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Abstract
In this paper, we investigate an improved method for stabilizing a class of

uncertain chaotic nonlinear dynamical system. Our approach follows tech-
niques of optimal principle for time-delayed feedback control and adaptive
tracking control theory for stabilizing unstable periodic orbits in a chaotic
bounded attractor. The uncertain parameters expressed in the system can
be separated. Analysis and proof are presented using the Lyapunov stabil-
ity theorem. In particular, we use the adaptive control theory to design an
adaptive law for the estimation of uncertain time-delayed controlled chaotic
nonlinear dynamical systems. The predictions are presented by numerical
simulation through the Rossler system to demonstrate theoretical results.
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1. Introduction
The most characteristic of chaotic systems is high sensitivity to small perturbations
regarding initial conditions. An important problem in nonlinear control is known
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as stabilizing unstable periodic orbits (UPOs) in chaos control [1]. An efficient
scheme for stabilizing UPOs using small parameter perturbation has been proposed
by Ott, Grebogy, and York (OGY)[2]. The OGY method is effective but requires
unstable periodic solution information to be used as reference signals for tracking.
Another efficient scheme for stabilizing UPOs using time-delayed feedback control
(TDFC) was proposed by Pyragas in 1992, different from the OGY method [3, 4].
The Pyragas method does not require detailed UPOs information and is more
flexible and robust to noise, in comparison with the OGY approach. This requires
a solution of UPOs embedded in chaotic attractors[5, 6]. A scalar time delay
constant as the period of the UPOs must be stabilized to use the time-delayed
state as a tracking UPOs embedded in chaotic attractors. The approach is simple
and has succeeded in a chaotic control system[7, 8]. This method is in the form
of feedback proportional to the difference between the state of the chaotic system
and this past on period state at times t and t − T , where T denotes the time
delay for the control parameter and is adjusted to match the period of the UPOs
to be stabilized. Many other classical nonlinear control techniques for stabilizing
UPOs such as adaptive chaos control [9, 10], synchronization method [11, 12],
parameter identification [13, 14], robust LMI approach [15], fuzzy adaptive sliding
mode[16], stabilization controller [17] and optimal time delay control [18, 19] have
been proposed so far for stabilizing UPOs.
This paper proposes an adaptive stabilizing control of chaotic systems with optimal
principles for time-delayed feedback control. An improved adaptive stabilization
controller is then designed to stabilize the UPOs solution embedded in the chaotic
attractors.
The organization of this paper is as follows. Section 2, describes some preliminary
knowledge about chaotic nonlinear dynamical systems. Section 3, describes an
optimal principle for a time-delayed feedback control problem. Section 4, addresses
the adaptive synchronization scheme and derives the proposed control strategy for
a chaos nonlinear dynamical system with unknown parameters. In Section 5, the
adaptive stabilization controller scheme for the delayed Rossler system is solved.
Section 6 draws conclusions.

2. Description of the system
Chaos control study analysis and design of chaotic nonlinear dynamical systems.
In analysis assumes a closed circuit is designed and the behavior of a system is
determined to stabilize one of the UPOs in the embedded of attractor chaotic
by TDFC tools. In design assumes that controlled chaotic nonlinear dynamical
systems have desired behavior of closed circuit system and a sesign controller for
this.
We consider uncertain chaotic nonlinear dynamical systems described by the fol-
lowing differential equation,

ẋ = f(t, x(t), θ). (1)
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Where x(t) = (x1(t), x2(t), ..., xn(t))T ∈ Rn is the state vector, θ ∈ Rn is a vector
of unknown constant parameters and f satisfies the sufficient conditions for the
existence and uniqueness of solutions (typically, continuity and locally Lipschitz in
all arguments x(t) and for each θ, uniformly in t). We consider a general controlled
continues time uncertain chaotic system as follows:

ẋ = f(t, x, u, θ). (2)

