Applications of Q-hypergeometric and HurwitzLerch Zeta Functions on Meromorphic Functions

Seyed Hadi Sayedain Boroujeni and Shahram Najafzadeh ${ }^{\star}$

Abstract

A new subclass of meromorphic univalent functions by using the q hypergeometric and Hurwitz-Lerch Zeta functions is defined. Also, by applying the generalized Liu-Srivastava operator on meromorphic functions, some geometric properties of the new defined subclass such as coefficient estimates, extreme points, convexity and connected set structure are investigated.

Keywords: Meromorphic function, Convolution, λ-Generalized, HurwitzLerch Zeta function, Q-hypergeometric function.

2020 Mathematics Subject Classification: 30C45, 30C50, 30C55.

How to cite this article

S. H. Sayedain Boroujeni and S. Najafzadeh, Applications of q-hypergeometric and Hurwitz-Lerch Zeta functions on meromorphic functions, Math. Interdisc. Res. 8 (4) (2023) 309-325.

1. Introduction

The meromorphic functions bear the same relation to the entire functions as the rational functions do to the polynomials. A meromorphic function is a univalent function that is analytic in all but possibly a discrete subset of its domain, and at those singularities, like a polynomia, it must limit at infinity. By considering q-hypergeometric function, q-analogue of Liu-Srivastava operator, λ-generalized Hurwitz-Lerch Zeta function, see [1-4], and convolution structure a new subclass of meromorphic univalent function is defined, some geometric properties related to

[^0][^1]coefficient bounds, extreme points, convex family and connected sets are obtained. Of course, we will use the techniques used in [5], to show the family of convexity, and its related properties.
Let Σ denote the meromorphic functions f of the form
\[

$$
\begin{equation*}
f(z)=D z^{-1}+\sum_{n=0}^{+\infty} a_{n} z^{n}, \quad D>0 \tag{1}
\end{equation*}
$$

\]

which are univalent and analytic in the punctured open unit disk.
Let $\mathbb{U}^{*}=\{z \in \mathbb{C}: \quad 0<|z|<1\}=\mathbb{U} \backslash\{0\}$. For the functions $f_{j}(j=1,2)$ introduced by

$$
f_{j}(z)=D z^{-1}+\sum_{n=1}^{+\infty} a_{n, j} z^{n}
$$

the convolution (or Hadamard product), see [6], of f_{1} and f_{2} is defined by

$$
\left(f_{1} * f_{2}\right)(z)=D z^{-1}+\sum_{n=1}^{+\infty} a_{n, 1} a_{n, 2} z^{n}=\left(f_{2} * f_{1}\right)(z)
$$

Definition 1.1. Let $\alpha \in \mathbb{C} \backslash\{0,-1,-2, \ldots\}$ and $k \in \mathbb{N} \cup\{0\}$. Then $(\alpha)_{0}=1$, $(\alpha)_{k}=\alpha(\alpha+1) \ldots(\alpha+k-1)$ series

$$
F(a, b, c ; z):=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}} z^{n}, \quad(|z|<1)
$$

which is absolutely convergent and analytic on the unit disk, we call hypergeometric function.

This function was first used by Euler to solve the differential equation

$$
z(1-z) \chi^{\prime \prime}(z)+(c-(a+b+1) z) \chi^{\prime}(z)-a b \chi(z)=0 .
$$

Some examples of functions, which according to the hypergeometric function, expressed:

Example 1.2.

$$
\begin{aligned}
& F(1,2,1 ; z):=\frac{1}{(1-z)^{2}}, F(1, b, b ; z):=\frac{1}{(1-z)}, \\
& z F(1,1,2 ;-z):=\log (1+z), F(-n, b, b ;-z):=(1+z)^{n}, \\
& F\left(\frac{1}{2}, \frac{-1}{2}, \frac{1}{2} ; \sin ^{2} z\right):=\cos z .
\end{aligned}
$$

Also, the q-hypergeometric function ${ }_{r} \Upsilon_{S}$ is defined by

$$
\begin{align*}
& { }_{r} \Upsilon_{s}\left(x_{1}, \ldots, x_{r} ; y_{1}, \ldots, y_{s} ; q, z\right) \\
= & \sum_{n=0}^{+\infty} \frac{\left(x_{1}, q\right)_{n} \ldots\left(x_{r}, q\right)_{n}}{(q, q)_{n}\left(y_{1}, q\right)_{n} \ldots\left(y_{s}, q\right)_{n}} z^{n}\left((-1)^{n} q \frac{n(n-1)}{2}\right)^{1+s-r} \tag{2}
\end{align*}
$$

where x_{i}, y_{j} are complex numbers $\left(y_{j} \neq 0,-1, \ldots\right), q \neq 0, r, s \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, $r>s+1, z \in \mathbb{U}$ and

$$
(w, q)_{n}= \begin{cases}(1-w)(1-w q) \ldots\left(1-w q^{n-1}\right), & n \in \mathbb{N} \\ 1, & n=0\end{cases}
$$

By using the gamma function, we get

$$
\left(q^{w} ; q\right)_{n}=\frac{\Gamma_{q}(w+n)(1-q)^{n}}{\Gamma_{q}(w)}, \quad n>0
$$

