case 2: If R1

∼= Zp and R2
∼= Zq. Then for p = 2 or q = 2, this graph is empty.

Case 3: If R1
∼= Zp and R2

∼= Nq. Then by definition, all vertices with the first
component 0 or 1 are isolated. Also, in P(Zp) the number of adjacent vertices to
1 is p− 2.
In other cases part (3) holds.

Theorem 2.2. Let R1 and R2 represent two rings with orders p and q2 respec-
tively. In this situation, the following analysis holds: (1) The graph P(R1).P(R2)
is totally disconnected.
(2) The graph P(R1).P(R2) In this context, the graph has a total of 2q2 isolated
vertices, and p− 2 components isomorphic to P(R2).

Proof. Clearly, if R ∼= Np or Z2, then part (1) holds. In other cases by definition of
unit semi-cartesian product, only all vertices (0, a) and (1, b), with a, b ∈ V (P(R2))
are isolated. Also P(Zp).P(R2) has deg(1) = p − 2 components isomorphic to
P(R2), where 1 ∈ R1.

Theorem 2.3. Let R1 and R2 be two rings of order p2 and q, respectively. Then
one of the following cases happens:
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(1) P(R1).P(R2) forms a graph that is completely disconnected.
(2) P(R1).P(R2) has q(p+ 1) isolated vertices and deg(1) copies of P(Nq), where
1 ∈ R1.
(3) The graph P(R1).P(R2) has (p + 1)q + deg(1) isolated vertices and deg(1)
copies of P∗(Zq), where 1 ∈ R1.

Proof. Assume that R1
∼= B,C,E or H. Then the graph P(R1).P(Nq) forms a

graph that is completely disconnected, because these rings are not with identity.
If R2

∼= Z2, then this graph does not have any edges since the power graph P(Z2)
is a totally disconnected graph. Now, let R1

∼= A,D, or K and R2
∼= Nq. Then all

vertices (a, b), where a = 0 or 1, or a1 /∈ E(P(R1)) and b = 0, or b0 ∈ E(Nq) are
isolated. It is easy to see that this graph has deg(1) copies of P(Nq). Similarly, if
R1
∼= A,D or K, then (3) is true.

Corollary 2.4. Consider two rings denoted as R1 and R2, where R1 has an order
of p2 and R2 has an order of q. If at least one of the graphs P(R1).P(R2) and
P(R2).P(R1) is not a totally disconnected, then P(R1).P(R2) � P(R2).P(R1).

Proof. This follows directly from Theorems 2.2 and 2.3.

Theorem 2.5. Consider two rings denoted as R1 and R2, where R1 has an order
of p2 and R2 has an order of q2. Then P(R1).P(R2) has deg(1) component(s)
isomorphic to P(R2) where 1 ∈ R1, and the number of its isolated vertices is equal
to one of the following:
(1) (p2 − p+ 1)q2.
(2) 2pq2.
(3) 2q2.

Proof. The initial portion of the theorem is a straightforward consequence of the
definition. Now, let R1

∼= A,D or K. By the structure of P(R1), the second part
is clear. So we illustrate the structure of the multiplicative power graph of these
rings. P(A) has 2 connected components. The first component is the star graph
K1,p−1 with p vertices since (np)2 = n2p2 = 0 for all 1 ≤ n ≤ p − 1. The second
component is the graph of the group of multiplicative units of Zp2 , denoted Up2 .
It has p2 − p vertices. Each generator is connected to all other vertices in this
component, so the valency of each vertex in the second component is ≥ 2 when
p ≥ 3. Ring D has 4 connected components corresponding to the idempotents
a, b, a + b and 0. The component with 0 is an isolated vertex. The component
connected to a contains vertices of the form ja+0b with 1 ≤ j ≤ p−1. This graph
represents the power graph of the group of units Up. The component connected to
b is the vertices of the form 0a+kb for 1 ≤ k ≤ p−1 and the component connected
to a + b is the graph of the group of units of the ring. The multiplicative power
graph of K has two components, the isolated vertex 0 and the graph of the group
of units of K connected to the multiplicative identity, a.
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3. Domination and independence numbers

Now, we determine the domination and independence numbers of the graphs P(R)
and P(R1).P(R2), where R, R1 and R2 are rings of order pi or qj for i, j = 1 or
2 and prime numbers p and q. First, we characterize the domination number of
these graphs.

