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Abstract

The minimum edge dominating energy, denoted by EEF (G), is the sum of
the absolute values of eigenvalues of the minimum edge dominating matrix of
graph G. In this paper, we give some bounds and sharp bounds of EEF (G)
in terms of matching number, the number of positive eigenvalues of the
minimum edge dominating matrix, and the rank of G.
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1. Introduction
One of the most important pieces of information about a conjugated molecule is
total π-electron energy which is computed using the Hückel theory. Results on
graph energy assume special significance [1]. Mathematical modeling based on
graph theory is used for studying and computing total π-electron energy. Accord-
ing to this modeling, a molecular graph is a graph such that the vertices correspond
to atoms and the edges to the bonds. Due to the importance of graph energy, many
studies of it as well as new concepts of energy have been defined according to the
structure of a molecular graph.
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In this paper, all the graphs are simple and undirected. Let G = (V,E) be a sim-
ple graph with vertex set V = {v1, v2, . . . , vn} and edge set E = {e1, e2, . . . , em}.
An edge set M of G is called a matching if any two edges in M have no common
vertices. If each vertex of G is incident with exactly one edge of M , then M is
a perfect matching of G. The matching number of a graph G, denoted by µ(G),
is the number of edges in a maximum matching. The line graph LG of G is the
graph that each vertex of it represents an edge of G and two vertices of LG are
adjacent if and only if their corresponding edges are incident in G [2].
The adjacent matrix of G, A(G) = (aij) is an n × n matrix, where aij = 1 if
vivj ∈ E and aij = 0 otherwise. The positive (negative) inertia of graph G, de-
noted by v+(v−), is the number of the positive (negative) eigenvalues of A(G).
The rank of G is denoted by r = rank(A(G)) and is defined as the number of
nonzero eigenvalues of G [2].
Let λ1, λ2, . . . , λn be the eigenvalues of A(G). The graph energy E(G) of G, is
defined as E(G) =

∑n
i=1 |λi| [1]. Many kinds of energies of a graph are introduced

and studied [3–8]. The edge energy of a graph G, denoted by EE(G), is defined
as the sum of the absolute values of eigenvalues of A(LG) [9].
A subset D of V is the dominating set of graph G if every vertex of V \ D is
adjacent to some vertices in D. Any dominating set with minimum cardinality
is called a minimum dominating set [10]. Let G be a simple graph with edge set
{e1, e2, . . . , em}. A subset F of E is the minimum edge dominating set of G or
the minimum dominating set of LG. The minimum edge dominating matrix of G
is the m×m matrix defined by AF (G) := (aij) in which

aij =

 1, if ei and ej are adjacent,
1, if i = j and ei ∈ F,
0, otherwise.

The minimum edge dominating energy of G is introduced and studied in [11] as
following

EEF (G) =

m∑
i=1

|λi|,

where λ1, λ2, . . . , λm are the eigenvalues of AF (G).
In [11], some lower and upper bounds of this energy are obtained. Movahedi in
[12] established relations between the minimum edge dominating energy, and the
graph energy, the edge energy and the signless Laplacian energy of a graph.
In [13], some bounds are obtained for the minimum edge dominating energy of
subgraphs of a graph. Movahedi and Akhbari in [14] investigated the new bounds of
the minimum edge dominating energy of graphs. In [15], some results of eigenvalues
and energy from minimum edge dominating matrix in caterpillars are investigated.
In this paper, we are interested in investigating of bounds of the minimum edge
dominating energy of a graph by rank, positive inertia, and some other parameters.
In some cases these bounds are sharp.
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2. Preliminaries
In this section, we recall some known results that will be used in the next section.

Lemma 2.1. ([12]). Let G be a connected graph. If F is the minimum edge
dominating set of graph G, then

EEF (G) ≥ 2E(G)− 4v+,

where v+ is the positive inertia of A(G).

Lemma 2.2. ([12]). Let G be a bipartite graph of order n with m ≥ 1 edges and
rank r. Then

EEF (G) ≥ 2
(
E(G)− r

)
.

Lemma 2.3. ([16]). For any graph G, E(G) ≥ 2µ(G) in which µ(G) is the
matching number of G.

Lemma 2.4. ([17]). Let G be a graph of order n. Then E(G) ≥ rank(G) and
equality holds if and only if G ' r

2K2∪ (n− r)K1 for some even positive integer r.

