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Abstract

Let R be a commutative ring with nonzero identity. Throughout this
paper we explore some properties of two certain subgraphs of the maximal
graph of R.
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1. Introduction
First, we state some definitions and notations that will be used in the paper. All
rings are assumed to be commutative with 1 6= 0 and all graphs are assumed to
be undirected and simple. As usual, the ring of integers, integers modulo n, for
any positive integer n ≥ 2, and the cardinality of a set A, for the set A, will be
denoted by Z, Zn and |A|, respectively. Also, for the ring R, the set of all maximal
ideals of R and the Jacobson radical of R will be denoted by Max(R) and J(R),
respectively. A ring R is said to be quasi − local if Max(R) is a singelton set; in
this situation if Max(R) = {M}, we will often write (R,M).

For a graph G and any two distinct vertices x and y, x 6= y, of G, the
complement of G, the degree of x in G and the least length of a path are de-
noted by Gc, deg(x) and d(x, y), respectively. Given a graph G, a dominating set
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is a subset D of the vertex set G such that every vertex not in D is adjacent to at
least one element of D. The number of vertices in the smallest dominating set G
is denoted by γ(G) and it is called the domination number. A connected graph
G is called semi− Eulerian if there exists an open trail containing every edge of
the graph exactly once. A graph is clearly semi-Eulerian if and only if it has at
most two vertices of odd order. A graph is said to be split if it can be partitioned
in an independent set and a clique. A pancyclic graph is a graph that contains
cycles of all possible lengths from three up to the number of vertices in the graph.
In fact, pancyclic graphs are a generalization of Hamiltonian graphs. For other
general concepts on graph theory, one may consult [1].

The comaximal graph of a ring R, denoted by Γ(R), is a graph whose vertices
are the elements of R and two vertices a and b are adjacent if and only if Ra+Rb =
R. The graph Γ(R) was introduced in [2] and then in [3], the authors studied some
subgraphs of Γ(R) such as Γ1(R), Γ2(R) and Γ2(R)− J(R), where the vertex sets
are the set of units of R, the set of nonunits of R, and the set of nonunits of R
which are not in J(R), respectively. If R is a ring with at least two maximal ideals,
for the sake of convenience, we denote Γ2(R) − J(R) by G(R). In [4], Gaur and
Sharma studied the complement of Γ(R), which is known as the maximal graph of
the ring R. So the vertices of the maximal graph are the members of R and two
distinct vertices a and b are adjacent if and only if there exists a maximal ideal of
R that includes both a and b.

Throughout this paper, in continuation of [5, 6], we investigate some additional
properties of the maximal graph. In Section 2, first we investigate the domination
number of (G(R))c and (Γ2(R))c. Then we study when (G(R))c and (Γ2(R))c are
regular. Finally, we give some characterization of a ring R, such that (G(R))c

is split. In Section 3, we obtain some results on (Γ2(R))c and (G(R))c to be
pancyclic. Finally, in Section 4, we get some necessary and sufficient conditions
for (G(R))c and (Γ2(R))c to be semi-Eulerian.

2. Domination number, regular, and split graph

In this section, we state some properties of two important subgraphs of the maxi-
mal graph, namely (G(R))c and (Γ2(R))c. In particular, we compute their domina-
tion number of them. Also we investigate rings R such that (G(R))c and (Γ2(R))c

are regular. At last, for any fields F1 and F2, we characterize rings R = F1 × F2,
such that ((Γ2(R))c is split.
Firstly, we try to find out the domination number of (Γ2(R))c and (G(R))c.

Lemma 2.1. For any commutative ring R with unity, γ((Γ2(R))c) = 1.

Proof. It is sufficient to set D = {a} where a ∈ J(R).

Lemma 2.2. Let R be a commutative ring with identity, possessing at least two
maximal ideals. Then γ((G(R))c) = 2.
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Proof. Let |Max(R)| = 2 and Max(R) = {N1, N2}. Set D = {a, b}, such that
a ∈ N1−J(R) and b ∈ N2−J(R). If (G(R))c is disconnected, then γ((G(R))c) = 2.

Now, let |Max(R)| ≥ 3 and Max(R) = {N1, ..., Nk}, where k ≥ 3. Set
D = {a, b}, such that a ∈ ∩k−1i=1Ni − Nk and b ∈ ∩ki=1,i6=k−1Ni − Nk−1. For
every vertex x ∈ (G(R))c, there exists 1 ≤ j ≤ k such that x ∈ Nj . Three cases
might be distinguished:
Case 1 : 1 ≤ j ≤ k − 2, so x connects to a and b.