Theorem 3.1. Let R be a ring of order p or p2. Then γ(P(R)) ∈ {1, 2, 4, 3+ |L|},
where

L = {sa+ tb | 1 ≤ s, t ≤ p− 1, s+ t− 1≡p 0},

such that a and b are two generators of ring E.

Proof. Let R ∼= Zp. Then the graph P(R) has 0 as an isolated vertex and all
other vertices form a connected component in which all vertices are adjacent to
vertex 1, so the subset S = {0, 1} of V (P(R)) implies that NP [S] = V (P(R)),
then γ(P(R)) = 2. Let R ∼= Np. Then P(R) ∼= K1,p−1, so the smallest dominating
set is {0} and obviously γ(P(R)) = 1.
Now, assume that R is a ring of order p2. By the structure of P(R), the smallest
dominating set S such that NP(S) = V (P) can be obtained as follows:

1. Let R ∼= A. Then S = {0, va}, where a serves as a generator of A, while v
acts as a generator of cyclic group U(Zp2). Hence, γ(P(R)) = 2.

2. Let R ∼= B or C. Then S = {0}, thus γ(P(R)) = 1.

3. Let R ∼= D. Then the set of idempotents 0, a, b, a + b stands for S. Hence,
γ(P(R)) = 4.

4. Let R ∼= E. Then S = {0, a, b, sa + tb | 1 ≤ s, t ≤ p − 1, s + t − 1≡p 0} in
which a and b are two generators of ring E.

5. Let R ∼= H. Then S = {0, b}, where b is an idempotent generator of ring H.

6. Let R ∼= K. Then S = {0, s}, where 0 6= s ∈ V (P(K)).

Now, by considering R as a ring of order p or p2, we determine the independence
number of P(R)

Theorem 3.2. Let R be a ring of order p. Then α(P(R)) ≥ 2. Particularly, if
R ∼= Np, then α(P(R)) = p− 1.

Proof. It is straightforward by considering the structure of P(R).
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Theorem 3.3. Let R be a ring of order p2. Then the following statements hold:
(1) If R ∼= A and |R| = 4, or R ∼= K, then α(P(R)) = 2.
(2) If R ∼= A and |R| 6= 4, then α(P(R)) ≤ p2 − ϕ(ϕ(p2))− 2.
(3) If R � A or K, then α(P(R)) ∈ {p2−p, p2−1, 2p−1, p+ 3, 4, p2−|L|}, where
L = {kpa | 0 ≤ k ≤ p− 1, k is square modulo p}.

Proof. By the definition of α(P), it is sufficient to determine the biggest indepen-
dent set X of the graph P(R).

(1) R ∼= A and |R| = 4. Then it is obvious that X = {0, va} or X =
{npa, va |1 ≤ n ≤ p − 1}, where a and v are generators of R and U(Z4), re-
spectively. Now, suppose that R ∼= K. Thus P(R) has two components, one of
them is the isolated vertex 0 and another is a complete graph. Hence α(P(R)) = 2.
(2) By structure of P(R), clearly X contains p−1 elements npa as well as all non-
identity non-generator elements of U(Zp2) that they are not adjacent to each other,
so α(p) ≤ p2 − ϕ(ϕ(p2))− 2.
(3) We consider the following cases:

1. If R ∼= B or H. Then one can check that α(P(R)) is p2 − p + |kpa|, where
0 ≤ k ≤ p− 1 and k is not modulo square p.

2. If R ∼= C. Then we have X = {v | 0 6= v ∈ V (P(R))} since the graph P(R)
is a star.

3. If R ∼= D and |R| = 4. Then α(P(R)) = 4 since the graph P(R) is totally
disconnected. Let |R| 6= 4, then P(R) has four components corresponding
to the idempotent elements a, b, a+ b and 0 as an isolated vertex. The com-
ponent corresponding to a and b are isomorphic to Kp−2. In the component
corresponding to a + b one can see that the maximum number of the ele-
ments which can choose is p, that is the vertex a + (p − 1)b as well as all
vertices of the form p′a+kb, where p′ is the first prime number before p and
1 ≤ k ≤ p− 1.