Also, by a simple calculation, we conclude that $\lim _{q \rightarrow 1}\left(\left(q^{w}, q\right)_{n} /(1-q)^{n}\right)$ is equal to

$$
(w)_{n}=w(w+1) \ldots(w+n-1)
$$

where $(w)_{n}$ is the well-known Pochhammer symbol, see [7]. Moreover, we have:

$$
{ }_{r} \Upsilon_{s}\left(x_{1}, \ldots, x_{r} ; y_{1}, \ldots, y_{s} ; q, z\right)=\sum_{n=0}^{+\infty} \frac{\left(x_{1}\right)_{n} \ldots\left(x_{r}\right)_{n}}{\left(y_{1}\right)_{n} \ldots\left(y_{s}\right)_{n}} \frac{z^{n}}{n!}
$$

If $0<|q|<1, r=s+1$, then

$$
{ }_{r} \Upsilon_{s}\left(x_{1}, \ldots, x_{r} ; y_{1}, \ldots, y_{s} ; q, z\right)=\sum_{n=0}^{+\infty} \frac{\left(x_{1}, q\right)_{n} \ldots\left(x_{r}, q\right)_{n}}{(q, q)_{n}\left(y_{1}, q\right)_{n} \ldots\left(y_{s}, q\right)_{n}} z^{n}
$$

It is concluded by the basic hypergeometric function which is given in (2), above series is absolutely convergent in \mathbb{U}; see [1]. Aldweby and Darus [1], also Challab et al. $[2,3]$ investigated the q -analogue of Liv-Srivastava operator associated with ${ }_{r} \Upsilon_{s}\left(x_{1}, \ldots, x_{r} ; y_{1}, \ldots, y_{s} ; q, z\right)$ for $f \in \Sigma$ which presented by:

$$
\begin{align*}
Q(z) & =D z^{-1}{ }_{r} \Upsilon_{s}\left(x_{1}, \ldots, x_{r} ; y_{1}, \ldots, y_{s} ; q, z\right) * f(z) \\
& =D z^{-1}+\sum_{n=1}^{+\infty} \frac{\prod_{i=1}^{r}\left(x_{i}, q\right)_{n+1}}{(q, q)_{n+1} \prod_{i=1}^{s}\left(y_{i}, q\right)_{n+1}} a_{n} z^{n}, \quad z \in \mathbb{U}^{*} . \tag{3}
\end{align*}
$$

In $[8,9]$, Ghanim introduced the function $G_{u, a}$ by

$$
G_{u, a}:=(a+1)^{u}\left(\Phi(z, u, a)-a^{u}+\frac{1}{z(a+1)^{u}}\right)
$$

for which Hurwitz-Lerch Zeta function $\Phi(z, u, a)$ is defined by

$$
\Phi(z, u, a):=\sum_{n=0}^{+\infty} \frac{z^{n}}{(n+a)^{u}}
$$

where $a \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}, u \in \mathbb{C}, z \in \mathbb{U}$ and $\operatorname{Re}(u)>1$ when $|z|=1$; see, e.g., [10-12].
After a direct calculation, we get

$$
G_{u, a}=z^{-1}+\sum_{n=1}^{\infty}\left(\frac{a+1}{a+n}\right)^{u} z^{n}, \quad z \in \mathbb{U}^{*}
$$

Srivastava [13] introduced the generalized Hurwitz-Lerch Zeta function as follows:

$$
\begin{align*}
& \Phi_{\lambda_{1}, \ldots, \lambda_{p}, \mu_{1}, \ldots, \mu_{m}}^{\eta_{1}, \ldots, \eta_{p}, \gamma_{1}, \ldots, \gamma_{m}}(z, u, a ; b, \lambda):= \\
& \frac{1}{\lambda \Gamma(u)} \sum_{n=0}^{+\infty} \frac{\prod_{j=1}^{p}\left(\lambda_{j}\right)_{n} \eta_{j}}{(a+n)^{u} \prod_{j=1}^{m}\left(\mu_{j}\right)_{n} \gamma_{j}} H_{0,2}^{2,0}\left[(a+n) b^{1 / \lambda} \mid(u, 1),\left(0, \frac{1}{\lambda}\right)\right] \frac{z^{n}}{n!} \tag{4}\\
& \quad(\min \{\operatorname{Re}(a), \operatorname{Re}(u)\}>0, \operatorname{Re}\{b\}>0, \lambda>0)
\end{align*}
$$

Keep in mind that

$$
\begin{gathered}
\left(\lambda_{j} \in \mathbb{C}(j=1, \ldots, p) \text { and } \mu_{j} \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}(j=1, \ldots, m), \eta_{j}>0(j=1, \ldots, p),\right. \\
\left.\gamma_{j}>0(j=1, \ldots, m), 1+\sum_{j=1}^{m} \gamma_{j}-\sum_{j=1}^{p} \eta_{j} \geq 0 .\right)
\end{gathered}
$$

H-function which was on the right-hand side of (4) is the well-known Fox's Hfunction [14], denoted by $H_{p, m}^{x, y}(z)$, define as below:
$H_{p, m}^{x, y}\left[\left.z\right|_{\left(b_{1}, B_{1}\right), \ldots,\left(b_{m}, B_{m}\right)} ^{\left(a_{1}, A_{1}\right), \ldots,\left(a_{p}, A_{p}\right)}\right]=\frac{1}{2 \pi i} \int_{\mathcal{L}} \frac{\prod_{j=1}^{x} \Gamma\left(b_{j}+B_{j} t\right) \prod_{j=1}^{y}\left(1-a_{j}-A_{j} t\right)}{\prod_{j=y+1}^{p} \Gamma\left(a_{j}+A_{j} t\right) \prod_{j=x+1}^{m} \Gamma\left(1-b_{j}-B_{j} t\right)} z^{-t} d t$,
where

