Original Scientific Paper

Row Stochastic Matrices and Linear Preservers of Matrix Majorization $T : \mathbb{R}_m \to \mathbb{R}_n$

Ahmad Mohammadhasani*, Mehdi Dehghanian and Yamin Sayyari

Abstract

A nonnegative square and real matrix R is a row stochastic matrix if the sum of the entries of each row is equal to one. Let $x, y \in \mathbb{R}_n$. The vector x is said to be matrix majorized by y and denoted by $x \prec_r y$ if x = yRfor some row stochastic matrix R. In the present paper, we characterize the linear preservers of matrix majorization $T : \mathbb{R}_m \to \mathbb{R}_n$.

Keywords: Linear preserver, Matrix majorization, m-Row stochastic matrix.

2020 Mathematics Subject Classification: 15A04, 15A21, 15A51.

How to cite this article

A. Mohammadhasani, M. Dehghanian and Y. Sayyari, Row stochastic matrices and linear preservers of matrix majorization $T : \mathbb{R}_m \to \mathbb{R}_n$, *Math. Interdisc. Res.* 8 (4) (2023) 291-307.

1. Introduction

The concept of majorization plays an important role in applied mathematics and linear algebra. Various extensions of this concept have also been studied (see [1-4]).

One can see the concepts of left and right majorization from each other by getting transpose on the equations, because if a matrix A is doubly stochastic then the matrix A^t is doubly stochastic too, where A^t is the transpose of the matrix A. But when we use the row stochastic matrices, we can not obtain the

C 2023 University of Kashan

E This work is licensed under the Creative Commons Attribution 4.0 International License.

^{*}Corresponding author (E-mail: a.mohammadhasani53@gmail.com)

Academic Editor: Abbas Saadatmandi

Received 2 January 2023, Accepted 7 August 2023

DOI: 10.22052/MIR.2023.248765.1390

left and right majorizations from each other. So in this case the left and right concepts are investigated in different manners (see [5-13]).

Here, we focus on right and left matrix majorization. Dahl defined the right matrix majorization as follows [14].

Definition 1.1. A nonnegative square and real matrix A is a row stochastic matrix if the sum of the entries of each row is equal to one.

Definition 1.2. Let $A, B \in \mathbf{M}_{n,m}$. The matrix A is said to be right matrix majorized by B and write $A \prec_r B$, if A = BR for some row stochastic matrix R. If $A \prec_r B \prec_r A$, we denote $A \sim_r B$.

In [4], M. Pería et al. introduced the left matrix majorization as follows:

Definition 1.3. Let $A, B \in \mathbf{M}_{n,m}$. The matrix A is said to be left matrix majorized by B and write $A \prec_l B$, if A = RB for some row stochastic matrix R.

In [11], the authors did not completely find the linear preservers of left matrix majorization $T : \mathbb{R}^p \to \mathbb{R}^n$. In [12], the authors completely characterized the linear preservers of this relation $T : \mathbb{R}^p \to \mathbb{R}^n$. In [9], the authors completely characterized the linear preservers of right matrix majorization on matrices were studied. Also, in [2] the authors characterized the linear operators that strongly preserve the right matrix majorization.

In this paper, the structure of all linear operators $T : \mathbb{R}_m \to \mathbb{R}_n$, preserving right matrix majorization are characterized. Some of our notation is explained next.

Let $\mathbf{M}_{n,m}$ be the algebra of all *n*-by-*m* real matrices. Let \mathbb{R}_n (\mathbb{R}^n) be 1-by*n* (*n*-by-1) real vectors, and the notation $\mathcal{P}(m)$ for the collection of all *m*-by-*m* permutation matrices.

A matrix $R = [r_{ij}] \in \mathbf{M}_{n,m}$ is called a row stochastic matrix if $r_{ij} \geq 0$ and $\sum_{j=1}^{n} r_{ij} = 1$, for all $i \ (1 \leq i \leq n)$. The collection of all $m \times m$ -row stochastic matrices is denoted by $\mathcal{RS}(m)$. A matrix R is called standard row stochastic, if each row has exactly a nonzero entry, +1, and other entries are zero. The collection of all standard m-row stochastic m-by-m matrices is denoted by $\mathcal{R}(m)$. Clearly, $\mathcal{P}(m) \subseteq \mathcal{R}(m)$. The standard basis of \mathbb{R}_n is denoted by $\{\varepsilon_1, \ldots, \varepsilon_n\}$, and $e = (1, 1, \ldots, 1)^t \in \mathbb{R}^n$. Span $\{S\}$ is denoted by the intersection of all subspaces of V that contain S, where V is a vector space over a field F. If S is nonempty, then

$$\operatorname{Span}\{S\} = \left\{\sum_{i=1}^{k} \alpha_i v_i | v_1, \dots, v_k \in S, \alpha_1, \dots, \alpha_k \in S, \operatorname{and} \ k \in \mathbb{N}\right\}.$$

For each $\mathbf{a} \in \mathbb{R}_n$ define $A := \mathbf{a}^{(m)} \in \mathbf{M}_{n,m}$ the matrix which each its row is \mathbf{a} . Let $u \in \mathbb{R}$. Define

$$u^{+} := \begin{cases} u, & \text{if } u \ge 0, \\ 0, & \text{if } u < 0, \end{cases}$$

and

$$u^{-} := \begin{cases} 0, & \text{if } u \ge 0, \\ -u, & \text{if } u < 0. \end{cases}$$

For all $x = (x_1, \ldots, x_n) \in \mathbb{R}_n$ we denote $tr(x) := \sum_{i=1}^n x_i, tr_+(x) := \sum_{i=1}^n x_i^+$, and $tr_-(x) := \sum_{i=1}^n x_i^-$. Let $A = [a_{ij}] \in \mathbf{M}_{n,\mathbf{m}}$. We say that $A \ge 0$ if $a_{ij} \ge 0$, for each i, j $(1 \le i \le n, 1 \le j \le m)$. Define $|A| = [|a_{ij}|]$. The **i**th row of A is denoted by $\mathbf{a_i^R}$. Also, the **j**th column of A is denoted by $\mathbf{a_j^C}$, and $Col(A) = \{\mathbf{a_1^C}, \ldots, \mathbf{a_m^C}\}$. Define $c_+(A) = \{j : \mathbf{a_j^C} \ge 0\}$ and $c_-(A) = \{j : \mathbf{a_j^C} \le 0\}$.