Where u ∈ Rm corresponds to the control inputs and f still satisfies the sufficient
conditions for the existence and uniqueness of solutions. (typically, continuity and
locally Lipschitz in all arguments and for each x, θ and also u, uniformly in t). Let
Ω ∈ Rnbe a chaotic bounded attractor. Suppose that x̄(t) is an unstable periodic
orbit solution embedded in a chaotic bounded attracted set of the system (1).
We consider the time-delayed feedback control by following equation

u(t) = K(x(t)− x(t− τ)), (3)

with a proper delay-time τ > 0.
System (3) is added to system (1) to form controlled uncertain chaotic nonlinear
dynamical systems (2) such that the system orbit can track the x̄(t). On the other
hand limt→∞ ‖x(t)− x̄(t)‖ = 0, where ‖x(t)− x̄(t)‖ = [(x(t)− x̄(t)]T [(x(t)− x̄(t)]
is the Euclidean norm [1].
The goal is to find K with a proper known delay- time τ > 0.

Assumption 2.1. Let uniform Lipschitz condition di > 0 refer to the uniform
Lipschitz constant for any x(t) = (x1(t), x2(t), ..., xn(t))T ∈ Ω, there exist con-
stants li > 0; i = 1, 2, ..., n such that

|k(xi)− k(x̂i)| ≤
√
li max

1≤j≤n
{|xj − x̂j |} , i = 1, 2, ..., n. (4)

It is held as long as the partial differential ∂ki/∂xi is bonded in Ω.

We first discuss the stabilization problem with the TDFC method when the target
is an unstable fixed point τ = 0 and the parameter of a chaotic system is known
in Section 3 for analysis. Then we consider the case where the chaotic system
contains unknown system and control parameters.

3. Time-delayed feedback control

In this section, a TDFC control method is introduced for stabilizing UPOs of the
system (2) [1]. Let θ be a known parameter as θ∗, and controlled chaotic nonlinear
dynamical system is following differential equation:

ẋ(t) = f(t, x(t), u(t), θ∗) = f(t, x(t), θ∗) + u(t), (5)
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x̄(t) is unstable periodic orbit solution then u(t) ≡ 0,

˙̄x(t) = f(t, x̄(t), 0, θ∗). (6)

It is clear that the following equations hold.

x̄(t)− x̄(t− τ) =

∫ t

t−τ
f(t, x̄(t), 0, θ∗)d(s) = 0, (7)

d

dt
x̄(t)− d

dt
x̄(t− τ) = f(t, x̄(t), 0, θ∗)− f(t, x̄(t− τ), 0, θ∗) = 0,

d2

dt2
x̄(t)− d2

dt2
x̄(t− τ) =

d

dt
f(t, x̄(t), 0, θ∗)− d

dt
f(t, x̄(t− τ), 0, θ∗) = 0.

For stabilizing UPOs of the system (2), regarding the minimization integral princi-
ple, the first, second, and higher order derivatives of f(t, x̄(t), 0, θ∗) must be zero.
We introduce the following performance index:

J =

∫ ∞
t0

[(
1

τ
(

∫ t

t−τ
f(t, x̄(t), 0, θ∗)d(s)))T (

1

τ
(

∫ t

t−τ
f(t, x̄(t), 0, θ∗)d(s))) (8)

+ (
1

τ
(f(t, x̄(t), 0, θ∗)− f(t, x̄(t− τ), 0, θ∗)))T (

1

τ
(f(t, x̄(t), 0, θ∗)

− f(t, x̄(t− τ), 0, θ∗) + (
1

τ
(
d

dt
f(t, x̄(t), 0, θ∗))

− d

dt
f(t, x̄(t− τ), 0, θ∗)T (

1

τ
(
d

dt
f(t, x̄(t), 0, θ∗)

− d

dt
f(t, x̄(t− τ), 0, θ∗)]dt.