$$
z \in \mathbb{C} \backslash\{0\},|\arg (z)|<\pi
$$

We note that x, y, m and p all are integers that $1 \leq x \leq m, 0 \leq y \leq p$, $a_{j} \in \mathbb{C}, A_{j}>0(j=1, \ldots, p)$ also $b_{j} \in \mathbb{C}, B_{j}>0(j=1, \ldots, m)$.
\mathcal{L}-Cantour is of the Mellin-Barnes type which separates the poles of the gamma
functions $\left\{\Gamma\left(t B_{j}+b_{j}\right)\right\}_{j=1}^{x}$ from the poles of the gamma functions $\left\{\Gamma\left(-A_{j} t-a_{j}+1\right)\right\}_{j=1}^{y}$. Also, we see (4) is convergent for $|z|<W$, where

$$
W:=\left(\prod_{j=1}^{p} \eta_{j}^{-\eta_{j}}\right)\left(\prod_{j=1}^{m} \gamma_{j}^{\gamma_{j}}\right)
$$

Now, by applying the Hadamard product, H-function, λ-generalized HurwitzLernch Zeta, q-hypergeometric function and q-analogue of Liv-Srivastava operator. We consider the following operator which introduced by Challab et. al [4]:

$$
\mathcal{K}^{x_{r}} f(z) \equiv \mathcal{K}_{\left(\lambda_{p}\right)\left(\mu_{r}\right), b}^{u, a, \lambda, x_{r}, y_{s}} f(z): \Sigma \rightarrow \Sigma
$$

which has been defined by

$$
\mathcal{K}^{x_{r}} f(z)=G_{\left(\lambda_{p}\right)\left(\mu_{r}\right), b}^{u, a, \lambda}(z) * Q(z)
$$

where the Hadamard product (or convolution) of the analytical functions has been denoted by $*$, and $Q(z)$ is given in (3), also

$$
\begin{aligned}
& G_{\left(\lambda_{p}\right),\left(\mu_{m}\right), b}^{u, a, \lambda}(z) \\
= & (a+1)^{u}\left[\Phi_{\lambda_{1}, \ldots, \lambda_{p}, \mu_{1}, \ldots, \mu_{m}}^{(1, \ldots, 1 ; 1, \ldots, 1)}(z, u, a, b, \lambda)-\frac{a^{-u}}{\lambda \Gamma(u)} Y(a, b, u, \lambda)+\frac{(a+1)^{-u}}{z}\right] \\
= & \frac{D}{z}+\sum_{n=1}^{+\infty} \frac{\prod_{j=1}^{p}\left(\lambda_{j}\right)_{n}}{\prod_{j=1}^{m}\left(\mu_{j}\right)_{n}}\left(\frac{a+1}{a+n}\right)^{u} \frac{Y(a+n, b, u, \lambda)}{\lambda \Gamma(u)} \frac{z^{n}}{n!}
\end{aligned}
$$

gave the function $G_{\left(\lambda_{p}\right),\left(\mu_{m}\right), b}^{u, a, \lambda}(z)$, with

$$
Y(a, b, u, \lambda):=H_{0,2}^{2,0}\left[a b^{1 / \lambda} \left\lvert\, \overline{(u, 1),\left(0, \frac{1}{\lambda}\right)}\right.\right]
$$

Now

$$
\begin{equation*}
=\frac{D}{z}+\sum_{n=1}^{+\infty} \frac{\prod_{i=1}^{x_{r}}\left(x_{i}, q\right)_{n+1} \prod_{j=1}^{p}\left(\lambda_{j}\right)_{n}}{(q, q)_{n+1} \prod_{i=1}^{s}\left(y_{i}, q\right)_{n+1} \prod_{j=1}^{m}\left(\mu_{j}\right)_{n}}\left(\frac{a+1}{a+n}\right)^{u} \frac{Y(a+n, b, u, \lambda)}{\lambda \Gamma(u)} a_{n} \frac{z^{n}}{n!} . \tag{5}
\end{equation*}
$$

It is convenient to write $\mathcal{K}^{x_{r}} f(z)=\mathcal{J}(z)$, see [14]. For $0 \leq R \leq 1,0<S, T \leq 1$, $k=2 l$; a function f of the form (1) belongs to $\mathcal{M}^{\mathcal{K}}(R, S, T)$ if it satisfies the
inequality

$$
\begin{equation*}
\left|\frac{z^{k+2} \mathcal{J}^{(k+1)}(z)+D(k+1)!}{R z^{k+2} \mathcal{J}^{(k+1)}(z)-D(k+1)!+D(1+R) S[(K+1)!]}\right|<T \tag{6}
\end{equation*}
$$

where $\mathcal{J}^{(j)}$ is the j-th derivative of $\mathcal{J}(z)=\mathcal{K}^{x_{r}} f(z)$.

2. Main results

In this section first we state coefficient estimates on the class $\mathcal{M}^{k}(R, S, T)$. For a given $x_{0} \in \mathbb{R}$ such that $0<x_{0}<1$, we define two subclasses of Σ and find some geometric properties of these subclasses. Also integral representation of $\mathcal{J}_{(z)}^{(k)}$ is obtained.