Let [T] be the matrix representation of a linear operator $T : \mathbb{R}_m \to \mathbb{R}_n$ with respect to the standard basis. In this case, Tx = xA, where A = [T].

A linear operator $T : \mathbb{R}_m \to \mathbb{R}_n$ preserves a relation \sim , if $x \sim y$ concludes that $Tx \sim Ty$.

This work continues in three further sections. Section 2 studies some conditions for \prec_r and a linear operator T to preserve \prec_r on \mathbb{R}_m . Section 3 characterizes the structure of all linear operators $T : \mathbb{R}_2 \to \mathbb{R}_n$ preserving matrix majorization. In Section 4 we obtain all linear preservers of \prec_r from \mathbb{R}_m to \mathbb{R}_n .

2. Matrix majorization on \mathbb{R}_m

In this section, we study some properties of the relation \prec_r .

Definition 2.1. For each $x \in \mathbb{R}_n$ define $\tilde{x} := tr_+(x)e_1 + tr_-(x)e_2$.

If $x \prec_r y \prec_r x$, we write $x \sim y$.

Lemma 2.2. If $x \in \mathbb{R}_n$, then $x \sim \tilde{x}$.

Proof. Let $x \in \mathbb{R}_n$ we define the matrix R by

$$R = \begin{bmatrix} R_1 \\ R_2 \\ \vdots \\ R_n \end{bmatrix},$$

where

$$R_i := \begin{cases} e_1, & x_i \ge 0, \\ e_2, & x_i < 0. \end{cases}$$

We observe that $\tilde{x} = xR$, and $R \in \mathcal{RS}(n)$. So $\tilde{x} \prec_r x$.

Without loss of generality suppose that $x_1 \ge x_2 \ge \cdots \ge x_n$, where $x_1, \ldots, x_k > 0$, and $x_1, \ldots, x_n < 0$. Consider matrix S as follows

$$S = \begin{bmatrix} S_1 \\ S_2 \\ \vdots \\ S_n \end{bmatrix},$$

where $S_1 := \left(\frac{x_1}{tr_+(x)}, \dots, \frac{x_k}{tr_+(x)}, 0, \dots, 0\right), S_2 := \left(0, \dots, 0, \frac{x_l}{tr_-(x)}, \dots, \frac{x_n}{tr_-(x)}\right),$ and $S_i := \varepsilon_1$, for each i $(3 \le i \le n)$. In this case, $x = \tilde{x}S$ and $S \in \mathcal{RS}(n)$, and then $x \prec_r \tilde{x}$. Therefore, $\tilde{x} \sim x$.

Let $x = (x_1, \ldots, x_n) \in \mathbb{R}_n$. Define $||x|| := \sum_{i=1}^n |x_i|$. Clearly, ||.|| is a norm on \mathbb{R}_n . The following proposition provides a criterion for matrix majorization on \mathbb{R}_n .

Proposition 2.3. Let $x, y \in \mathbb{R}_n$. Then the following conditions are equivalent: 1) $x \prec_r y$,

2) $tr_+(x) + tr_-(x) = tr_+(y) + tr_-(y)$ and $tr_+(x) \le tr_+(y)$, 3) $tr_+(x) + tr_-(x) = tr_+(y) + tr_-(y)$ and $tr_-(x) \ge tr_-(y)$, 4) tr(x) = tr(y) and $||x|| \le ||y||$.

Proof. As $x \prec_r y$ if and only if $\tilde{x} \prec_r \tilde{y}$, we can prove the statement.

The following conclusion gives an equivalent condition for \sim on \mathbb{R}_n .

Corollary 2.4. Let $x, y \in \mathbb{R}_n$. Then the following statements are equivalent: 1) $x \sim y$, 2) $tr_+(x) = tr_+(y)$ and $tr_-(x) = tr_-(y)$,

3) tr(x) = tr(y) and ||x|| = ||y||.

Theorem 2.5. Suppose that $T : \mathbb{R}_m \to \mathbb{R}_n$ be a linear operator that preserve \prec_r and $ker(T) \neq 0$. Then $Tx = xc^{(m)}$ for some $c \in \mathbb{R}_n$.

Proof. Assume that $A \in \mathbf{M}_{n,m}$ is the matrix representation of the linear operator $T : \mathbb{R}_m \to \mathbb{R}_n$ with respect to the standard basis. So Tx = xA. Since T is not one-to-one, there is some $b = (b_1, \ldots, b_m) \in \mathbb{R}_m \setminus \{0\}$ such that Tb = bA = 0.

If $b_1 = \cdots = b_m$, Set $w_i = mb_1e_i$, for each $i = 1, \ldots, m$. For each $i = 1, \ldots, m$, we conclude that $w_i \prec_r b$, and then $Tw_i \prec_r Tb$. It implies that $Tw_i = 0$, and so $T\varepsilon_i = 0$. We deduce that A = 0. Choose $\mathbf{c} = 0$.