Case 2 : j = k − 1, so x, a ∈ Nk−1, then x connects to a.

Case 3 : j = k, so x, b ∈ Nk, thus x connects to b.
We claim that γ((G(R))c) = 2. Let D = {c}, so for every vertex x ∈ ((G(R))c,

x is connected to c, therefore, c ∈ J(R), which is impossible by the hypothesis.

Lemma 2.3. Let R be a finite commutative ring with identity. Then
(1) If (R,M) is quasi-local, then (Γ2(R))c is a (|M | − 1)-regular graph.
(2) If R has at least two maximal ideals, then (Γ2(R))c is not a regular graph.

Proof. It is clear.

Lemma 2.4. Let R = R1×R2 where (R1,M1) and (R2,M2) are finite quasi -local

rings. Then (G(R))c is a regular graph if and only if
|R1|
|M1|

=
|R2|
|M2|

.

Proof. Let N1 = R1 × M2 and N2 = M1 × R2, so Max(R) = {N1, N2}. For
every vertex x ∈ N1 − J(R), deg(x) = |R1||M2| − |M1||M2| − 1 and for every
vertex x ∈ N2 − J(R), deg(y) = |M1||R2| − |M1||M2| − 1. So deg(x) = deg(y)

if and only if
|R1|
|M1|

=
|R2|
|M2|

. Therefore, (G(R))c is a regular graph if and only if

|R1|
|M1|

=
|R2|
|M2|

.

Lemma 2.5. Let R be a ring with |Max(R)| ≥ 3. Then (G(R))c is not a regular
graph.

Proof. It is obvious.

Suppose that F1 and F2 are two fields. In the next lemma, we classify the rings
R = F1 × F2, for which (Γ2(R))c is a split graph. We need the following theorem.

Theorem 2.6. ([7, Theorem 6.7]). Let G be an undirected graph with degree
sequence d1 ≥ d2 ≥ ... ≥ dn, and let k = max{i | di ≥ i − 1}. Then G is a split
graph if and only if

∑k
i=1 di = k(k − 1) +

∑n
i=k+1 di.

Lemma 2.7. Let F1 and F2 be fields such that |F1| ≥ |F2| and let R = F1 × F2.
Then (Γ2(R))c is a split graph if and only if |F2| = 2.
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Proof. Let |F1| = k1 and |F2| = k2. With keeping the notation of Theorem 2.6,
we have:

d1 = k1 + k2 − 2 ≥ d2 = k1 − 1 ≥ ... ≥ dk1

= k1 − 1 ≥ dk1+1 = k2 − 1 ≥ ... ≥ dk1+k2−1 = k2 − 1.

Since k1 ≥ k2, we have m = k1 and (Γ2(R))c is a split graph if and only if
Σk1

i=1di = k1(k1−1)+Σk1+k2−1
i=k1+1 di, so k1 +k2−2+(k1−1)2 = k1(k1−1)+(k2−1)2

if and only if k2 = 2.

Theorem 2.8. Let R = F ×R, where F is a field and (R,M) is a quasi-local ring
that is not a field. Then (Γ2(R))c is not a split graph.

Proof. Let (Γ2(R))c be a split graph. Let |F | = f , |R| = r and |M | = m. It
suffices to consider the following cases:

Case 1 : f ≤ r

m
. With the notation as in Theorem 2.6, we have

d1 = r + fm−m− 1 ≥ ... ≥ dm = r + fm−m− 1 ≥ dm+1

= r − 1 ≥ ... ≥ dr = r − 1 ≥ dr+1 = fm− 1 ≥ ... ≥ dr+fm−m = fm− 1,

and k = r, so
r∑

i=1

di = r(r − 1) + Σr+fm−m
i=r2+1 di.

Thus

m(r + fm−m− 1) + (r −m)(r − 1) = r(r − 1) + (fm− 1)(fm−m),

so f2m− fm− f +m+ 1 = 0, which is impossible.
Case 2 :

r

m
≤ f . With the notation as in Theorem 2.6, we have

d1 = r + fm−m− 1 ≥ ... ≥ dm = r + fm−m− 1 ≥ dm+1

= fm− 1 ≥ ... ≥ dfm = fm− 1 ≥ dfm+1 = r − 1 ≥ ... ≥ dfm+r−m = r − 1,

and k = fm, so
fm∑
i=1

di = fm(fm− 1) +

fm+r−m∑
i=fm+1

di.