Theorem 2.1. Let $f \in \Sigma$, then $f \in \mathcal{M}^{k}(R, S, T)$ if and only if

$$
\sum_{n=1}^{+\infty} \frac{(1+R T) \prod_{i=1}^{r}\left(a_{i}, q\right)_{n+1} \prod_{j=1}^{p}\left(\lambda_{j}\right)_{n}}{(n-k-1)!(q, q)_{n+1} \prod_{i=1}^{s}\left(\beta_{i}, q\right)_{n+1} \prod_{j=1}^{m}\left(\mu_{j}\right)_{n}}\left(\frac{a+1}{a+n}\right)^{v} \frac{Y(a+n, b, v, \lambda)}{\lambda \Gamma(v)} a_{n} \leq
$$

$$
\begin{equation*}
T D(R+1)(1-S)[(k+1)!] . \tag{7}
\end{equation*}
$$

The result is sharp for $F(z)$ given by

$$
\begin{gathered}
F(z)=\frac{D}{z}+ \\
\frac{(n-k-1)!(q, q)_{1+n} \prod_{i=1}^{s}\left(\beta_{i}, q\right)_{1+n} \prod_{j=1}^{m}\left(\mu_{j}\right)_{n}(n+a)^{v} \lambda \Gamma(v) T D(R+1)(1-S)[(k+1)!]}{(1+R T) \prod_{i=1}^{r}\left(\alpha_{i}, q\right)_{1+n} \prod_{j=1}^{p}\left(\lambda_{j}\right)_{n}(a+1)^{v} Y(a+n, b, v, \lambda)}
\end{gathered}
$$

Proof. Let $f \in \mathcal{M}^{k}(R, S, T)$, then (5) holds true. So by replacing

$$
\begin{gathered}
\mathcal{J}^{(k+1)}(z)=(-1)^{k+1} D \frac{(k+1)!}{z^{k+2}}+ \\
\sum_{n=1}^{+\infty} \frac{\prod_{i=1}^{r}\left(\alpha_{i}, q\right)_{1+n} \prod_{j=1}^{p}\left(\lambda_{j}\right)_{n}}{(n-1-k)!(q, q)_{n+1} \prod_{i=1}^{s}\left(\beta_{i}, q\right)_{n+1} \prod_{j=1}^{m}\left(\mu_{j}\right)_{n}}\left(\frac{a+1}{a+n}\right)^{v} \frac{Y(a+n, b, v, \lambda)}{\lambda \Gamma(v)} a_{n} z^{n-(k+1)},
\end{gathered}
$$

in (5), we have

$$
\left|\frac{\sum_{n=1}^{+\infty} \frac{\prod_{i=1}^{r}\left(\alpha_{i}, q\right)_{1+n} \prod_{j=1}^{p}\left(\lambda_{j}\right)_{n}\left(\frac{a+1}{a+n}\right)^{v}}{(n-1-k)!(q, q)_{1+n} \prod_{i=1}^{s}\left(\beta_{i}, q\right)_{1+n} \prod_{j=1}^{m}\left(\mu_{j}\right)_{n}} \frac{Y(a+n, b, v, \lambda)}{\lambda \Gamma(v)} a_{n} z^{n+1}}{-(R+1)(1-S) D[(k+1)!]+\sum_{n=1}^{+\infty} \frac{R \prod_{i=1}^{r}\left(\alpha_{i}, q\right)_{1+n} \prod_{j=1}^{p}\left(\lambda_{j}\right)_{n}\left(\frac{1+a}{n+a}\right)^{v}}{(n-1-k)!(q, q)_{1+n} \prod_{i=1}^{s}\left(\beta_{i}, q\right)_{1+n} \prod_{j=1}^{m}\left(\mu_{j}\right)_{n}} \frac{Y(a+n, b, v, \lambda)}{\lambda \Gamma(v)} a_{n} z^{n+1}}\right|<T
$$

It is known that $\operatorname{Re}(z) \leq|z|$ for all z. So

By letting $z \rightarrow 1^{-}$through real values, we have

$$
\sum_{n=1}^{+\infty} \frac{(1+R T) \prod_{i=1}^{r}\left(\alpha_{i}, q\right)_{n+1} \prod_{j=1}^{p}\left(\lambda_{j}\right)_{n}}{(n-k-1)!(q, q)_{n+1} \prod_{i=1}^{s}\left(\beta_{i}, q\right)_{n+1} \prod_{j=1}^{m}\left(\mu_{j}\right)_{n}}\left(\frac{a+1}{a+n}\right)^{v} \frac{Y(a+n, b, v, \lambda)}{\lambda \Gamma(v)} a_{n}
$$

$\leq T D(R+1)(1-S)[(k+1)!]$.
Conversely, let (7) hold, it is enough to show that

$$
\begin{aligned}
V & =\left|z^{k+2} \mathcal{J}^{(k+1)}(z)-D[(k+1)!]\right| \\
& -T\left|R z^{k+2} \mathcal{J}^{(k+1)}(z)-D[(k+1)!]+(R+1) S D[(k+1)!]\right|<0
\end{aligned}
$$