Let $b_i \neq b_j$ for some $i, j \in \{1, ..., m\}$ and $i \neq j$. For $t \neq s \in \{1, ..., m\}$ we have

$$\left(\sum_{k=1,k\neq i,j}^m b_k\right)e_1+b_ie_t+b_je_s\prec_r b.$$

Since T preserves \prec_r ,

$$\left(\sum_{k=1,k\neq i,j}^{m} b_k\right) \mathbf{a_1^R} + b_i \mathbf{a_t^R} + b_j \mathbf{a_s^R} = 0,$$

for every $1 \le t \ne s \le m$. It follows that

$$\left(\sum_{k=1,k\neq i,j}^{m} b_k\right) \mathbf{a_1^R} + b_j \mathbf{a_t^R} + b_i \mathbf{a_s^R} = 0,$$

for each $t, s = 1, \ldots, m$ and $t \neq s$. Hence $(b_i - b_j)\mathbf{a_t^R} + (b_j - b_i)\mathbf{a_s^R} = 0$ and $\mathbf{a_r^R} = \mathbf{a_s^R}$ for each $t, s = 1, \ldots, m$ and $r \neq s$. Put $\mathbf{c} = \mathbf{a_1^R}$, we have $Tx = x\mathbf{c}^{(m)}$. \Box

The following conclusion is expressed in [15].

Lemma 2.6. ([15]). The set $\mathcal{RS}(n)$ is a convex set whose extreme points are $\mathcal{R}(n)$.

Lemma 2.7. Let $x, y \in \mathbb{R}_n$ be both nonnegative or nonpositive. Then the following statements are equivalent:

1) $x \prec_r y$, 2) $x \sim y$, 3) tr(x) = tr(y), 4) ||x|| = ||y||.

Proof. By the use of Proposition 2.3, the proof is obvious.

Lemma 2.8. Let $T : \mathbb{R}_m \to \mathbb{R}_n$ preserve \prec_r . Then each column of A is nonnegative or nonpositive.

Proof. Let $A = [a_{ij}]$ and $a_{tj}a_{sj} < 0$ for some t, s, j. Since $2e_t \sim_r e_t + e_s$ and T preserves \sim_r , we conclude that

$$2\mathbf{a_r^R} \sim \mathbf{a_r^R} + \mathbf{a_s^R}.$$

So $2\|\mathbf{a_r^R}\| = \|\mathbf{a_s^R} + \mathbf{a_r^R}\|$ and thus

$$2\sum_{j=1}^{n} |a_{rj}| = \sum_{j=1}^{n} |a_{rj} + a_{sj}|$$

$$< \sum_{j=1}^{n} |a_{rj}| + \sum_{j=1}^{n} |a_{sj}| = 2\sum_{j=1}^{n} |a_{rj}|.$$

It is a contradiction. Therefore we deduce that each column of A is nonnegative or nonpositive. $\hfill \Box$

Suppose that $T : \mathbb{R}_m \to \mathbb{R}_n$ preserves \prec_r . Since $\varepsilon_i \sim \varepsilon_j$, for each $1 \leq i, j \leq m$, we observe that $T\varepsilon_i \sim T\varepsilon_j$, and then $tr_+(\mathbf{a_i^R}) = tr_+(\mathbf{a_j^R})$, $tr_-(\mathbf{a_i^R}) = tr_-(\mathbf{a_j^R})$, and $tr(\mathbf{a_i^R}) = tr(\mathbf{a_j^R})$. Now define $tr_+(A) := tr_+(\mathbf{a_1^R})$, $tr_-(A) := tr_-(\mathbf{a_1^R})$, and $tr(A) := tr(\mathbf{a_i^R})$.

Lemma 2.9. Let $T : \mathbb{R}_m \to \mathbb{R}_n$ preserve \prec_r . Then |T| preserves \prec_r .

Proof. First, we prove that for each $x \in \mathbb{R}_m$

$$tr(|T|(x)) = tr(x)(tr_{+}(A) - tr_{-}(A)),$$
(1)

$$|||T|(x)|| = ||T(x)||.$$
(2)

Lemma 2.8 ensures that

$$tr(|T|(x)) = \sum_{j=1}^{n} x. \left| \mathbf{a_j}^{\mathbf{C}^t} \right| = \sum_{j \in c_+(A)} x. \left| \mathbf{a_j}^{\mathbf{C}^t} \right| + \sum_{j \in c_-(A)} x. \left| \mathbf{a_j}^{\mathbf{C}^t} \right|$$
$$= \sum_{j \in c_+(A)} x. \mathbf{a_j}^{\mathbf{C}^t} - \sum_{j \in c_-(A)} x. \mathbf{a_j}^{\mathbf{C}^t} = x. \sum_{j \in c_+(A)} \mathbf{a_j}^{\mathbf{C}^t} - x. \sum_{j \in c_-(A)} \mathbf{a_j}^{\mathbf{C}^t}$$
$$= \sum_{i=1}^{m} x_i \sum_{j \in c_+(A)} a_{ij} - \sum_{i=1}^{m} x_i \sum_{j \in c_-(A)} a_{ij} = tr(x)(tr_+(A) - tr_-(A)).$$

This shows that (1) holds. Also,

$$||T|(x)|| = \sum_{j=1}^{n} \left| x.\mathbf{a}_{j}^{\mathbf{C}^{t}} \right| = \sum_{j \in c_{+}(A)} \left| x.\mathbf{a}_{j}^{\mathbf{C}^{t}} \right| + \sum_{j \in c_{-}(A)} \left| -x.\mathbf{a}_{j}^{\mathbf{C}^{t}} \right|$$
$$= \sum_{j \in c_{+}(A)} \left| x.\mathbf{a}_{j}^{\mathbf{C}^{t}} \right| + \sum_{j \in c_{-}(A)} \left| x.\mathbf{a}_{j}^{\mathbf{C}^{t}} \right| = \sum_{j=1}^{n} \left| x.\mathbf{a}_{j}^{\mathbf{C}^{t}} \right| = ||T(x)||.$$

Thus |||T|(x)|| = ||T(x)||.