4. If R ∼= E. Then P(R) has p+ 1 connected components, p components Kp−1
and a component K1,p−1, so X has exactly 2p− 1 vertices.

Theorem 3.4. Consider two rings denoted as R1 and R2, where R1 has an order
of p and R2 has an order of q. Then

γ(P(R1).P(R2)) ∈ {pq, p+ 2q − 2, 2p, 2q, 4, p+ 3q − 4},

and

α(P(R1).P(R2)) =

{
pq, if R1

∼= Nq,
pq − p+ 2, if R1

∼= Zp and R2
∼= Nq,

otherwise α(P(R1).P(R2)) ≥ p+ 3q − 4.
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Proof. It is sufficient to mention the graphs P(Np).P(Nq), P(Zp).P(Nq), P(Zp).
P(Zq) and P(Np).P(Zq). By Theorem 2.1, the graphs P(Np).P(Nq), P(Np).P(Zq),
P(Z2).P(Zq), P(Zp).P(Z2) and P(Z2).P(Z2) are totally disconnected graphs, so
γ(P(Np).P(Nq) = γ(P(Np).P(Zq)) = pq. Also, the graph P(Zp).P(Nq) has 2q iso-
lated vertices and p−2 componentsK1,q−1, so we have γ(P(Zp).P(Nq)) = p+2q−2.
On the other hand, if p, q 6= 2, then P(Zp).P(Zq) has p+ 2q − 2 isolated vertices
and q − 2 components isomorphic to P∗(Zq). By definition of dominating set S,
in every component the vertex 1 ∈ V (P∗(Zq)) lies down in S, moreover all the
isolated vertices are in S. Thus γ(Zp).P(Zq)) = p+3q−4. Now, we consider some
cases to find the independent number. Let R1

∼= Nq. Then P(R1).P(R2) is totally
disconnected so α(P(R1).P(R2)) = pq. Let R1

∼= Zp and R2
∼= Nq. Then again by

Theorems 2.1 and 3.2, α(P(R1).P(R2)) = (p−2)(q−1)+2q. Moreover, if R1
∼= Zp

and R2
∼= Zq, then the graph P(R1).P(R2) is empty or it has p+ 2q − 2 isolated

vertices and q− 2 components isomorphic to P∗(Zq). Thus α(P(R1).P(R2)) = pq
or α(P(R1).P(R2)) ≥ p+ 3q − 4.

Theorem 3.5. Let R1 and R2 be two rings of order p and q2, respectively. Then

γ(P(R1).P(R2)) ∈ {pq2, (p− 2)(γ(P(R2)) + 2q2},

and one of the following relations hold:
(1) α(P(R1).P(R2)) = pq2.
(2) If R ∼= A and |R| = 4, or R ∼= K, then α(P(R1).P(R2)) = 2(p− 2) + 2q2.
(3) If R � A or K, then

α(P(R1).P(R2)) ∈ {(p−2)(p2−p)+2q2, (p−2)(p2−1)+2q2, (p−2)(2p−1)+2q2,

(p− 2)(p+ 3) + 2q2, 4(p− 2) + 2q2, (p− 2)(p2 − |L|) + 2q2},

where L = {kpa | 0 ≤ k ≤ p− 1, k is square modulo p}.

Proof. This is obtained directly from Theorems 2.2 and 3.1.

Theorem 3.6. Consider two rings denoted as R1 and R2, where R1 has an order
of p2 and R2 has an order of q. Then

γ(P(R1).P(R2)) ∈ {p2q, (p+ 1)q + deg(1), (p+ 1)q + 2deg(1) | 1 ∈ R1},

and one of the following relations hold:
(1) α(P(R1).P(R2)) = p2q.
(2) α(P(R1).P(R2)) = (p+ 1)q + (q − 1)deg(1), where 1 ∈ R1.
(3) α(P(R1).P(R2)) ≥ (p+ 1)q + 2deg(1), where 1 ∈ R1.