Therefore,

m(r + fm−m− 1) + (fm−m)(fm− 1) = (fm)(fm− 1) + (r −m)(r − 1),

indeed (r −m)(r −m− 1) = 0, which is impossible.
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3. Pancyclic graph

In this section, we obtain some results on (Γ2(R))c and (G(R))c to be pancyclic.
We use the following two theorems, that are proved in [8, 9], and also we use
Lemma 3.3, that the proof is easy.

Theorem 3.1. ([8, Theorem 1.34]). Let G be a graph. If there exist vertices x, y
on a Hamiltonian cycle C such that d(x, y) = 2 and d(x) + d(y) ≥ n + 1, then G
is pancyclic.

Theorem 3.2. ([9, Corollary 3.7]). If G is Hamiltonian with more than
n

3
vertices

of degree ≥ n+ 1

2
, then G is pancyclic.

Lemma 3.3. Let R be a ring.

(1) If R = R1 × R2, where R1 and R2 are quasi-local rings, at least one of
which is not field, then (Γ2(R))c is Hamiltonian.

(2) If R = R1 × R2 × R3, where R1, R2 and R3 are quasi-local rings, then
(Γ2(R))c and (G(R))c are Hamiltonian.

(3) If R = F1 × F2 × F3, where for every 1 ≤ i ≤ 3, Fi is a filed and |Fi| is
even, then (G(R))c is Eulerian.

(4) Let R = R1 × R2 × ... × Rn, where for every 1 ≤ i ≤ n, Ri is a quasi
-local ring and n ≥ 2. Then (Γ2(R))c is Eulerian if and only if for every
1 ≤ i ≤ n, |Ri| is odd.

First, note that if F1 and F2 are fields and R = F1 × F2, then there does not
exist a cycle of length |(Γ2(R))c| in (Γ2(R))c. Therefore, the next lemma is clear.

Lemma 3.4. Let F1 and F2 be fields and R = F1 × F2. Then (Γ2(R))c is not a
pancyclic graph.

Now, in the following proposition, we show that (Γ2(R))c is a pancyclic graph,
where R = R1 ×R2 and (R1,M1) and (R2,M2) are quasi-local rings and at least
one of them is not a field.

Proposition 3.5. Let F1 be a field, (R2,M2) be a quasi-local ring which is not a
field, and R = F1 ×R2. Then (Γ2(R))c is a pancyclic graph.

Proof. Let |F1| = f1, |R2| = r2, |M2| = m2 and |(Γ2(R))c| = n. First note that by
Lemma 3.3 (1), (Γ2(R))c is Hamiltonian. Let N1 = (0)× R2 and N2 = F1 ×M2,
so Max(R) = {N1, N2}.
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If m2 ≥ 3, then we can choose vertices x ∈ N1 − J(R) and y ∈ N2 − J(R).
Therefore, d(x, y) = 2, deg(x) = r2−1, deg(y) = f1m2−1 and n = r2+f1m2−m2.
Then

r2 + f1m2 −m2 + 1 ≤ r2 − 1 + f1m2 − 1.

Since n + 1 ≤ deg(x) + deg(y), then (Γ2(R))c is a pancyclic graph, by Theo-
rem 3.1. Now suppose m2 = 2. Then (Γ2(R))c has r2 − 2 vertices of degree r2 − 1
in N1 − J(R), only 2 vertices of degree r2 + 2f1 − 3 in J(R) and 2f1 − 2 vertices
of degree 2f1 − 1 in N2 − J(R). We have three cases:

Case 1 : r2 − 2f1 ≥ 1, According to Theorem 3.2, we show that there exist more

than
n

3
=
r2 + 2f1 − 2

3
vertices of degree ≥ n+ 1

2
=
r2 + 2f1 − 1

2
. Clearly, for

every vertex x ∈ J(R), deg(x) ≥ r2 + 2f1 − 1

2
and for every y ∈ N1 − J(R),

deg(y) = r2 − 1 ≥ r2 + 2f1 − 1

2
. Since r2 − 2f1 ≥ 1, r2 − f1 − f1 ≥ 1 so

r2 − f1 ≥ f1 + 1 ≥ 2 + 1 > −1. Therefore, 2r2 − 2f1 > −2, so 3r2 ≥ r2 + 2f1 − 2,

and r2 ≥
r2 + 2f1 − 2

3
. By the above statement there exist r2 − 2 + 2 vertices in

(N1 − J(R)) ∪ J(R) = N1. Thus (Γ2(R))c is pancyclic.