Subtracting (6) from (5) with e(t) = x(t) − x̄(t), gets error dynamical chaotic
system. Since J is a convex function operating on the convex set Ω, minimizing
it achieves a global minimum point. Furthermore, e(t) defines an error function
that is also convex and contains the same convex feasible region as J. Therefore,
minimizing e(t) yields the same global minimum as of J. Next, we derive the
equations as follows,

ė(t) = ẋ(t)− ˙̄x(t) = f(t, x(t), u, θ∗)− f(t, x̄(t), 0, θ∗) (9)
= f(t, x(t), θ∗) + u(t)− f(t, x̄(t), θ∗),

Rewrite the error dynamical system:

u(t) = K(x(t)− x(t− T )), (10)
ė(t) = F (t, x(t), θ∗) +K(x(t)− x(t− τ)), (11)
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where

F (t, x(t), θ∗) = f(t, x(t), θ∗)− f(t, x̄(t), θ∗) (12)
= f(t, x̄(t) + e(t), θ∗)− f(t, x̄(t), θ∗).

Firstly, without loss of generality, suppose x̄(t) is constant, let x̄(t) = 0. Then

ė(t) = F (t, e(t), θ∗) +K(e(t)− e(t− τ)). (13)

Such that the controlled system orbit can track the x̄(t) = 0 when limt→∞ ‖e(t)‖ =
0 and performance index J is minimized.
There is a parametric linearization F (t, e(t), θ∗) around the point:

ė(t) = A(t)e(t) + v(e(t)) +K(e(t)− e(t− τ)), (14)

A =
∂F (t, e(t), θ∗)

∂e

∣∣
e(t)=0 , (15)

where v(t) is a high order term e(t).

Theorem 3.1. Consider the error dynamical system (14), if there are two positive
definite and symmetric constant matrices Pand Q and a constant matrix K such
that the Riccati polynomial matrix

P + PA+ PKQ−1KTP + PK +KTP +Q (16)

is semi-negative definite (≤ 0), then limt→∞ ‖e(t)‖ = 0.

Proof. Consider a quadratic Lyapunov function as follows:

V (t, e) = e(t)TP e(t) +

∫ t

t−τ
e(s)TQe(s)ds. (17)

By time-differentiating the function V along the trajectory of (14), we obtain

V̇ (t, e) = ė(t)TPe(t) + e(t)TP ė(t) + e(t)Qe(t)− e(t− τ)TQe(t− τ), (18)

with (13) and (14) :

V̇ (t, e) = [F (t, e) +K(e(t)− e(t− τ)]TP e(t) (19)
+ e(t)P [F (t, e) +K(e(t)− e(t− τ)]

+ e(t)TQe(t)− e(t− τ)TQe(t− τ),

or

V̇ (t, e) = [Ae(t) + v(t) +K(e(t)− e(t− τ))]TPe(t) (20)
+ e(t)TP [Ae(t) + v +K(e(t)− e(t− τ))]

+ e(t)TQe(t)− e(t− τ)TQe(t− τ),
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with simplicity, we obtain

V̇ (t, e) = e(t)TATPe(t) + v(t)TPe(t) + e(t)TKTPe(t)− e(t− τ)TKT pe(t)

+ e(t)TPAe(t) + e(t)TPv(t) + e(t)TPKe(t)− e(t)TPKe(t− τ)

+ e(t)TQe(t)− e(t− τ)TQe(t− τ), (21)

by factoring, we get

V̇ (t, e) = e(t)T [ATP +KTP + PA+ PK +Q]e(t) + e(t)TPv(t) + v(t)TPe(t)

− [e(t− τ)TKTPe(t) + e(t)TPKe(t− τ) + e(t− τ)TQe(t− τ)], (22)

Consider equality:∥∥∥Q1/2e(t− τ) +Q−1/2KTP e(t)
∥∥∥ (23)

= [Q1/2e(t− τ) +Q−1/2KTP e(t)] T [Q1/2e(t− τ) +Q−1/2KTP e(t)]