Lemma 2.5. ([17]). Let G be a bipartite graph with at least 4 vertices. If G is
not of full rank, then E(G) ≥ r + 1.

Lemma 2.6. ([18]). A connected graph G is of rank 2 if and only if it is a complete
bipartite graph.

Lemma 2.7. ([16]). Let G be a connected graph of rank r. If G has at least
one odd cycle, then E(G) ≥

√
r2 + r − 1. Further if G is not of full rank, then

E(G) ≥ r + 1
2 .

Lemma 2.8. ([12]). Let G be a simple graph and F the minimum edge dominating
set of G with cardinality k. Then

EEF (G) ≤ EE(G) + k.

Lemma 2.9. ([19]). For n× n matrices A and B,

|rank(A)− rank(B)| ≤ rank(A+B) ≤ rank(A) + rank(B).

Lemma 2.10. ([20]). Let G be a connected graph with no perfect matching. Then
E(G) ≥ 2µ(G) + 1 except for G = Kk,k+1.

Lemma 2.11. ([21]). Let λn, . . . , λs+1 ≤ λ̄ ≤ λs, . . . , λ1 be the eigenvalues of a
matrix M . Assume that arithmetic mean λ̄ ≥ 0. Then

E =

n∑
i=1

|λi| ≥ nλ̄ ≥ 0, (1)

and
s∑
i=1

λi − (n− s)λ̄ ≤ E(M) ≤
(

1 +
n− s
n

) s∑
i=1

λi. (2)
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Lemma 2.12. ([22]). Let G be a graph of size m. Then

2
√
m ≤ E(G) ≤ 2m,

with equality on the left if and only if G is a complete bipartite graph and equality
on the right if and only if G is matching of m edges.

Lemma 2.13. ([23]). Let A and B be n× n Hermitian matrices and C = A+B.
Then

λi(C) ≤ λj(A) + λi−j+1(B), 1 ≤ j ≤ i ≤ n,

λi(C) ≥ λj(A) + λi−j+n(B), 1 ≤ i ≤ j ≤ n,

where λi(M) is the ith largest eigenvalue of matrix M (M = A,B,C).

Lemma 2.14. ([17]). If T is a tree with no perfect matching, then the product of
its nonzero eigenvalues is at least 2.

3. Main results

In this section, we present some bounds of the minimum edge dominating energy
in terms of the rank of a graph and positive inertia.

Theorem 3.1. Let G be a connected graph. If µ(G) and v+(G) are the matching
number of G and the positive inertia of A(G), respectively, then

EEF (G) ≥ 4
(
µ(G)− v+(G)

)
.

Proof. According to Lemma 2.1, we have EEF ≥ 2E(G)−4v+. Using Lemma 2.3,
E(G) ≥ 2µ(G). Therefore

EEF (G) ≥ 2
(
2µ(G)

)
− 4v+ = 4

(
µ(G)− v+(G)

)
.

Theorem 3.2. For any tree T with n ≥ 4 vertices and r = rank(T ) < n, then

EEF (G) > 2.

Proof. Using Lemma 2.2, we have EEF (G) ≥ 2
(
E(G) − r

)
. Since every tree is a

bipartite graph, we consider the following cases.
Case 1: Assume that r ≥ 3. According to the proof of Theorem 3 in [17], for
r ≥ 3, E(G) > 1 + r. Thus,

EEF (G) ≥ 2
(
E(G)− r

)
> 2(1 + r − r) = 2.
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Therefore, the result holds.
Case 2: Let r = 2. Using Lemma 2.6, G is a complete bipartite graph. Since
every complete bipartite graph which is the tree is a star thus, G ' K1,n−1.
So, G has a spectrum ±

√
n− 1 and 0 with the multiplicity n − 2. Therefore,

E(G) = 2
√
n− 1.

On the other hand, according to the proof in Theorem 3 in [17], if r = 2 then
EE(G) ≥ 1 + r. Therefore,

EEF (G) ≥ 2
(
E(G)− r

)
≥ 2(1 + r − r) = 2.

If the equality holds in the above relations, then 2 = 2(E(G) − r). So, E(G) =
1 + r = 3. Since E(G) = 2

√
n− 1 thus,

√
n− 1 = 3

2 and consequently, n = 13
4 .

Therefore, EEF (G) > 2.