Case 2 : r2 − 2f1 ≤ −1. For every vertex x ∈ J(R), deg(x) ≥ r2 + 2f1 − 1

2
since

r2−2f1 ≤ −1, and for every z ∈ N2−J(R), deg(z) = 2f1−1 ≥ r2 + 2f1 − 1

2
. Also

we have 2f1−r2 ≥ 1 so 4f1−r2 ≥ 2f1 +1 ≥ 5 > −2, therefore, 4f1−r2 > −2 that

is 6f1 > r2 + 2f1− 2. It implies that 2f1 >
r2 + 2f1 − 2

3
. By the above statement

there exist 2f1 − 2 + 2 vertices in (N2 − J(R)) ∪ (J(R)) = N2. Thus (Γ2(R))c is
pancyclic.

Case 3 : r2 − 2f1 = 0. If f1 = 2, then R = Z2 × Z4, so (Γ2(R))c is pancyclic by
the definition. Now, let f1 6= 2. Since (R2,M2) is a quasi-local ring, then r2 and
f1 are powers of 2, so, one may easily check that the required result holds.

Lemma 3.6. Let (Ri,Mi) be a quasi-local ring which is not a field for 1 ≤ i ≤ 2,
and R = R1 ×R2. Then (Γ2(R))c is a pancyclic graph.

Proof. Let N1 = M1 × R2 and N2 = R1 ×M2 be maximal ideals of R and let
|Ri| = ri and |Mi| = mi, for 1 ≤ i ≤ 2 and n = |(Γ2(R))c|. Clearly |N1| = m1r2,
|N2| = r1m2 and |J(R)| = m1m2. Let n1 ∈ N1 − J(R) and n2 ∈ N2 − J(R) so
d(n1, n2) = 2 and since m1m2 ≥ 4 we have

m1r2 + r1m2 −m1m2 + 1 = n+ 1 ≤ deg(n1) + deg(n2) = m1r2 − 1 + r1m2 − 1.

On the other hand, by Lemma 3.3 (1), (Γ2(R))c is Hamiltonian. So by Theo-
rem 3.1, (Γ2(R))c is a pancyclic graph.
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By Proposition 3.5 and Lemma 3.6, we can get the next theorem that is one
of the main results of the section.

Theorem 3.7. Let R = R1 × R2, where (R1,M1) and (R2,M2) are quasi-local
rings such that at least one of them is not a field. Then (Γ2(R))c is a pancyclic
graph.

Now, by Lemma 3.3, we can get a different result of Lemma 3.4 for rings that
have three maximal ideals.

Lemma 3.8. Let F1, F2 and F3 be fields and R = F1 × F2 × F3. Then (Γ2(R))c

is a pancyclic graph.

Proof. LetN1 = (0)×F2×F3, N2 = F1×(0)×F3 andN3 = F1×F2×(0) be maximal
ideals of R and n = |(Γ2(R))c| and |Fi| = fi for 1 ≤ i ≤ 3. Let x ∈ N2− (N1∪N3)
and y ∈ (N1 ∩N3)−N2, so deg(x) = f1f3 − 1 and deg(y) = f2f3 + f1f2 − f2 − 1
and n = f2f3 + f1f3 + f1f2− f1− f2− f3 + 1. Clearly n+ 1 ≤ deg(x) + deg(y). By
Lemma 3.3 (2), (Γ2(R))c is Hamiltonian. Hence by Theorem 3.1, we obtain that
(Γ2(R))c is pancyclic.

Lemma 3.9. Let (R1,M1), (R2,M2) and (R3,M3) be quasi-local rings such that
at least of them is not a field, and let R = R1 × R2 × R3. Then (Γ2(R))c is a
pancyclic graph.