= e(t− τ)TQe(t− τ) + e(t− τ)TKTP e(t− τ)

+ e(t)TP K e(t− τ) + e(t)TP KQ−1KTP e(t),

we have

V̇ (t, e) = −[Q1/2e(t− τ) +Q−1/2KTPe(t)] T [Q1/2e(t− τ) +Q−1/2KTP e(t)]

+ e(t)TP v(t) + v(t)TPe(t) (24)
+ e(t)T [ATP + PA+ PKQ−1KTP + PK +KTP +Q ] e(t ).

Then V̇ is negative, for small e(t), and e(t)TP v(t) + v(t)TPe(t) ' 0.

4. Improve adaptive synchronization scheme
In this section, we consider the case when the chaotic nonlinear dynamical system
contains uncertain parameters. The controller design in Section 2 cannot deliver
the stabilizing force for a chaotic system (1).

ẋ = f(t, τ, x(t), θ) +K(x(t)− x(t− τ)). (25)

We consider the time-delayed feedback control with a proper delay-time τ > 0
to be added to the system (1) to form of controlled uncertain chaotic nonlinear
dynamical systems ẋ = f(t, τ, x(t), x(t − τ), θ). The idea is to introduce a model
tracking (adaptive stabilization) strategy which can provide a wide spectrum of
the signal so that the identification of the parameters is realized. In the following,
we investigated the adaptive stabilization between the references systems for a
class of special chaotic nonlinear dynamical system contain uncertain parameters
can be written as:

ẋ = f(t, τ, x(t), x(t− τ), θ) = T x(t) + C g(x(t)) + Γx(t− τ(t)). (26)
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Where x(t) = (x1(t), x2(t), ..., xn(t))T ∈ Ω, Ω is a chaotic bounded strange attrac-
tor set and Ω ∈ Rn, is the state vector, T = (tij)n×n, Γ = (γij)n×nare uncertain
constant matrices of the linear section, C = (cij)n×nis the uncertain constant
matrix of the nonlinear section, g(x) = (g1(x), g2(x), ..., gn(x))T is a nonlinear
function section and τ = τ(t) ≥ 0 is the time-varying delay. Without loss of gen-
erality, it is assumed that the nonlinear dynamical system structure (26) is known
and time series for all variables are available as the output of (26).

Assumption 4.1. For uniformly of function τ , let τ = τ(t) ≥ 0 be the smooth
function of time t and τ ∈ C1, there is a positive number M > 0 such that
τ̇(t) ≤M .

Lemma 4.2. ([20]). For any vectors v1, v2 ∈ Rnand any positive definite matrix
A ∈ Rn×n the following inequality holds:

2v1
T v2 ≤ v1TAv1 + v2

TA−1v2. (27)

Referring to the system (26) as the reference system, an auxiliary variable x̂(t) =
(x̂1(t), x̂2(t), ..., x̂n(t))T ∈ Rn

is introduced as the estimation, and to get the esti-
mation equation of system (26), we construct the following system as an identifier:

˙̂x(t) = T̂ (t) x̂(t) + Ĉ(t)g(x̂(t)) + Γ̂(t)x̂(t− τ) + α(x, x̂), (28)

where T̂ = (t̂ij)n×n , Ĉ = (ĉij)n×n and Γ̂ = (γ̂ij)n×n are the estimation of the
uncertain parameters matrices T = (tij)n×n , C = (cij)n×n and Γ = (γij)n×n
respectively, α(x, x̂) = K(x(t)− x̂(t)) is a simple adaptive feedback controller with
K updated adaptively according to some updated low, where estimation error as
e(t) = x(t)− x̂(t) and subtracting (28) and (26) yield the error system as follows:

ė(t) = T̂ (t)x̂(t) + Ĉ(t)g(x̂(t)) + Γ̂(t)x̂(t− τ) +Ke(t)

− T x(t)− C g(x(t))− Γx(t− τ(t)). (29)

Our task is to find a suitable adaptive low such that x̂(t) can track x(t).