But, for $0<|z|=r$ and $k=2 l(l \in \mathbb{N})$, we see that

$$
\begin{aligned}
V= & \left|\sum_{n=1}^{+\infty} \frac{\prod_{i=1}^{r}\left(\alpha_{i}, q\right)_{1+n} \prod_{j=1}^{p}\left(\lambda_{j}\right)_{n}}{(n-1-k)!(q, q)_{1+n} \prod_{i=1}^{s}\left(\beta_{i}, q\right)_{1+n} \prod_{j=1}^{m}\left(\mu_{j}\right)_{n}}\left(\frac{a+1}{a+n}\right)^{v} \frac{Y(a+n, b, v, \lambda)}{\lambda \Gamma(v)} a_{n} z^{n+1}\right| \\
- & T \left\lvert\, D(R+1)(1-S)[(k+1)!]-\sum_{n=1}^{+\infty} \frac{\prod_{i=1}^{r}\left(\alpha_{i}, q\right)_{1+n} \prod_{j=1}^{p}\left(\lambda_{j}\right)_{n} R}{(n-1-k)!(q, q)_{1+n} \prod_{i=1}^{s}\left(\beta_{i}, q\right)_{1+n} \prod_{j=1}^{m}\left(\mu_{j}\right)_{n}}\right. \\
& \left.\left(\frac{a+1}{a+n}\right)^{v} \frac{Y(a+n, b, v, \lambda)}{\lambda \Gamma(v)} a_{n} z^{n+1} \right\rvert\, \\
\leq & \sum_{n=1}^{+\infty} \frac{\prod_{i=1}^{r}\left(\alpha_{i}, q\right)_{n+1} \prod_{j=1}^{p}\left(\lambda_{j}\right)_{n}}{(n-k-1)!(q, q)_{n+1} \prod_{i=1}^{s}\left(\beta_{i}, q\right)_{n+1} \prod_{j=1}^{m}\left(\mu_{j}\right)_{n}}\left(\frac{a+1}{a+n}\right)^{v} \frac{Y(a+n, b, v, \lambda)}{\lambda \Gamma(v)}\left|a_{n}\right| r^{n+1} \\
- & T D(R+1)(1-S)[(k+1)!] \\
& \sum_{n=1}^{+\infty} \frac{R T \prod_{i=1}^{r}\left(\alpha_{i}, q\right)_{n+1} \prod_{j=1}^{p}\left(\lambda_{j}\right)_{n}}{(n-k-1)!(q, q)_{n+1} \prod_{i=1}^{s}\left(\beta_{i}, q\right)_{n+1} \prod_{j=1}^{m}\left(\mu_{j}\right)_{n}}\left(\frac{a+1}{a+n}\right)^{v} \frac{Y(a+n, b, v, \lambda)}{\lambda \Gamma(v)}\left|a_{n}\right| r^{n+1} \\
\leq & \sum_{n=1}^{+\infty} \frac{(1+R T) \prod_{i=1}^{r}\left(\alpha_{i}, q\right)_{n+1} \prod_{j=1}^{p}\left(\lambda_{j}\right)_{n}}{(n-k-1)!(q, q)_{n+1}^{s} \prod_{i=1}^{s}\left(\beta_{i}, q\right)_{n+1} \prod_{j=1}^{m}\left(\mu_{j}\right)_{n}}\left(\frac{a+1}{a+n}\right)^{n} \frac{Y(a+n, b, v, \lambda)}{\lambda \Gamma(v)}\left|a_{n}\right| r^{n+1} \\
- & T D(R+1)(1-S)[(k+1)!] .
\end{aligned}
$$

By letting $r \rightarrow 1^{-}$, since the last inequality holds for all $r(0<r<1)$, we conclule that $V \leq 0$, so the proof is complete.

Theorem 2.2. Let $f \in \mathcal{M}^{k}(R, S, T)$. Then

$$
J^{(k)}(z)=\int_{0}^{z} \frac{[(k+1)!](T \Psi(u)(S+R S-1)-1)}{(1-T \Psi(u) R) u^{k+2}} d u
$$

and

$$
J^{(k)}(z)=z^{-k-2} \int_{X} \frac{[(k+1)!(T x(S+R S-1)-1)}{(1-T x R)} d \mu(x)
$$

where $\mu(x)$ is the probability measure on $X=\{x: \quad|x|=1\}$.

Proof. By (6), we have

$$
\frac{z^{k+2} \mathcal{J}^{(k+1)}(z)+(k+1)!}{R z^{k+2} \mathcal{J}^{(k+1)}(z)-(k+1)!+(1+R) S[(k+1)!]}=T \Psi(z)
$$

where $|\Psi(z)|<1 ; z \in \mathbb{U}^{*}$. Then
$z^{k+2} J^{(k+1)}(z)+(k+1)!-T \Psi(z) R z^{k+2} J^{(k+1)}(z)+T \Psi(z)[(k+1)!](1-S-R S)=0$,
or

$$
z^{k+2} J^{(k+1)}(z)(1-T \Psi(z) R)=[(k+1)!](T \Psi(z)(S+R S-1)-1)
$$

After integration, we conclude that

$$
J^{(k)}(z)=\int_{0}^{z} \frac{[(k+1)!](T \Psi(u)(S+R S-1)-1)}{(1-T \Psi(u) R) u^{k+2}} d u
$$

For the second representation, we put $X=\{x:|x|=1\}$, and so

$$
\frac{z^{k+2} J^{(k+1)}(z)+(k+1)!}{R z^{k+2} J^{(k+1)}(z)-(k+1)!+(1+R) S[(k+1)!]}=T x
$$

and after a simple calculation, we obtain the desired result.
Two subclasses of Σ are defined and the above geometric properties of these classes are examined. For a given $x_{0} \in(0,1)$, let Σ_{1} be a subclass of Σ provided that, $x_{0} f\left(x_{0}\right)=1$ and Σ_{2} be a subclass of Σ provided that, $-x_{0}^{2} f^{\prime}\left(x_{0}\right)=1$, also:

$$
\mathcal{M}_{\theta}^{k}\left(R, S, T, x_{0}\right)=\mathcal{M}^{k}(R, S, T) \cap \Sigma_{\theta}, \quad(\theta=1,2)
$$