Proof. Without loss of generality let N1 = M1 × R2 × R3, N2 = R1 ×M2 × R3

and N3 = R1×R2×M3 be maximal ideals of R and n = |(Γ2(R))c| and |Ri| = ri,
|Mi| = mi for 1 ≤ i ≤ 3. Suppose that x ∈ N2−(N1∪N3) and y ∈ (N1∩N3)−N2.
It is obvious that deg(x) = r1m2r3−1 and deg(y) = m1r2r3+r1r2m3−m1r2m3−1.
Also

n = m1r2r3 + r1m2r3 + r1r2m3 −m1m2r3 −m1r2m3 − r1m2m3 +m1m2m3.

Sincem2 ≥ 2 andm1r3+r1m3−m1m3 ≥ 2, we have n+1 ≤ deg(x)+deg(y). Now,
by Lemma 3.3 (2), (Γ2(R))c is Hamiltonian, so by Theorem 3.1, it is a pancyclic
graph.

The following theorem, that is an upshot of Lemma 3.8 and Lemma 3.9, is
another main result of this section.

Theorem 3.10. Let (R1,M1), (R2,M2) and (R3,M3) be quasi-local rings and
R = R1 ×R2 ×R3. Then (Γ2(R))c is a pancyclic graph.

Now we investigate when (G(R))c is pancyclic. First it should be noted that
there does not exist a cycle of length |(G(R))c| in (G(R))c, since (G(R))c is dis-
connected. Then we have the next lemma.

Lemma 3.11. Let R be a commutative ring with identity with exactly two maximal
ideals. Then (G(R))c is not a pancyclic graph.
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Proposition 3.12. Let F1, F2 and F3 be fields, |F1| ≥ 3 and R = F1 × F2 × F3.
Then (G(R))c is a pancyclic graph.

Proof. Let N1 = (0) × F2 × F3, N2 = F1 × (0) × F3 and N3 = F1 × F2 × (0)
be maximal ideals of R and n = |(G(R))c| and |Fi| = fi for 1 ≤ i ≤ 3. Let
x ∈ N2 − (N1 ∪ N3) and y ∈ (N1 ∩ N3) − N2. Clearly deg(x) = f1f3 − 2 and
deg(y) = f2f3 + f1f2 − f2 − 2 and n = f2f3 + f1f3 + f1f2 − f1 − f2 − f3. Since
f1 ≥ 3, then n+1 ≤ deg(x)+deg(y). Then (G(R))c is Hamiltonian, by Lemma 3.3
(2). Hence by Theorem 3.1, (Γ2(R))c is pancyclic.

4. Semi-Eulerian
In this section, we explore some of the conditions under which (Γ2(R))c and
(G(R))c are semi-Eulerian. First, for any ring R with |Max(R)| = 2, we obtain a
necessary and sufficient condition for (Γ2(R))c to be semi-Eulerian.

Proposition 4.1. Let F1 and F2 be fields and R = F1 × F2. Then the following
conditions are equivalent:

(1) (Γ2(R))c is a semi-Eulerian graph.
(2) |F1| and |F2| are odd, R = Z2 × F2 where |F2| is odd or R = Z2 × Z2.

Proof. Let |F1| = f1 and |F2| = f2.
(1) ⇒ (2) Suppose f1 ≥ 4 is even and f2 is odd, then we have exactly one

vertex of degree f1 + f2 − 2 and f1 − 1 ≥ 3 vertices of degree f1 − 1, which is a
contradiction. Now suppose that f1 and f2 are even and f1 ≥ 4. So there exist at
least f1 − 1 vertices of degree f1 − 1, which is a contradiction.

(2) ⇒ (1) If f1 and f2 are odd, then by Lemma 3.3 (4), (Γ2(R))c is Eulerian,
as desired. If R = Z2 × F2, where f2 is odd, then (Γ2(R))c has f2 − 1 vertices
of degree f2 − 1, and one vertex of either degrees 1 or f2, so ((Γ2(R))c is semi-
Eulerian. Now, if R = Z2×Z2, then (Γ2(R))c has one vertex of degree 2, and two
vertices of degree 1, so ((Γ2(R))c is semi-Eulerian.

Lemma 4.2. Let R = F1 × R2, where F1 is a field and (R2,M2) is a quasi-local
ring which is not a field. Then (Γ2(R))c is Eulerian if and only if (Γ2(R))c is
semi-Eulerian.