Proof. Suppose that R1
∼= B,C,E or H and R2

∼= Nq, or R2
∼= Z2. Then

P(R1).P(R2) is a totally disconnected graph, so

γ(P(R1).P(R2)) = α(P(R1).P(R2)) = p2q.
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Let R1
∼= A,D or K and R2

∼= Nq. Then, by Theorems 2.3 and 3.1, we get
γ(P(R1).P(R2)) = (p+ 1)q+ deg(1) in which 1 ∈ R1. Hence part (2) holds. Now,
let R2

∼= Zq, then again by Theorem 2.3 and the structure of P∗(R2), we have
γ(P(R1).P(R2)) = p2q or (p + 1)q + 2deg(1), where 1 ∈ R1. Thus part (3) is
true.

Theorem 3.7. Let R1 and R2 be two rings of order p2 and q2, respectively. If
1 ∈ R1 and I is the set of isolated vertices of P(R1).P(R2), then
(1) γ(P(R1).P(R2)) = |I|+ deg(1)γ(P(R2)),
(2) α(P(R1).P(R2)) = |I|+ deg(1)(α(P(R2)).

Proof. This is obtained directly from Theorems 2.5, 3.1 and 3.3.

4. Regular graph and split graph
Within this section, we examine the graphs P(R) and P(R1).P(R2), where R, R1,
and R2 represent rings with orders pi or qj for i, j = 1 or 2 and prime numbers p
and q and determine which one is regular or split graph.

Theorem 4.1. Let R be a ring of order p. Then P(R) is not a regular graph.

Proof. By the definition of regular graph, one can check it for just two possible
cases that we have.

Theorem 4.2. Let R be a ring of order p2. Then P(R) is a regular graph if and
only if p = 2 and R ∼= A, D or H.

Proof. We consider some cases:

1. Let R ∼= A. Then if p = 2 it is obvious that P(R) is a regular graph. Now
suppose that this graph is regular and p 6= 2, therefore 1 = deg(npa) 6=
deg(0) = p − 1, where 1 ≤ n ≤ p − 1 and a is a generator of A, which is a
contradiction.

2. Let R ∼= B. Then we claim that P(R) is not a regular graph. By contrary,
suppose that P(R) is regular. Thus deg(0) = deg(kpa), where 1 ≤ k ≤ p−1,
k is not a square modulo p and a is a generator of B, so p2 − 1 = 1 which is
a contradiction.

3. Let R ∼= C. Then as the previous case, suppose that P(R) is a regular graph
so we must have deg(v) = deg(0) where 0 6= v ∈ V (P), therefore 1 = p2 − 1,
which is a contradiction.

4. Let R ∼= D. Then if |R| = 4, the graph P(R) is regular, since the graph P(R)
is totally disconnected. Thus deg(v) = 0 for every v ∈ V (P). If |R| 6= 4,
then obviously deg(0) 6= deg(v) in which 0 6= v ∈ V (P).
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5. Let R ∼= E. Then in P(R) we have 1 = deg(ia+ jb), where a and b are two
generators of R, 1 ≤ i, j ≤ p− 1, i+ j = p and deg(0) = p− 1. Suppose that
P(R) is a regular graph so we obtain p = 2, on the other hand if |R| = 4
then 0 = deg(a), where a is a generator of R so deg(0) 6= deg(a), which is a
contradiction.

6. Let R ∼= H. Then if p = 2, then P(R) is two copies of K2. Thus it is regular.
If p 6= 2, then P(R) contains a star as a connected component. Hence, P(R)
is not regular.

7. Let R ∼= K. Then 0 in P(R) represents an isolated vertex, on the other
hand, P(R) is not a completely disconnected graph so P(R) is not regular.

Theorem 4.3. Let R1 and R2 be two rings of order p or q2. Then the graph
P(R1).P(R2) is regular if and only if it is totally disconnected.