Theorem 2.3. Let f be defined by (1). Then $f \in \mathcal{M}_{1}^{k}\left(R, S, T, x_{0}\right)$ if and only if

$$
\begin{align*}
& \sum_{n=1}^{+\infty}\left(\frac{(1+R T) \prod_{i=1}^{r}\left(\alpha_{i}, q\right)_{n+1} \prod_{j=1}^{p}\left(\lambda_{j}\right)}{(n-k-1)!(q, q)_{n+1} \prod_{i=1}^{s}\left(\beta_{i}, q\right)_{n+1} \prod_{j=1}^{m}\left(\mu_{j}\right)_{n}}\left(\frac{a+1}{a+n}\right)^{v}\right. \\
\times \quad & \left.\frac{Y(n+a, b,, v, \lambda)}{\lambda \Gamma(v) T(R+1)(1-S)[(k+1)!]}+x_{0}^{n+1}\right) a_{n} \leq 1 \tag{8}
\end{align*}
$$

Proof. Since $f \in \mathcal{M}_{1}^{k}\left(R, S, T, x_{0}\right)$, we have

$$
x_{0} f\left(x_{0}\right)=+\sum_{n=0}^{+\infty} a_{n} x_{0}^{n+1}=1
$$

Thus

$$
D=1-\sum_{n=1}^{+\infty} a_{n} x_{0}^{n+1}
$$

By replacing this value of D in Theorem 2.1, we obtain

$$
\begin{aligned}
& \sum_{n=1}^{+\infty} \frac{(1+R T) \prod_{i=1}^{r}\left(\alpha_{i}, q\right)_{1+n} \prod_{j=1}^{p}\left(\lambda_{j}\right)_{n}}{(n-k-1)!(q, q)_{1+n} \prod_{i=1}^{s}\left(\beta_{i}, q\right)_{1+n} \prod_{j=1}^{m}\left(\mu_{j}\right)_{n}}\left(\frac{a+1}{a+n}\right)^{v} \frac{Y(a+n, b,, v, \lambda)}{\lambda \Gamma(v)} a_{n} \\
& \leq T(R+1)(1-S)[(k+1)!]\left(1-\sum_{n=1}^{+\infty} a_{n} x_{0}^{n+1}\right)
\end{aligned}
$$

or
$\sum_{n=1}^{+\infty}\left(\frac{(1+R T) \prod_{i=1}^{r}\left(\alpha_{i}, q\right)_{n+1} \prod_{j=1}^{p}\left(\lambda_{j}\right)_{n}}{(n-k-1)!(q, q)_{n+1} \prod_{i=1}^{s}\left(\beta_{i}, q\right)_{n+1} \prod_{j=1}^{m}\left(\mu_{j}\right)_{n}}\left(\frac{a+1}{a+n}\right)^{v} \times\right.$
$\left.\frac{Y(a+n, b, v, \lambda)}{\lambda \Gamma(v) T(R+1)(1-S)[(k+1)!]}+x_{0}^{n+1}\right) a_{n} \leq 1$,
and we get the desired assertion.
Theorem 2.4. Suppose that f is defined as (1). So $f \in \mathcal{M}_{2}^{k}\left(R, S, T, x_{0}\right)$ if and only if
$\sum_{n=1}^{+\infty}\left(\frac{(1+R T) \prod_{i=1}^{r}\left(\alpha_{i}, q\right)_{1+n} \prod_{j=1}^{p}\left(\lambda_{j}\right)_{n}}{(n-k-1)!(q, q)_{1+n} \prod_{i=1}^{s}\left(\beta_{i}, q\right)_{1+n} \prod_{j=1}^{m}\left(\mu_{j}\right)_{n}}\left(\frac{a+1}{a+n}\right)^{v} \frac{Y(a+n, b, v, \lambda)}{\lambda \Gamma(v) T(R+1)(1-S)[(k+1)!]}\right.$
$\left.-n x_{0}^{n+1}\right) a_{n} \leq 1$
Proof. Since $-x_{0}^{2} f^{\prime}\left(x_{0}\right)=1$, we have

$$
D=1+\sum_{n=1}^{+\infty} n a_{n} x_{0}^{n+1}
$$

Substituting D in (7), we obtain (9).
Corollary 2.5. (i) If f be in the form (1) and in the class $\mathcal{M}_{1}^{k}\left(R, S, T, x_{0}\right)$, then

$$
\begin{equation*}
a_{n} \leq \frac{\Phi}{W+\Phi x_{0}^{n+1}} \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
\Phi & =\left(\prod_{i=1}^{s}\left(\beta_{i}, q\right)_{n+1} \prod_{j=1}^{m}\left(\mu_{j}\right)_{n}(a+n)^{v} \lambda \Gamma(v) T(R+1)(1-S)[(k+1)!]\right) \\
& \times(n-k-1)!(q, q)_{n+1} \tag{11}
\end{align*}
$$

$$
\begin{equation*}
W=(1+R T) \prod_{i=1}^{r}\left(\alpha_{i}, q\right)_{1+n} \prod_{j=1}^{p}\left(\lambda_{j}\right)_{n}(1+a)^{v} Y(n+a, b, v, \lambda) \tag{12}
\end{equation*}
$$

(ii) If $f(z)$ be in the form (1) and in the class $\mathcal{M}_{2}^{k}\left(R, S, T, x_{0}\right)$, then

$$
a_{n} \leq \frac{\Phi}{W-n \Phi x_{0}^{n+1}}
$$

where Φ and W are given in (2.5) and (2.6) respectively.

3. Convex and connected sets

In the last section we will show that $\mathcal{M}_{\theta}^{k}\left(R, S, T, x_{0}\right)$ for $\theta=1,2$ are convex sets. Also, connected set conditions are investigated. The same properties were studied recently in [5].