Now suppose that $x, y \in \mathbb{R}_m$ and T preserves \prec_r . So tr(x) = tr(y) and $T(x) \prec_r T(y)$, therefore $||Tx|| \leq ||Ty||$. The relations (1) and (2) ensure that tr(|T|(x)) = tr(|T|(y)) and $||T|(x)|| \leq |||T|(y)||$. It means that $|T|(x) \prec_r |T|(y)$ and ||T| preserves \prec_r .

Lemma 2.10. Let $\mathbf{a} \in \mathbb{R}_k$ and let $T : \mathbb{R}_m \to \mathbb{R}_n$ be a linear operator. Define $\tilde{T} : \mathbb{R}_m \to \mathbb{R}_{n+k}$ by $[\tilde{T}] := [A|\mathbf{a}^{(m)}]$. Then T preserves \prec_r if and only if \tilde{T} preserves \prec_r .

Proof. Assume that $x \prec_r y$ and T preserves \prec_r . So tr(x) = tr(y) and

$$\tilde{T}x \prec_r \tilde{T}y \iff tr(Tx) + tr(x)tr(\mathbf{a}) = tr(Ty) + tr(y)tr(\mathbf{a})$$
$$\implies tr(Tx) = tr(Ty), \tag{3}$$

and

$$\|\tilde{T}x\| \le \|\tilde{T}y\| \iff \|Tx\| + |tr(x)|tr(|\mathbf{a}|) \le \|Ty\| + |tr(y)|tr(|\mathbf{a}|)$$
$$\iff \|Tx\| \le \|Ty\|. \tag{4}$$

By the relations (3) and (4) and Proposition 2.3 the proof is easy.

Lemma 2.11. Let $T : \mathbb{R}_m \to \mathbb{R}_n$ be a linear operator and let $P \in \mathcal{P}(n)$. Define $T_P : \mathbb{R}_m \to \mathbb{R}_n$ by $[T_P] := AP$. Then T preserves \prec_r if and only if T_P preserves \prec_r .

Proof. Suppose that $x \prec_r y$. We have

$$tr(Tx) = \sum_{i=1}^{n} x \cdot \mathbf{a_i}^{\mathbf{C}^t} \text{ and } ||Tx|| = \sum_{i=1}^{n} \left| x \cdot \mathbf{a_i}^{\mathbf{C}^t} \right|.$$

Since AP is A which its rows have been interchanged, we deduce that T preserves \prec_r if and only if T_P preserves \prec_r .

3. Linear preservers of matrix majorization on \mathbb{R}_2

In this section, we characterize the linear preservers of matrix majorization T: $\mathbb{R}_2 \to \mathbb{R}_n$. We use the symbol P for the following matrix

$$P := \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Lemma 3.1. Let $u \in \mathbb{R}_2$ and $T : \mathbb{R}_2 \longrightarrow \mathbb{R}_n$ be a linear operator such that $T(uR) \prec_r Tu$ for every $R \in \mathbb{R}_2$, then $T(uR) \prec_r Tu$ for every $R \in \mathbb{SR}_2$.

Proof. Let $R \in \mathbb{SR}_2$. By the use of Lemma 2.6 we have $R = \sum_{i=1}^4 \lambda_i R_i$ for some $R_i \in \mathbb{R}_2, \lambda_i \ge 0, \sum_{i=1}^4 \lambda_i = 1$. Hence,

$$T(uR) = T\left(u\sum_{i=1}^{4}\lambda_i R_i\right) = \sum_{i=1}^{4}\lambda_i T(uR_i).$$

Since $T(uR_i) \prec_r T(u)$ for all $i, (1 \le i \le 4)$, there exists some $S_i \in \mathcal{RS}(2)$ such that $T(uR_i) = T(u)S_i$. Thus,

$$T(uR) = \sum_{i=1}^{4} \lambda_i T(u) S_i = Tu\left(\sum_{i=1}^{4} \lambda_i S_i\right) = (Tu)S,$$

and $S \in \mathcal{RS}(2)$, so $T(uR) \prec_r Tu$ and thus T preserves \prec_r .

For any real and nonnegative number a, the symbol $\frac{a}{0}$ equal to +1 if a > 0, and equal to 1 if a = 0.

Theorem 3.2. Let $T : \mathbb{R}_2 \longrightarrow \mathbb{R}_n$ be a nonnegative linear operator and

$$[T] := \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \end{bmatrix}$$

Then T preserves \prec_r if and only if the following conditions occur 1) $\{\frac{a_{1k}}{a_{2k}}: 1 \leq k \leq n\} = \{\frac{a_{2k}}{a_{1k}}: 1 \leq k \leq n\};$ 2) for all $a \in \{\frac{a_{1k}}{a_{2k}}: 1 \leq k \leq n\}$, we have

$$\sum_{\substack{\frac{a_{1k}}{a_{2k}}=a}} a_{1k} = \sum_{\substack{\frac{a_{2k}}{a_{1k}}=a}} a_{2k}.$$
(5)

Proof. \Longrightarrow) Let T be a nonnegative linear operator such that preserves \prec_r ,

$$[T] := \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \end{bmatrix},$$

 \mathbf{a}_i be the ith row of the matrix [T] and $\frac{\mathbf{a}_i}{\mathbf{a}_j} := \{\frac{a_{ik}}{a_{jk}} : 1 \le k \le n\}$ (i, j = 1, 2). By applying Lemma 2.10 and Lemma 2.11 we can assume that $a_{1j} \ne a_{2j}$, for