Theorem 4.3. If Assumption 2.1 and Assumption 4.1 are satisfied and there ex-
ists an arbitrary positive constants pij , qij , rij and λi , (i, j = 1, 2, 3, ..., n) system
(28) can tracking system (26) if one design:

˙̂tij = −pijei(t) x̂j , ˙̂γij = −qijei(t) x̂j(t− τ), ˙̂cij = −rijei(t) gj(x̂), (30)

with the coupling K = diag(k1, k2, ..., kn) updated by

˙̂
ki = −λie2i (t). (31)
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Proof. Construct a Lyapunov function of the form

V (e(t)) =
1

2
eT (t)e(t) +

1

2

∫ t

t−τ(t)
eT (s)e(s)ds (32)

+
1

2

n∑
i=1

1

λi
(ki + li)

2 +
1

2

n∑
i=1

n∑
j=1

1

pij
(t̂ij − tij)2

+
1

2

n∑
i=1

n∑
j=1

1

qij
(γ̂ij − γij)2 +

1

2

n∑
i=1

n∑
j=1

1

rij
(ĉij − cij)2.

By differentiating the function V with respect to time along the trajectory of (29)
we have

V̇ (e(t)) = eT (t)ė(t) +
1

2
eT (t)e(t)− 1

2
(1− τ̇(t))(eT (t− τ(t)) e(t− τ(t)) (33)

−
n∑
i=1

(ki + li)e
2
i (t)−

n∑
i=1

n∑
j=1

(t̂ij − tij)ei(t)x̂j(t)

−
n∑
i=1

n∑
j=1

(γ̂ij − γij)ei(t)x̂j(t− τ(t))−
n∑
i=1

n∑
j=1

(ĉij − cij)ei(t)gj(x̂).

Substituting (29) into (33) yields

V̇ (e(t)) = eT (t) T̂ (t) x̂(t) + eT (t) Ĉ(t)g(x̂(t)) + eT (t)Γ̂(t)x̂(t− τ) + eT (t)Ke(t)

− eT (t)T x(t)− eT (t)C g(x(t))− eT (t) Γx(t− τ(t)) +
1

2
eT (t)e(t)

− 1

2
eT (t− τ(t))e(t− τ(t)) +

1

2
τ̇(t)eT (t− τ(t)e(t− τ(t))− eT (t)Ke(t)

− eT (t)Le(t)− eT (t)T̂ (t)x̂(t) + eT (t)T x̂(t)−eT (t)Γ̂(t)x̂(t− τ)

+ eT (t)Γx̂(t− τ)− eT (t)Ĉ(t)g(x̂(t)) + eT (t)Cg(x̂(t)), (34)

then

V̇ (e(t)) = eT (t)Te(t) + eT (t)C(t)(g(x̂(t))− g(x(t))) + eT (t)Γe(t− τ(t))

− eT (t)Le(t) +
1

2
eT (t)e(t)− 1

2
eT (t− τ(t)e(t− τ(t))

+
1

2
τ̇(t)eT (t− τ(t))e(t− τ(t)). (35)

According to the fundamental Lemma 4.2, we can write

2 eT (t) Γe(t− τ(t)) ≤ eT (t− τ(t)) I e(t− τ(t)) + eT (t) ΓI−1ΓT e(t)

≤ eT (t− τ(t))e(t− τ(t)) + eT (t) ΓΓT e(t) (36)

=⇒ eT (t)Γe(t− τ(t))− 1

2
eT (t− τ(t))e(t− τ(t)) ≤ eT (t)(

1

2
ΓΓT )e(t),
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Where G(e) = g(x̂)− g(x) = g(x+ e)− g(x) and recalling lipschitz condition, we
have the following inequality:

2 eT (t)CGe(t) ≤ GT (e(t)) IG (e(t) + eT (t))CI−1CT e(t)

≤ GT (e(t))G (e(t) + eTCCT e(t) ) (37)

=⇒ eT (t)CGe(t) ≤ 1

2
GT (e(t)G (e(t) + eT (

1

2
CCT ) e(t))).

Substituting (37) into (35) yields

V̇ (e(t)) ≤ eT (t)[T +
1

2
ΓΓT +

1

2
CCT + (

1

2
− L)I]e(t)

+
M

2
eT (t− τ(t)e(t− τ(t)) +

1

2
eT (t)e(t) +

1

2
GT e(t)Ge(t)

≤ eT (t)[T +
1

2
ΓΓT +

1

2
CCT + (

b1 + 1

2
− L)I)]e(t)

+
M

2
eT (t− τ(t)e(t− τ(t)). (38)

We use the following inequality from Assumption 4.1 in (38):

GT (e(t))G(e(t)) =

n∑
i=1

(gi(x̂(t))− gi(x(t))2 ≤ nb1eT (t)e(t) ≤ eT (t)b1e(t), (39)

where b1 = max{l1, l2, ..., ln}. By choosing

L = λmax[T +
1

2
ΓΓT +

1

2
CCT ] +

b1 +M + 1

2
+ 1. (40)

One can use L to inequaltity (39) and can obtain V̇ (e(t)) ≤ 0. We have e(t)→ 0
i.e, x̂(t)→ x(t). This completes the proof.

5. Numerical simulation
In this section, we apply the effectiveness of the proposed method to adaptive
stabilizing inherent UPOs in the Rossler system with uncertain parameter and
time delay.
The proposed method for stabilizing the inherent UPOs in the Rossler system with
unknown parameters: ẋ1

ẋ2
ẋ3

 =

 0 −1 −1
1 a 0
x3 0 −c

 x1
x2
x3

+

 0
0
b

+ u. (41)

The uncontrolled (u = 0) Rossler system exhibits a chaotic behavior if a = b = 0.2
and c = 5.7. We used the fourth-order Runge-Kutta method to solve the sys-
tems with a time step size 0.001. We let run until a periodic orbit of a pre-
determined length is located. The simulation of Rossler’s system started at an
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Figure 1: Chaotic orbits of the Rossler system and time response of states.

arbitrary initial condition targeting a UPO of a length near τ = 5.86. Fig-
ure 1 shows the chaotic behavior of the Rossler system whit initial condition,
(x1(0), x2(0), x3(0)) = (0.5,−4, 4) and time response Rossler system states.

Where u is an attached control term, the system (41) can be written as:

 ẋ1
ẋ2
ẋ3

 =

 0 −1 −1
1 a 0
x3 0 −c

 x1
x2
x3

 (42)

+

 0
0
b

+

 k11 0 0
0 k22 0
0 0 k33

 x1(t)− x1(t− τ)
x2(t)− x2(t− τ)
x3(t)− x3(t− τ)

 .

Thus using Theorem 3.1 and by using SDP3 toolbars of Mathlab software, we
get a controller u with (k11, k22, k33) = (−0.12,−0.25,−0.1) stabilizing the system
on UPO with a known period τ and known parameters. Figure 2, shows TDFC
controlled period-one Rossler system and time response of the Rossler system with
period one and Figure 3, shows time response of error states.
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Figure 2: An orbits of the Rossler system and time response of states.