Proof. By Theorems 2.1 to 2.3 and Theorem 2.5, this graph is totally disconnected
or contains some isolated vertices in addition some other components so, it is
regular if and only if it is totally disconnected.

In the next theorems, we determine P(R), where R is a ring of order p or p2 is
split.

Theorem 4.4. Let R be a ring of order p. Then P(R) is a split graph if R ∼= Np.

Proof. It is straightforward.

Now, we mention a useful theorm to prove the next theorem.

Theorem 4.5. (See [6, Theorem 6.7]). Consider an undirected graph G(V (G), E(G))
with a degree sequence d1 ≥ d2 ≥ ... ≥ dn. Let m = max{i|di ≥ i− 1}. The graph
G is a split graph if and only if

∑m
i=1 di = m(m− 1) +

∑n
i=m di.

Theorem 4.6. Let R be a ring of order p2. Then P(R) is a split graph if and
only if R ∼= B,D or E and |R| = 4, R ∼= B and |R| = 9, or R ∼= C or K.

Proof. Consider the following possible cases:

1. Let R ∼= A. Then by notation of Theorem 4.4, we have m = p2− 2p+ 2 and

d1 = p2 − p− 1 ≥ ... ≥ dϕ(ϕ(p2))+1 = p2 − p− 1 ≥ dϕ(ϕ(p2))+2 = m

≥ ... ≥ dm−p+1 = m ≥ dm−p+2 = m− 1

≥ ...dm = m− 1 ≥ dr1 ≥ ... ≥ drp2−p−m
≥ ds1 = p− 1 ≥

ds2 = 1 ≥ ... ≥ dsp = 1,
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where
p2−p−m∑

i=1

dri = (p− 2)(m− p) + 1,

therefore,
∑m

i=1 di −
∑n

i=m+1 di 6= m(m− 1) since otherwise we obtain
p3 − p2 = −4 which is not valid. Thus by Theorem 4.4, P(R) is not split.

2. Let R ∼= B and |R| = 4 or 9. Then it is easy to check that P(R) is split. For
p ≥ 5 by notation of Theorem 4.4, we have

d1 = p2 − 1 ≥ d2 = 2p+ 1 ≥ ... ≥ dm = 2p+ 1 ≥ dm+1 = 2 ≥ ... ≥

dm+p2−p = 2 ≥ ds1 = 1 ≥ ... ≥ dn = ds|A| = 1,

where A = {kpa | 0 ≤ k ≤ p− 1, k is not square modulo p}. It implies that∑m
i=1 di −

∑n
i=m+1 di 6= m(m− 1) so, P(R) is not split.

3. Let R ∼= C. Then the vertex 0 consider as a clique and all other vertices
form an independent set.

4. Let R ∼= D and |R| = 4, then the graph P(R) is totally disconnected, so we
consider one vertex as a clique and all other vertices as an independent set
so, P(R) is split. Let R ∼= E and |R| = 4, then P(R) has two isolated vertices
and a component K2, so the graph P(R) is split. Obviously, in this case for
other orders of R we can not split V (P) into a clique and an independent
set so P(R) is not split by definition.

5. Let R ∼= H. Then P(R) is not split.

6. Let R ∼= K. Then the isolated vertex 0 mentioned as an independent set
along with other components is a clique, so P(R) is split.

7. Let R ∼= B and |R| = 9. Then 0(3a) ∈ E(P(R)) is a clique and other vertices
form an independent set.

Theorem 4.7. Let R1 and R2 be considered as two rings with the orders p or q2.
Then the graph P(R1).P(R2) is split if and only if one of the following statements
holds:
(1) P(R1).P(R2) is empty.
(2) Either R1

∼= Z3 and R2
∼= N2, or R1

∼= Z2.
(3) R1

∼= Zp and R2
∼= Z2 or Z3.

(4) R1
∼= A, R2

∼= N2 and |R2| = 4.
(5) R1

∼= A, R2
∼= Zq, |R1| = 4 and q = 2, 3 or 5.

Proof. By Theorems 2.1 to 2.3 and Theorem 2.5, it is obvious that in every above
parts we have a split graph, otherwise the graph is not split.
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