By applying Lemma 2.10 and Lemma 2.11 we can assume that $a_{1j} \neq a_{2j}$, for each j = 1, ..., n. Let

$$\mathcal{A} := \frac{\mathbf{a}_1}{\mathbf{a}_2} \cup \frac{\mathbf{a}_2}{\mathbf{a}_1} = \{a_1, ..., a_p, a_p^{-1}, ..., a_1^{-1}\},\$$

such that

$$0 \le a_1 < \dots < a_p < 1 < a_p^{-1} < \dots < a_1^{-1} \le \infty.$$

Assume that T preserves \prec_r . Since $e_1 \sim_r e_2$, $Te_1 \sim_r Te_2$. So $\mathbf{a_1} \sim_r \mathbf{a_2}$, thus $tr(\mathbf{a_1}) = tr(\mathbf{a_2})$. It is sufficient to show that $a_j \in \frac{\mathbf{a_1}}{\mathbf{a_2}} \cap \frac{\mathbf{a_2}}{\mathbf{a_1}}$, for every j = 1, ..., n and thus $a_j^{-1} \in \frac{\mathbf{a_1}}{\mathbf{a_2}} \cap \frac{\mathbf{a_2}}{\mathbf{a_1}}$. For every j = 1, ..., p, we define the open intervals $E_j \subseteq \mathbb{R}$ by

$$E_j := \begin{cases} (a_j, a_{j+1}), & \text{if } j < p, \\ (a_p, 1), & \text{if } j = p. \end{cases}$$

We see that $(x, -1) \sim_r (-1, x)$ for each $x \in \mathbb{R}$, so $T(x, -1) \sim_r T(-1, x)$ and $tr_+(T(x, -1)) = tr_+(T(-1, x))$ for all $x \in E_j$, j = 1, ..., p.

By induction on j we prove that

$$a_j \in \frac{\mathbf{a}_1}{\mathbf{a}_2} \cap \frac{\mathbf{a}_2}{\mathbf{a}_1},\tag{6}$$

and

$$\sum_{\substack{a_{1k}\\a_{2k}}=a_j} \binom{a_{1k}}{a_{2k}} = \sum_{\substack{a_{2k}\\a_{1k}}=a_j} \binom{a_{2k}}{a_{1k}},\tag{7}$$

thus

$$\sum_{\frac{a_{1k}}{a_{2k}}=a_j^{-1}} \binom{a_{1k}}{a_{2k}} = \sum_{\frac{a_{2k}}{a_{1k}}=a_j^{-1}} \binom{a_{2k}}{a_{1k}},\tag{8}$$

for every j = 1, ..., p. Let j = 1. If $x \in E_1$ then

$$tr_{+}T(x,-1)) = \sum_{\frac{a_{2k}}{a_{1k}} = a_{1}} (a_{1k}x - a_{2k}),$$
(9)

and

$$tr_{+}T(-1,x)) = \sum_{\substack{a_{1k}\\a_{2k}}=a_{1}} (a_{2k}x - a_{1k}).$$
(10)

It implies that $a_1 \in \frac{\mathbf{a}_1}{\mathbf{a}_2} \cap \frac{\mathbf{a}_2}{\mathbf{a}_1}$, because if $a_1 \in \frac{\mathbf{a}_1}{\mathbf{a}_2}$ and $a_1 \notin \frac{\mathbf{a}_2}{\mathbf{a}_1}$ then $tr_+(T(-1, x)) > 0$ and $tr_+(T(x, -1)) = 0$, this is a contradiction. Similarly, $a_1 \notin \frac{\mathbf{a}_1}{\mathbf{a}_2}$ and $a_1 \in \frac{\mathbf{a}_2}{\mathbf{a}_1}$ yields a contradiction.

By the use of relations (9) and (10) and $tr_+(T(x, -1)) = tr_+(T(-1, x))$, we deduce that (7) holds for j = 1. Now assume that the conditions holds for j < p and $x \in E_{j+1}$. So

$$tr_{+}(T(x,-1)) = \sum_{i=1}^{j+1} \sum_{\substack{a_{2k} \\ a_{1k} = a_i}} (a_{1k}x - a_{2k})$$
$$= \sum_{i=1}^{j} \sum_{\substack{a_{2k} \\ a_{1k} = a_i}} (a_{1k}x - a_{2k}) + \sum_{\substack{a_{2k} \\ a_{1k} = a_{j+1}}} (a_{1k}x - a_{2k}).$$
(11)

Also,

$$tr_{+}(T(-1,x)) = \sum_{i=1}^{j+1} \sum_{\substack{a_{1k} = a_i \\ a_{2k} = a_i}} (a_{2k}x - a_{1k})$$
$$= \sum_{i=1}^{j} \sum_{\substack{a_{1k} = a_i \\ a_{2k} = a_i}} (a_{2k}x - a_{1k}) + \sum_{\substack{a_{1k} = a_{j+1} \\ a_{2k} = a_{j+1}}} (a_{2k}x - a_{1k}).$$
(12)

By induction hypothesis we have

$$\sum_{\substack{a_{2k}\\a_{1k}}=a_i} (a_{1k}x - a_{2k}) = \sum_{\substack{a_{1k}\\a_{2k}}=a_i} (a_{2k}x - a_{1k}),$$

for i = 1, ..., j. Thus

$$\sum_{i=1}^{j} \sum_{\frac{a_{2k}}{a_{1k}} = a_i} (a_{1k}x - a_{2k}) = \sum_{i=1}^{j} \sum_{\frac{a_{1k}}{a_{2k}} = a_i} (a_{2k}x - a_{1k}).$$