The following theorem is an immediate consequence of Lemma 2.1 and Lemma 2.7.

Theorem 3.3. Let G be a connected graph of rank r. If G has at least one odd
cycle, then EEF (G) ≥ 2

(√
r2 + r − 1 − 2v+

)
. Further, if G is not of full rank,

then E(G) ≥ (2r + 1) − 4v+ where v+ is the number of positive eigenvalues of
A(G).

Theorem 3.4. Let G be a graph of order n with rank r. Then EEF (G) ≥ 2
(
r −

2v+
)
where v+ is the number of positive eigenvalues of A(G). Equality holds if

and only if G ' r
2K2 ∪ (n− r)K1 for some even positive integer r.

Proof. Using Lemma 2.1 and Lemma 2.4, we get

EEF (G) ≥ 2
(
E(G)− 2v+

)
≥ 2
(
r − 2v+

)
.

If equality holds in the above inequality, then EEF (G) = 2
(
E(G)− 2v+

)
= 2
(
r−

2v+
)
. Thus, E(G) = r. According to the equality in Lemma 2.4, the result

follows.

Theorem 3.5. Let G be a bipartite connected graph of rank r with no perfect
matching. If µ(G) is the matching number of G, then

EEF (G) ≥ 2
(
2µ(G)− r + 1

)
,

except for G = Kk,k+1.

Proof. Suppose that rank(G) = r and µ(G) is the matching number of G. Ac-
cording to Lemma 2.2 and Lemma 2.10, we have

EEF (G) ≥ 2E(G)− 2r ≥ 2(2µ(G) + 1)− 2r = 2
(
2µ(G)− r + 1

)
.
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Theorem 3.6. Let G be a connected graph of order n and size m with rank(G) =
2. Then

EEF (G) ≥ 4(
√
m− 1).

Proof. Let F be the minimum edge dominating set of G. According to Lemma 2.6
since rank(G) = 2, then G is a complete bipartite graph. By applying Lemma 2.1
and Lemma 2.12, we get

EEF (G) ≥ 2E(G)− 4v+ = 2(2
√
m)− 4v+ = 4(

√
m− v+).

Since complete bipartite graph Kp,q has spectrum ±
√
pq and 0 with the multiplic-

ity p+ q − 2, then v+(G) = 1. So, the result is complete.

The following result follows from Theorem 3.6.

Corollary 3.7. If G is a complete bipartite graph Kn,n and n ≥ 1, then

EEF (G) ≥ 4(n− 1).

Theorem 3.8. Let G be a connected graph with m edges. If λ̄ is the mean of
eigenvalues AF (G) such that λm, . . . , λv++1 ≤ λ̄ ≤ λv+ , . . . , λ1 where λ1 ≥ λ2 ≥
· · · ≥ λm is a non-increasing sequence of eigenvalues of AF (G) and v+ is the
number of positive eigenvalues, then

k
(2v+

m
− 1
)
≤ EEF (G) ≤ k

(2m

v+
− 1
)
,

where F is the minimum edge dominating set with |F | = k. Equality holds if and
only if AF (G) is the positive semidefinite matrix.

Proof. Let the minimum edge dominating matrix AF (G) has v+ positive eigenval-
ues with the condition λm, . . . , λv++1 ≤ λ̄ ≤ λv+ , . . . , λ1 where λ1 ≥ λ2 ≥ · · · ≥
λm is its non-increasing sequence of eigenvalues.
According to inequality (2) in Lemma 2.11, we have

v+∑
i=1

λi − (m− v+)λ̄ ≤ EEF (G) ≤
(

1 +
m− v+

m

) v+∑
i=1

λi. (3)

Using Theorem 1 in [11],
∑m
i=1 λi = |F | = k. Therefore, we have

EEF (G) =

m∑
i=1

|λi| =
v+∑
i=1

λi −
v−∑
i=1

λi

= 2

v+∑
i=1

λi −
m∑
i=1

λi = 2

v+∑
i=1

λi − k.
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Thus,
∑v+

i=1 λi = EEF (G)+k
2 . Therefore, we get for inequality of (3)

EEF (G) + k

2
−mλ̄+ v+λ̄ ≤ EEF (G).

Since λ̄ =
∑m

i=1 λi

m = k
m thus,

EEF (G)

2
− k

2
+ v+λ̄ ≤ EEF (G).