Proof. If (Γ2(R))c is Eulerian, clearly it is semi-Eulerian. Conversely, assume
(Γ2(R))c is not Eulerian and N1 = (0)× R2, N2 = F1 ×M2, |F1| = f1, |R2| = r2
and |M2| = m2. There exist r2−m2 vertices of degree r2−1 in N1−J(R) and m2

vertices of degree r2 + f1m2 −m2 − 1 in J(R) and also f1m2 −m2 vertices of de-
gree f1m2−1 in N2−J(R), so by Lemma 3.3 (4), three following cases may happen:

Case 1 : f1 is even and r2 is odd. Clearly all vertices in N2− J(R) and J(R) have
odd degree, so (Γ2(R))c is not semi-Eulerian.
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Case 2 : f1 and r2 are even. So all vertices in N1 − J(R) and N2 − J(R) are of
odd degree. Thus (Γ2(R))c is not semi-Eulerian.

Case 3 : f1 is odd and r2 is even. Therefore, all vertices in N1 − J(R) and J(R)
have odd degree. So (Γ2(R))c is not semi-Eulerian.

Lemma 4.3. Let (R1,M1) and (R2,M2) be quasi-local rings that are not fields and
R = R1×R2. Then (Γ2(R))c is Eulerian if and only if (Γ2(R))c is semi-Eulerian.

Proof. If (Γ2(R))c is Eulerian, clearly it is semi-Eulerian. Conversely, assume
(Γ2(R))c is not Eulerian and N1 = M1×R2 and N2 = R1×M2 be maximal ideals
of R. Suppose that |R1| = k1, |R2| = k2, |M1| = m1 and |M2| = m2. Then there
exist m1k2−m1m2 vertices of degree m1k2−1 in N1−J(R) and m1m2 vertices of
degree m1k2−k1m2−m1m2− 1 in J(R) and also k1m2−m1m2 vertices of degree
k1m2 − 1 in N2 − J(R). If k1 and k2 are even and m1 and m2 are odd, then all
vertices in (Γ2(R))c − J(R) have odd degree. Otherwise all vertices in J(R) have
odd degree. Thus (Γ2(R))c is not semi-Eulerian.

Suppose that R is a ring with exactly two maximal ideals. The following
theorem, which is a result of Proposition 4.1, Lemma 4.2 and Lemma 4.3, provides
a necessary and sufficient condition for (Γ2(R))c to be semi-Eulerian.

Theorem 4.4. Let (R1,M1) and (R2,M2) be quasi-local rings and let R = R1 ×
R2. Then the following statements are equivalent:

(1) (Γ2(R))c is semi-Eulerian.

(2) |R1| and |R2| are odd, R ∼= Z2 ×R2 where R2 = Z2 or R2 is a field of odd
order.

Now we show that (Γ2(R))c is Eulerian if and only if it is semi-Eulerian, where
R is a ring with at least three maximal ideals.

Lemma 4.5. Let R = F1 × F2 × ...× Ft, where t ≥ 3 and for every 1 ≤ i ≤ t, Fi

is a field. Then (Γ2(R))c is Eulerian if and only if it is semi-Eulerian.

Proof. If (Γ2(R))c is Eulerian, It is semi-Eulerian. Conversely, assume (Γ2(R))c

is not Eulerian, |Fi| = fi and Max(R) = {N1, ..., Nt}, where Ni = F1 × F2 × ...×
Fi−1 × (0)× Fi+1 × ...× Ft for 1 ≤ i ≤ t. By Lemma 3.3 (4), two cases occur:

Case 1 : f1 is even and fi is odd for 2 ≤ i ≤ t. So J(R) = {x} and deg(x) =
uti=1fi − uti=1(fi − 1)− 1 is odd. There exists y ∈ (N2 ∩N3)− ∪ti=1,i6=2,3Ni such
that deg(y) = |N2 ∪N3| − 1 is odd.

If t = 3, then we have x ∈ (N1 ∩N3)−N2 and deg(x) = |N1 ∪N3| − 1 is odd,
so there exists at least 3 vertices of degree odd. It implies that (Γ2(R))c is not
semi-Eulerian.
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If t ≥ 4, then there exist z ∈ (N2 ∩N4)−∪ti=1,i6=2,4Ni with odd degree, so the
assertion is obtained.