Theorem 3.1. Let f_{j} defined by

$$
f_{j}(z)=\frac{D_{j}}{z}+\sum_{n=1}^{+\infty} a_{n, j} z^{n}
$$

be in the class $\mathcal{M}_{1}^{k}\left(R, S, T, x_{0}\right)$. Then the function $F(z)=\sum_{j=0}^{m} d_{j} f_{j}(z)\left(d_{j} \geq 0\right)$ is also in the same class where $\sum_{j=0}^{m} d_{j}=1$.

Proof. By definition of $F(z)$, we have

$$
F(z)=\sum_{j=0}^{m} d_{j}\left(\frac{D_{j}}{z}+\sum_{n=1}^{+\infty} a_{n, j} z^{n}\right)=\left(\sum_{j=0}^{m} d_{j} D_{j}\right) z^{-1}+\sum_{n=1}^{+\infty}\left(\sum_{j=0}^{m} d_{j} a_{n, j}\right) z^{n}
$$

Since $f_{j} \in \mathcal{M}_{1}^{k}\left(R, S, T, x_{0}\right)$ for $j=0,1, \ldots, m$, by using (8), we have

$$
\begin{aligned}
& \sum_{n=1}^{+\infty}\left(\frac{(1+R T) \prod_{i=1}^{r}\left(\alpha_{i}, q\right)_{1+n} \prod_{j=1}^{p}\left(\lambda_{j}\right)}{(n-k-1)!(q, q)_{1+n} \prod_{i=1}^{s}\left(\beta_{i}, q\right)_{1+n} \prod_{j=1}^{m}\left(\mu_{j}\right)_{n}}\left(\frac{1+a}{n+a}\right)^{u} \frac{Y(n+a, b,, u, \lambda)}{\lambda \Gamma(u) T(R+1)(1-S)[(k+1)!]}\right. \\
+ & \left.x_{0}^{1+n}\right) a_{n, j} \leq 1 .
\end{aligned}
$$

But

$$
\begin{aligned}
& \sum_{n=1}^{+\infty}\left(\frac{(1+R T) \prod_{i=1}^{r}\left(\alpha_{i}, q\right)_{1+n} \prod_{j=1}^{p}\left(\lambda_{j}\right)}{(n-k-1)!(q, q)_{1+n} \prod_{i=1}^{s}\left(\beta_{i}, q\right)_{1+n} \prod_{j=1}^{m}\left(\mu_{j}\right)_{n}}\left(\frac{1+a}{n+a}\right)^{u}\right. \\
\times & \left.\frac{Y(n+a, b,, u, \lambda)}{\lambda \Gamma(u) T(R+1)(1-S)[(k+1)!]}+x_{0}^{1+n}\right) \sum_{j=0}^{m} d_{j} a_{n, j} \\
= & \sum_{j=0}^{m} d_{j}\left(\sum _ { n = 1 } ^ { + \infty } \left(\frac{(1+R T) \prod_{i=1}^{r}\left(\alpha_{i}, q\right)_{1+n} \prod_{j=1}^{p}\left(\lambda_{j}\right)}{(n-k-1)!(q, q)_{1+n} \prod_{i=1}^{s}\left(\beta_{i}, q\right)_{1+n} \prod_{j=1}^{m}\left(\mu_{j}\right)_{n}}\left(\frac{1+a}{n+a}\right)^{u}\right.\right. \\
\leq & \sum_{j=0}^{m} d_{j}=1 .
\end{aligned}
$$

Now, the proof is complete.

Remark 1. By using the same techniques, we can prove the same result for $\mathcal{M}_{2}^{k}\left(R, S, T, x_{0}\right)$.

Corollary 3.2. The classes $\mathcal{M}_{\theta}^{k}\left(R, S, T, x_{0}\right)$ for $\theta=1,2$ are convex sets.

Theorem 3.3. Let

$$
\begin{equation*}
f_{0}(z)=z^{-1} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{n}(z)=\frac{W+\Phi z^{n+1}}{z\left(W+\Phi x_{0}^{n+1}\right)}, \quad n \geq 1 \tag{14}
\end{equation*}
$$

where Φ and W are given in (11) and (12), respectively. Then $f \in \mathcal{M}_{1}^{k}\left(R, S, T, x_{0}\right)$ if and only if it can be expressed by $f(z)=\sum_{n=0}^{+\infty} \xi_{n} f_{n}(z)$, where $\xi_{n} \geq 0$ and $\sum_{n=1}^{+\infty} \xi_{n}=$ 1.

Proof. Let

$$
\begin{aligned}
f(z) & =\sum_{n=0}^{+\infty} \xi_{n} f_{n}(z)=\xi_{0} f_{0}(z)+\sum_{n=1}^{+\infty} \xi_{n} f_{n}(z) \\
& =\xi_{0} f_{0}(z)+\sum_{n=1}^{+\infty} \xi_{n}\left[\frac{W+\Phi z^{n+1}}{z\left(W+\Phi x_{0}^{n+1}\right)}\right] \\
& =z^{-1}\left[\xi_{0}+\sum_{n=1}^{+\infty} \xi_{n} \frac{W+\Phi z^{n+1}}{z\left(W+\Phi x_{0}^{n+1}\right)}\right] \\
& =z^{-1}\left[\xi_{0}+\sum_{n=1}^{+\infty} \xi_{n} \frac{W}{W+\Phi x_{0}^{n+1}}\right]+\sum_{n=1}^{+\infty} \xi_{n} \frac{\Phi z^{n}}{W+\Phi x_{0}^{n+1}}
\end{aligned}
$$