Therefore,

EEF (G) ≥ 2v+λ̄− k = 2v+
( k
m

)
− k

= k
(2v+

m
− 1
)
.

On the other hand, from the right hand of (3), we have

EEF (G) ≤
(

1 +
m− v+

m

) v+∑
i=1

λi =
(
2− v+

m

) v+∑
i=1

λi

= 2

v+∑
i=1

λi −
v+

m

v+∑
i=1

λi

= EEF (G) + k − v+

m

(EEF (G) + k

2

)
= EEF (G)

(
1− v+

2m

)
+ k
(

1− v+

2m

)
.

So,

EEF (G)
( v+

2m

)
≤ k

(
1− v+

2m

)
.

Therefore, we have

EEF (G) ≤ k
(2m

v+
− 1
)
.

Equality holds if and only if

k
(2v+

m
− 1
)

= k
(2m

v+
− 1
)
.

Thus, (v+)2 = m2. Since v+ ≥ 0 and m ≥ 0, then v+ = m. Therefore, all of the
eigenvalues of the matrix AF (G) are positive. Consequently, AF (G) is the positive
semidefinite matrix.
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Corollary 3.9. Let G be a graph with m edges. If λ̄ is the mean of eigenval-
ues AF (G) such that λm, . . . , λv++1 ≤ 0 ≤ λ̄ ≤ λv+ , . . . , λ1 where λi’s are the
eigenvalues of AF (G) for i = 1, . . . ,m and v+ is the positive inertia, then

EEF (G) ≥ k,

where F is a minimum edge dominating set of G with |F | = k.

In the following theorem, a sharp lower bound of the minimum edge dominating
energy of G can be characterized by the rank of line graph G.

Theorem 3.10. Let G be a graph of order n and size m. If F is the minimum
edge dominating set with cardinality k, then

EEF (G) ≥ rank(LG)− k.

Equality holds if and only if G ' kK2 ∪ (n− 2k)K1.

Proof. Assume that λ1, . . . , λr are all the nonzero eigenvalues of AF (G). So, one
can consider λm−r

(
λr+a1λ

r−1 + · · ·+ar
)
as a characteristic polynomial of AF (G)

where ar is a nonzero integer. Using the arithmetic-geometric inequality, we get

|λ1|+ · · ·+ |λr|
r

≥ r
√
|λ1| . . . |λr| = r

√
|ar| ≥ 1. (4)

Thus, EEF (G) ≥ rank(AF (G)). Assume that AF (G) = A(LG) + B where B =[
1k 0k×m−k

0m−k×k 0m−k×m−k

]
, where 1i and 0i denoting the identity and zero matrices

of order i, respectively. According to Lemma 2.9, we have

EEF (G) ≥ rank(AF (G)) = rank
(
A(LG) +B

)
≥
∣∣rank(A(LG))− rank(B)

∣∣ ≥ ∣∣rank(A(LG))
∣∣− ∣∣rank(B)

∣∣.
Since rank(A(LG)) ≥ 0 and rank(B) = k ≥ 0, then EEF (G) ≥ rank(LG)− k.
We consider the equality case. So,

EEF (G) = rank(AF (G)) = rank(AF (G))− k.

Thus, equality holds in (4). This means that |λ1| = · · · = |λr| = 1 and therefore
k = |F | =

∑m
i=1 λi = r. Hence, rank(AF (G)) = k.

On the other hand,
∑m
i=1 λ

2
i = k+

∑n
i=1 d

2
i −2m in which di is the degree of vertex

vi in G. Since k = k +
∑n
i=1 d

2
i − 2m then,

∑n
i=1 d

2
i = 2m =

∑n
i=1 di. Therefore,

the degree of vertices in graph G is 0 or 1. Thus, G ' kK2 ∪ (n− 2k)K1.

In the following theorem, we obtain a lower bound of the minimum edge dom-
inating energy of a connected graph G in terms of the rank of the line graph
G.
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Theorem 3.11. Let G be a connected graph. If the line graph of G, LG, is the
connected bipartite graph with m′ edge and rank(LG) = r′, then

EEF (G) ≥
√
r′2 + 2r′ − 4.