It shows that (7) for j + 1 holds. Hence, the relation (5) holds. Now we show that $a_{j+1} \in \frac{\mathbf{a}_1}{\mathbf{a}_2} \cap \frac{\mathbf{a}_2}{\mathbf{a}_1}$. Hence the induction argument is completed. Conversely, suppose that (1) and (2) hold, we prove T preserves \prec_r . The conditions (1) and (2) ensure that

$$\sum_{k=1}^{n} a_{1k} = \sum_{a \in \mathcal{A}} \left(\sum_{k \in \mathcal{K}_a} a_{1k} \right) = \sum_{a \in \mathcal{A}} \left(\sum_{k \in \mathcal{K}_a} a_{2k} \right) = \sum_{k=1}^{n} a_{2k}$$

Since $A \ge 0$, $\mathbf{a}_1 \sim \mathbf{a}_2$. Let $u = (x, y) \in \mathbb{R}_2$ and $R \in \mathcal{R}(2)$, we prove that $T(uR) \prec_r Tu$ and thus $T(uD) \prec_r Tu$ for every $D \in \mathcal{RS}(2)$ by the Lemma 3.1. Observe that

$$\mathcal{R}(2) = \left\{ I, P, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \right\}.$$

Let $u = (x, y) \in \mathbb{R}_2$ and $R \in \mathcal{R}(2)$, so $uR \sim_r u$. If $xy \ge 0$, since $A \ge 0$, we have $T(u) \sim_r T(uR)$ if and only if $tr(T(u)) \sim_r tr(T(uR))$. So in this case the proof is established. Now suppose that xy < 0. Since for $c \in \mathbb{R} - \{0\}$, $T(uR) \sim_r T(u)$ if and only if $T(cuR) \sim_r T(cu)$, so without loss of generality we can assume that u = (x, -1) or u = (-1, x), where $0 < x \le 1$.

Suppose that u = (x, -1), for some $0 < x \le 1$ (similarly for the case u = (-1, x)). Since $tr(\mathbf{a_1}) = tr(\mathbf{a_2})$,

$$tr(T((x, -1)R)) = tr(T(x, -1)),$$
(13)

for every $R \in \mathcal{R}(2)$. We just have to prove that

$$tr_+(T((x,-1)R)) \le tr_+(T(x,-1)).$$
 (14)

Now we prove (14) in four cases.

- Case 1: If R = I, the proof is obvious.
- If $R = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$, then

$$tr_+(T((x,-1)R)) = tr_+(T(x-1,0))$$

= $tr_+((x-1)\mathbf{a_1}) = 0 \le tr_+(T(x,-1)).$

- If $R = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$, the proof is similar to the second case
- Let R = P and $0 < x \le 1$. So

$$x \in (0, a_1] \cup [a_1, a_2] \cup \ldots \cup [a_{p-1}, a_p] \cup [a_p, 1].$$

Observe that

$$tr_{+}(T(-1,x)) = \begin{cases} 0, & \text{if } x \in (0,a_{1}], \\ \sum_{i=1}^{j-1} \sum_{\substack{a_{1k} \\ a_{2k}} = a_{i}} (a_{2k}x - a_{1k}), & \text{if } x \in [a_{j-1},a_{j}], \\ \sum_{i=1}^{p} \sum_{\substack{a_{1k} \\ a_{2k}} = a_{i}} (a_{2k}x - a_{1k}), & \text{if } x \in [a_{p},1], \end{cases}$$

and

$$tr_{+}(T(x,-1)) = \begin{cases} 0, & \text{if } x \in (0,a_{1}], \\ \sum_{i=1}^{j-1} \sum_{\frac{a_{2k}}{a_{1k}} = a_{i}} (a_{1k}x - a_{2k}), & \text{if } x \in [a_{j-1},a_{j}], \\ \sum_{i=1}^{p} \sum_{\frac{a_{2k}}{a_{1k}} = a_{i}} (a_{1k}x - a_{2k}), & \text{if } x \in [a_{p},1], \end{cases}$$

where 1 < j < p. On the other hand, from the conditions (1) and (2) of hypothesis we have

$$\sum_{\substack{\frac{a_{1k}}{a_{2k}}=a_j}} \binom{a_{1k}}{a_{2k}} = \sum_{\frac{a_{2k}}{a_{1k}}=a_j} \binom{a_{2k}}{a_{1k}},$$

for every j = 1, ..., p. Thus,

$$\sum_{\frac{a_{1k}}{a_{2k}}=a_j} (a_{1k}x - a_{2k}) = \sum_{\frac{a_{2k}}{a_{1k}}=a_j} (a_{2k}x - a_{1k}),$$

for every j = 1, ..., p and $x \in \mathbb{R}$. Hence,

$$\sum_{i=1}^{j} \sum_{\substack{a_{1k} = a_j \\ a_{2k} = a_j}} (a_{1k}x - a_{2k}) = \sum_{i=1}^{j} \sum_{\substack{a_{2k} = a_j \\ a_{1k} = a_j}} (a_{2k}x - a_{1k}),$$

for each j = 1, ..., p and $x \in \mathbb{R}$. So, $tr_+(T(x, -1)) = tr_+(T(-1, x))$, and the relation (14) holds.

Lemma 3.3. Let $T : \mathbb{R}_2 \to \mathbb{R}_n$ be a linear operator. Then T preserves \prec_r if and only if the following statements are true:

1) |T| preserves \prec_r ,

- 2) each column of A is nonnegative or nonpositive,
- 3) two rows of A are equivalent. i.e. $\mathbf{a_1} \sim \mathbf{a_2}$.