Case 2 : At least f1 and f2 are even. We have x ∈ N1 ∩ N3 − ∪ti=2,i6=3Ni, y ∈
N2 ∩N3 − ∪ti=1,i6=2,3Ni and z ∈ N1 − ∪ti=2Ni with odd degree, so (Γ2(R))c is not
semi-Eulerian.

Lemma 4.6. Let R = R1 × R2 × ... × Rt, where t ≥ 3 and for every 1 ≤ i ≤ t,
(Ri,Mi) is a quasi-local ring and at least one of them is not field. Then (Γ2(R))c

is Eulerian if and only if (Γ2(R))c is semi-Eulerian.

Proof. It is sufficient to show that if (Γ2(R))c is not Eulerian, then it is not semi-
Eulerian. Assume that R1 is not field and Ni = R1×...×Ri−1×Mi×Ri+1×...×Rt,
|Ri| = ri and |Mi| = mi, for 1 ≤ i ≤ t. Then Max(R) = {N1, ..., Nt}. We have
two following cases:

Case 1 : r1 is even. Then |N2 ∩N3 ∩ ...∩Nt − J(R)| = r1m2...mt −m1m2...mt =
(r1 −m1)(m2...mt) ≥ 2, since r1 −m1 > 1 and m2...mt ≥ 1. Clearly, for every
x ∈ N2 ∩N3 ∩ ... ∩Nt − J(R), deg(x) is an odd number. On the other hand, for
every y ∈ N2 −∪ti=1,i6=2Ni, deg(y) = |N2| − 1 = r1m2r3...rt − 1 is odd, so we have
at least three vertices of odd degree, thus (Γ2(R))c is not semi-Eulerian.

Case 2 : r1 is odd and at least one of the numbers r2, ..., rt is even. Assume that
r2 is even. We have |N1 ∩ N3 ∩ .... ∩ Nt − J(R)| = m1r2m3...mt −m1m2...mt =
m1m3...mt(r2−m2) ≥ 3, since r1 is odd and 1 6= m1|r1 and r2−m2 ≥ 1, for every
vertex x ∈ N1 ∩ N3 ∩ .... ∩ Nt − J(R), deg(x) is odd. So we found at least three
vertices of odd degree, thus (Γ2(R))c is not semi-Eulerian.

The next theorem, that follows from Lemmas 4.5 and 4.6, is one of the main
results of this section.

Theorem 4.7. Let R = R1 ×R2 × ...×Rt, where t ≥ 3 and for every 1 ≤ i ≤ t,
(Ri,Mi) is a quasi-local ring. Then (Γ2(R))c is Eulerian if and only if it is semi-
Eulerian.

We conclude this section with a characterization for(G(R))c to be semi-Eulerian.

Theorem 4.8. Let R = F1×F2×F3, where for every 1 ≤ i ≤ 3, Fi is a field and
|Fi| = fi. Then the following statements are equivalent:

(1) (G(R))c is semi-Eulerian.

(2) fi is even for 1 ≤ i ≤ 3 or R = Z3 × F2 × F3 where f2 and f3 are even.

Proof. Let N1 = (0) × F2 × F3, N2 = F1 × (0) × F3 and N3 = F1 × F2 × (0) be
maximal ideals of R.
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(1)⇒ (2) If (2) is not valid, then one of the following cases may happen:

Case 1 : If fi is odd for 1 ≤ i ≤ 3, then all vertices have odd degree, which is a
contradiction.

Case 2 : If f1 and f2 are odd and f3 is even, then there exist f1f2− f1− f2 + 1 =
f1(f2 − 1) − f2 + 1 = (f2 − 1)(f1 − 1) ≥ 2 × 2 = 4 vertices of degree f1f2 − 2 in
N3 − (N1 ∪N2), which is a contradiction.

Case 3 : If f1 is odd and f1 > 3 also f2 and also f3 are even, then there exist
f1 − 1 > 2 vertices of degree f1f3 + f1f2 − f1 − 2 in (N2 ∩ N3) − N1, which is a
contradiction.

(2) ⇒ (1) If fi is even for 1 ≤ i ≤ 3, then by Lemma 3.3 (3), (G(R))c is
Eulerian, so it is semi-Eulerian.

If R = Z3 × F2 × F3 where f2 and f3 are even, then by computing degrees of
vertices we see that there exist |Z3|−1 = 2 vertices of odd degree in (N2∩N3)−N1

and other vertices have even order, so (G(R))c is semi-Eulerian.
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