Proof. Let F be the minimum edge dominating set of G with cardinality k. Let
v+ be the positive inertia of LG. Using Lemma 2.13, for AF (G) = A(LG) + B

where B =

[
1k 0k×m−k

0m−k×k 0m−k×m−k

]
, such that the matrix B is defined in the proof

of Theorem 3.10, we get

λi(AF (G)) ≥ λi(LG) + λm(B),

where 1 ≤ i ≤ m and λm(B) is the smallest eigenvalues of B. Note that the
spectrum of B consists of 1 with the multiplicity k and 0 with the multiplicity
m− k. Thus, λm(B) = 0. Hence, we can consider

2

v+∑
i=1

λi(AF (G)) ≥ 2

v+∑
i=1

λi(LG).

Using the above inequality, we get

EEF (G) = max
1≤k≤m

k∑
i=1

λi(AF (G)) ≥ 2

v+∑
i=1

λi(AF (G))

≥ 2

v+∑
i=1

λi(LG).

Since LG is a bipartite graph, then v+ = rank(LG)
2 = r′

2 . Therefore,

EE2
F (G) ≥

(
2

v+∑
i=1

λi(LG)
)2

= 4
( v+∑
i=1

λ2i (LG) +
∑
i 6=j

λiλj

)
= 4
(
m′ + v+(v+ − 1)θ

)
,

where m′ is the number of edges of LG and θ is the arithmetic mean of {λiλj}i 6=j .
The geometric mean of {λiλj}i 6=j is(∏

i 6=j

λiλj
) 1

v+(v+−1) =
(
λ21 . . . λ

2
v+

) 1

v+ .

Since LG is connected, m′ ≥ r′ − 1 and λ21 . . . λ2v+ ≥ 1. So, we get

EEF (G) ≥

√
4m′ + r′(r′ − 2)

r′
√(

λ21 . . . λ
2
v+

)2
≥
√

(r′ + 1)2 − 5 =
√
r′2 + 2r′ − 4.
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Theorem 3.12. Let G be a connected graph with n vertices and m edges such
that the line graph of G of order m ≥ 4 and size m′. If LG is a connected bipartite
graph and rank(LG) = r′ < m, then

EEF (G) > r′.

Proof. According to the proof from Theorem 3.11, we have

EEF (G) ≥

√
4m′ + r′(r′ − 2)

r′
√(

λ21 . . . λ
2
v+

)2
,

where λ1, . . . , λv+ are the positive eigenvalues of LG and v+ = r′

2 . We consider
the following cases.
Case 1: Suppose that LG is a tree. Then by Theorem 8.1 in [24] and Lemma 2.14,
G has no perfect matching and λ21 . . . λ2v+ ≥ 2. Hence,

EEF (G) ≥
√

4(m− 1) + r′(r′ − 2)
r′
√

4

≥
√

4r′ + r′(r′ − 2)
r′
√

4.

If r′ ≥ 3, then r′
√

4 = (4)
1
r′ > 1 + 1

r′ ≥ 1 + 1
r′(r′−2) . Therefore,

EEF (G) ≥
√

4r′(r′2 − 2r′ + 1) =
√
r′2 + 2r′ + 1

= r′ + 1 > r′.

If r′ = 2, then

EEF (G) ≥
√

4(m− 1) + r′(r′ − 2)
r′
√

4 =
√

4(m− 1)

= 2
√

(m− 1) = 2
√
r′ ≥ r′.

Case 2: If LG is not a tree, then m′ ≥ n′ ≥ r′ + 1. So,

EEF (G) ≥
√

4m′ + r′(r′ − 2)
r′
√

4 ≥
√

4(r′ + 1) + r′(r′ − 2)
r′
√

4

≥
√

4r′ + 4 + (r′2 − 2r′ + 1) =
√

(r′2 + 2r′ + 5)

≥
√

(r′ + 1)2 ≥ r′ + 1 > r′.

4. Conclusion
One spectral quantity of studies on the structure of a graph is graph energy which
can bring important structural information about the graph. Nowadays, variants
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of graph energy have been proposed, based on the matrices of a graph. Graph
energies have various applications in the fields of science and engineering. Ap-
plications of graph energy in the chemistry of unsaturated conjugated molecules
are rather numerous. Also, this set of invariants of a molecular graph related are
applications in crystallography, theory of macromolecules, as well as analysis and
comparison of protein sequences [25–27].
In this paper, we focused on the minimum edge dominating energy of a graph and
obtained theoretical results on this invariant. The results obtained in this study
help to better understand the minimum edge dominating energy for graphs for
which it is difficult to obtain this energy.
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