Proof. We only prove the necessary condition. Let $x, y \in \mathbb{R}_2$ and $x \prec_r y$, so

$$tr(xA) = \sum_{j=1}^{n} x.\mathbf{a_{j}^{C}} = x.\sum_{j=1}^{n} \mathbf{a_{j}^{C}}$$
$$= x_{1} \sum_{j=1}^{n} a_{1j} + x_{2} \sum_{j=1}^{n} a_{2j} = x.tr(\mathbf{a_{1}}) + x.tr(\mathbf{a_{2}})$$
$$= tr(x)tr(\mathbf{a_{1}}) = tr(y)tr(\mathbf{a_{1}}) = tr(yA).$$
(15)

On the other hand, |T| preserves $\prec_r,$ so $|T|x \prec_r |T|y.$ Hence

$$||xA|| = ||x|A||| \le ||y|A||| = ||yA||.$$
(16)

By the relations (15) and (16) we conclude that $Tx \prec_r Ty$.

4. Linear preservers of matrix majorization on \mathbb{R}_m

In this section, we express linear preservers of matrix majorization $T : \mathbb{R}_m \to \mathbb{R}_n$. **Theorem 4.1.** Let $m \geq 3$ and $T : \mathbb{R}_m \to \mathbb{R}_n$ be a linear operator. Then T preserves \prec_r if and only if

$$[T] = [R|\mathbf{c}^{(\mathbf{m})}]P,$$

where in each column of matrix R there is only one non-zero entry, each two rows of R are equivalent, $P \in \mathcal{P}(n)$ and **c** is a vector.

Proof. Assume that T preserves \prec_r . If T is not one-to-one, then by Theorem 2.5 the proof is obvious. Now, let T is one-to-one. First, we prove the theorem for m = 3. According to Lemma 2.10 we can assume

$$[T] = R = A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ a_{31} & a_{32} & \dots & a_{3n} \end{bmatrix},$$

where matrix A has no duplicate column. By Lemma 2.9, without loss of generality assume that $A \ge 0$. Define

• $\left\{\frac{a_{1j}}{a_{2j}+a_{3j}}\Big|a_{2j}\neq a_{3j}, j=1,\ldots,n\right\}:=\mathcal{A}_1\subseteq[0,\infty),$

•
$$\left\{ \frac{a_{2j}}{a_{1j}+a_{3j}} \middle| a_{1j} \neq a_{3j}, j = 1, \dots, n \right\} := \mathcal{A}_2 \subseteq [0, \infty),$$

• $\left\{\frac{a_{3j}}{a_{1j}+a_{2j}}\Big|a_{1j}\neq a_{2j}, j=1,\ldots,n\right\}:=\mathcal{A}_3\subseteq[0,\infty).$

If $\mathcal{A}_1 = \mathcal{A}_2 = \mathcal{A}_3 = \emptyset$, then the proof is obvious. Otherwise without loss of generality we assume that $\mathcal{A}_3 \neq \emptyset$ and

$$\frac{a_{3j_0}}{a_{1j_0} + a_{2j_0}} = \min\left\{\frac{a_{3j}}{a_{1j} + a_{2j}} | a_{1j} \neq a_{2j}, a_{3j} \neq 0, j = 1, \dots, n\right\}.$$

We define two vectors $u, v \in \mathbb{R}_3$ by

$$u := \begin{cases} \left(0, \frac{2a_{3j_0}}{a_{1j_0} + a_{2j_0}}, -1\right), & \text{if } a_{1j_0} < a_{2j_0}, \\ \left(\frac{2a_{3j_0}}{a_{1j_0} + a_{2j_0}}, 0, -1\right), & \text{if } a_{1j_0} > a_{2j_0}, \end{cases}$$

and

$$v := \left(\frac{a_{3j_0}}{a_{1j_0} + a_{2j_0}}, \frac{a_{3j_0}}{a_{1j_0} + a_{2j_0}}, -1\right).$$

Since $u \sim_r v$, $Tu \sim_r Tv$. Also, we have the following statements.

- 1. $\sum_{a_{3j}=0} a_{1j} = \sum_{a_{3j}=0} a_{2j}$.
- 2. If $a_{1j} = a_{2j}$, then $(Tu)_j = (Tv)_j = \left(\frac{2a_{3j_0}}{a_{1j_0} + a_{2j_0}}\right)a_{1j} a_{3j}$.
- 3. If $a_{1j} \neq a_{2j}$, $a_{3j} \neq 0$, then $(Tv)_j \leq 0$, because

$$(Tv)_j = \left(\frac{a_{3j_0}}{a_{1j_0} + a_{2j_0}}\right) (a_{1j} + a_{2j}) - a_{3j}$$
$$\leq \left(\frac{a_{3j}}{a_{1j} + a_{2j}}\right) (a_{1j} + a_{2j}) - a_{3j} = 0.$$

4. If $a_{1j} \neq a_{2j}, a_{3j} = 0$, then

$$(Tu)_j = \left(\frac{2a_{3j_0}}{a_{1j_0} + a_{2j_0}}\right) \max\{a_{1j}, a_{2j}\} > (Tv)_j.$$

From the recent statements and $(Tu)_{j_0} > 0$, we deduce that $tr_+(Tu) > tr_+(Tv)$, this is a contradiction. So, there is a maximum of one element nonzero in each column of the matrix [T].

Now we prove the theorem for every m > 3. If the *j*th column of A has over a non-zero element, choose the vector $(a_{rj}, a_{sj}, a_{tj})^t$, where (r < s < t) such that it has at least two non-zero elements and $(a_{rj}, a_{sj}, a_{tj})^t \notin \operatorname{span}(e)$.