Figure 3: Time response of error states.
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Let us rewrite the Rossler system in the standard of (26):

ẋ = f(t, τ, x(t), x(t− τ)) = Tx(t) + Cg(x(t)) + Γx(t− τ(t))

T =

 0 −1 −1
1 a 0
0 0 −c

 , x(t) =

 x
1

x
2

x
3

 , C =

 0 0 0
0 0 0
0 b 1

,
g(x) =

 0
1

x
1
x

3

 , Γ =

 k11 0 0
0 k

22
0

0 0 k
33

 , x(t− τ) =

 x1(t−τ)
x

2
(t− τ)

x3(t− τ)

 .
(43)

Here, system (43) with the unknown parameters a, b, c, k11, k22, k33 is the reference
model. To get the estimation of unknown parameters, we construct the following
estimator:

˙̂x(t) = T̂ (t)x̂(t) + Ĉ(t)g(x̂(t)) + Γ̂(t)x̂(t− τ) + α(x, x̂),

T̂ =

 0 −1 −1
1 â 0
0 0 −ĉ

 , Ĉ =

 0 0 0
0 0 0

0 b̂ 1

 , Γ̂ =

 k̂11 0 0

0 k̂22 0

0 0 k̂
33

 . (44)

Defining the error state e(t) = [e1, e2, e3]T = [x̂1−x1, x̂2−x2, x̂3−x3]T . The error
dynamics are described by (2). Following the procedure proposed in Theorem 4.3,
we can design the adaptive scheme α(x, x̂) = K[x̂1−x1, x̂2−x2, x̂3−x3]Twhere K
is diag[k11, k22, k33]. From (30) and (31) we obtain the compensator and update
law for parameter estimation as

˙̂a = −e2x̂2, ˙̂
k11 = e1(x̂1, (t− τ)− x1(t)), k̇1 = −e21,

˙̂
b = −e2, ˙̂

k22 = e2(x̂2 (t− τ)− x2(t)), k̇2 = −e22,
˙̂c = e3x̂3,

˙̂
k33 = e3(x̂3 (t− τ)− x3(t)), k̇3 = −e23.

(45)

Some simulation were done. The true values of Rossler system parameters were
taken as a = b = 0.2, c = 5.7, k11 = 0.12, k22 = 0.25, k33 = 0.1, respec-
tively. The initial values of their estimates were â(0) = b̂(0) = ĉ(0) = k̂11(0) =

k̂22(0) = k̂33(0) = 0.01 respectively. The initial state of the unknown sys-
tem and estimator (x1(0), x2(0), x3(0)) = (0.5,−4, 4) and (x̂1(0), x̂2(0), x̂3(0)) =
(−5, 4,−4) respectively. The delay time τ = 5.86 was used which is a fundamental
period orbit of the Rossler system. Figures 4 and 5, present the time response
of error between states of the unknown and the estimator. One can see the two
systems are asymptotically synchronized. Figures 6 and 7 show the estimation of
the unknown parameters. The values of estimates approach to true value asymp-
totically. These estimates are fed in turn to the TDFC controller u which ensures
a controlled system converges to the inherent UPO as shown in Figure 8.
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Figure 4: Time response between states of the unknown and the estimator.

Figure 5: States of the unknown and the estimator.
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Figure 6: Estimation of the unknown parameters.

Figure 7: Estimation of the unknown parameters.
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Figure 8: Values of estimates approach to true value asymptotically.

6. Conclusion

We have presented an adaptive stabilization controller for UPOs of an uncertain
chaotic system with a TDFC controller. This paper deals with the problem of
parameter identification and adaptive synchronization of the controlled TDFC
chaotic system with uncertainties in system parameters and TDFC controller pa-
rameters. The main difference between the proposed method and other TDFC
methods is that the feedback control law is not confined within a special format.
To identify uncertain parameters of the controlled chaotic system with the TDFC
method, unknown parameters can be identified when the two systems are syn-
chronized. Then the proposed technique was utilized to estimate the unknown
parameters in the model. By this method, the unknown parameters of the Rossler
system were estimated exactly. Because of the limitation of the invariant prin-
ciple that only guarantees the estimates of the unknown parameters to converge
the largest invariant set containing in

.

V = 0. The effectiveness of the proposed
scheme on adaptive stabilization is well demonstrated by the Rssler example.
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