Define $S : \mathbb{R}_3 \to \mathbb{R}_m$ by $S(x, y, z) = (w_1, w_2, \dots, w_m)$ such that $w_r = x, w_s = y, w_t = z, w_i = 0, i \notin \{r, s, t\}$. Observe that S preserves \prec_r , and so ToS preserves \prec_r . It is a contradiction. Because as we proved for m = 3, in the *j*th column of

$$[ToS] = \begin{bmatrix} a_{r1} & a_{r2} & \dots & a_{rn} \\ a_{s1} & a_{s2} & \dots & a_{sn} \\ a_{t1} & a_{t2} & \dots & a_{tn} \end{bmatrix},$$

at least two non-zero elements exist. Hence, according to Lemmas 2.10 and 2.11,

$$[T] = [R|\mathbf{c}^{(\mathbf{m})}]P,$$

where in each column of matrix $R_{n \times k} = [r_{ij}]$ there is only one non-zero entry, each two rows of R are equivalent, $P \in \mathcal{P}(n)$ and \mathbf{c} is a vector. Let $x = (x_1, ..., x_n)$ be an arbitrary vector in \mathbb{R}_n . So,

$$tr(xR) = \sum_{j=1}^{k} \sum_{i=1}^{n} x_i r_{ij} = \sum_{i=1}^{n} x_i \sum_{j=1}^{k} r_{ij} = tr(R_1) tr(x),$$
(17)

and

$$\|xR\| = \sum_{j=1}^{k} \left| \sum_{i=1}^{n} x_i r_{ij} \right| = \|R_1\| \|x\|,$$
(18)

where R_1 is the first row of R. Thus if $x, y \in \mathbb{R}_n$ with $x \prec_r y$, then tr(xR) = tr(yR) and $||xR|| \leq ||xR||$. Hence, according to Proposition 2.3 and Lemmas 2.10 and 2.11 the proof is complete.

Conflicts of Interest. The authors declare that they have no conflicts of interest regarding the publication of this article.

References

- T. Ando, Majorization, doubly stochastic matrices, and comparision of eigenvalues, *Linear Algebra Appl.* **118** (1989) 163 248, https://doi.org/10.1016/0024-3795(89)90580-6.
- [2] L. B. Beasley, S. G. Lee and Y. H. Lee, A characterization of strong preservers of matrix majorization, *Linear Algebra Appl.* 367 (2003) 341 – 346, https://doi.org/10.1016/S0024-3795(02)00657-2.
- [3] H. Chiang and C. K. Li, Generalized doubly stochastic matrices and linear preservers, *Linear Multilinear Algebra* **53** (2005) 1 – 11, https://doi.org/10.1080/03081080410001681599.
- [4] F. D. M. Pería, P. G. Massey and L. E. Silvestre, Weak matrix majorization, *Linear Algebra Appl.* 403 (2005) 343 – 368, https://doi.org/10.1016/j.laa.2005.02.003.
- [5] A. Armandnejad and A. Manesh, GUT-majorization and its linear preservers, *Electron. J. Linear Algebra* 23 (2012) 646 - 654, https://doi.org/10.13001/1081-3810.1547.
- [6] A. Armandnejad, Right gw-majorization on $\mathbf{M}_{n,m}$, Bull. Iran. Math. Soc. 35 (2) (2009) 69 76.

- [7] A. Armandnejad and A. Salemi, On linear preservers of lgw-majorization on M_{n,m}, Bull. Malaysian Math. Soc. 35 (3) (2012) 755 - 764.
- [8] M. Dehghanian and A. Mohammadhasani, A note on multivariate majorization, J. Mahani Math. Res. 11 (2) (2022) 119 – 126, https://doi.org/10.22103/JMMRC.2022.19004.1204.
- [9] A. M. Hasani and M. Radjabalipour, On linear preservers of (right) matrix majorization, *Linear Algebra Appl.* 423 (2007) 255 – 261, https://doi.org/10.1016/j.laa.2006.12.016.
- [10] A. Mohammadhasani, Y. Sayyari and M. Sabzvari, *G*-tridiagonal majorization on $M_{n,m}$, Commun. Math. **29** (2021) 395 405.
- [11] F. Khalooei, M. Radjabalipour and P. Torabian, Linear preservers of left matrix majorization, *Electron. J. Linear Algebra* 17 (2008) 304 – 315, https://doi.org/10.13001/1081-3810.1265.
- [12] F. Khalooei and A. Salemi, The structure of linear preservers of left matrix majorization on R^p, Electron. J. Linear Algebra 18 (2009) 88 - 97, https://doi.org/10.13001/1081-3810.1296.
- [13] Y. Sayyari, A. Mohammadhasani and M. Dehghanian, Linear maps preserving signed permutation and substochastic matrices, *Indian J. Pure Appl. Math.* 54 (2023) 219 – 223, https://doi.org/10.1007/s13226-022-00245-6.
- [14] G. Dahl, Matrix majorization, *Linear Algebra Appl.* 288 (1999) 53 73, https://doi.org/10.1016/S0024-3795(98)10175-1.
- [15] A. M. Hasani and M. Radjabalipour, The structure of linear operators strongly preserving majorizations of matrices, *Electron. J. Linear Algebra* 15 (2006) 260 - 268, https://doi.org/10.13001/1081-3810.1236.

Ahmad Mohammadhasani Department of Mathematics, Sirjan University of Technology, Sirjan, I. R. Iran e-mail: a.mohammadhasani53@gmail.com

Mehdi Dehghanian Department of Mathematics, Sirjan University of Technology, Sirjan, I. R. Iran e-mail: mdehghanian@sirjantech.ac.ir Yamin Sayyari Department of Mathematics, Sirjan University of Technology, Sirjan, I. R. Iran e-mail: y.sayyari@sirjantech.ac.ir