In view of Theorem 2.3 and by

$$
\begin{gathered}
\sum_{n=1}^{+\infty}\left(\frac{W}{\Phi}+x_{0}^{n+1}\right)\left(\xi_{n} \frac{\Phi}{W+\Phi x_{0}^{n+1}}\right)=\sum_{n=1}^{+\infty} \xi_{n}=1-\xi_{0} \leq 1 \\
x_{0} f\left(x_{0}\right)=\sum_{n=0}^{+\infty} \xi_{n} x_{0} f_{n}\left(x_{0}\right)=\sum_{n=0}^{+\infty} \xi_{n}=1
\end{gathered}
$$

we conclude that

$$
f(z)=\mathcal{M}_{1}^{k}\left(R, S, T, x_{0}\right)
$$

Conversely, suppose that $f(z) \in \mathcal{M}_{1}^{k}\left(R, S, T, x_{0}\right)$. Then inequality (2.4) is established. By setting

$$
\xi_{n}=\frac{W+\Phi x_{0}^{n+1}}{\Phi} a_{n}, \quad n \geq 1
$$

and $\xi_{0}=1-\sum_{n=1}^{+\infty} \xi_{n}$, we obtain the required result, so the proof is complete.
Remark 2. With a similar way, we can prove the same theorem for $\mathcal{M}_{2}^{k}\left(R, S, T, x_{0}\right)$.
Remark 3. We note that the functions given by (13) and (14) are the extreme points of $\mathcal{M}_{1}^{k}\left(R, S, T, x_{0}\right)$. Now, we investigate convex family related to connected sets. Let I be a nonempty subset of $[0,1]$. We define

$$
\begin{equation*}
\mathcal{M}_{\theta}^{k}(R, S, T, I)=\bigcup_{x_{t} \in I} \mathcal{M}_{\theta}^{k}\left(R, S, T, x_{t}\right), \quad \theta=1,2 \tag{15}
\end{equation*}
$$

According to Theorem 3.1 and its corollary, $\mathcal{M}_{1}^{k}(R, S, T, I)$ is convex family if I is a single points.

Theorem 3.4. If $f \in \mathcal{M}_{1}^{k}\left(R, S, T, x_{0}\right) \cap \mathcal{M}_{1}^{k}\left(R, S, T, x_{1}\right)$, where x_{0}, x_{1} are positive numbers and $x_{0} \neq x_{1}$, then $f(z)=z^{-1}$.

Proof. Suppose $f \in \mathcal{M}_{1}^{k}\left(R, S, T, x_{0}\right) \cap \mathcal{M}_{1}^{k}\left(R, S, T, x_{1}\right)$ also $f(z)=D z^{-1}+\sum_{n=1}^{+\infty} a_{n} z^{n}$.
Then

$$
D=1-\sum_{n=1}^{+\infty} a_{n} x_{0}^{n+1}=1-\sum_{n=1}^{+\infty} a_{n} x_{1}^{n+1}
$$

or

$$
\sum_{n=1}^{+\infty} a_{n}\left(x_{0}^{n+1}-x_{1}^{n+1}\right)=0
$$

Since $a_{n} \geq 0, x_{0}>0$ and $x_{1}>0$, so a_{n} is always zero. This concludes that $f(z)=z^{-1}$.

Theorem 3.5. Assume that I belong to $[0,1]$. So $\mathcal{M}_{1}^{k}(R, S, T, I)$ is a convex family if and only if I is connected.

Proof. Let I be connected and let $x_{0}, x_{1} \in I$ with $x_{0} \leq x_{1}$. It suffices to show that for

$$
\begin{align*}
& f(z)=D z^{-1}+\sum_{n=1}^{+\infty} a_{n} z^{n} \in \mathcal{M}_{1}^{k}\left(R, S, T, x_{0}\right), \\
& g(z)=E z^{-1}+\sum_{n=1}^{+\infty} b_{n} z^{n} \in \mathcal{M}_{1}^{k}\left(R, S, T, x_{1}\right), \tag{16}
\end{align*}
$$

and $0 \leq \nu \leq 1$, there exists $x_{2}\left(x_{0} \leq x_{2} \leq x_{1}\right)$ such that

$$
h(z)=\nu f(z)+(1-\nu) g(z) \in \mathcal{M}_{1}^{k}\left(R, S, T, x_{2}\right) .
$$

By (16), we obtain

$$
E=1-\sum_{n=1}^{+\infty} b_{n} x_{1}^{n+1}, \quad D=1-\sum_{n=1}^{+\infty} a_{n} x_{0}^{n+1}
$$

Therefore, we get

$$
\begin{align*}
H(z) & =z h(z)=z(\nu f(z)+(1-\nu) g(z)) \\
& =z\left(\nu D z^{-1}+\sum_{n=1}^{+\infty} \nu a_{n} z^{n}+(1-\nu) E z^{-1}+\sum_{n=1}^{+\infty}(1-\nu) b_{n} z^{n}\right) \\
& =\nu D+\sum_{n=1}^{+\infty} \nu a_{n} z^{n+1}+(1-\nu) E+\sum_{n=1}^{+\infty}(1-\nu) b_{n} z^{n+1} \\
& =\nu\left(1-\sum_{n=1}^{+\infty} a_{n} x_{0}^{n+1}\right)+(1-\nu)\left(1-\sum_{n=1}^{+\infty} b_{n} x_{1}^{n+1}\right) \\
& +\sum_{n=1}^{+\infty} \nu a_{n} z^{n+1}+\sum_{n=1}^{+\infty}(1-\nu) b_{n} z^{n+1} \\
& =1+\nu \sum_{n=1}^{+\infty}\left(z^{n+1}-x_{0}^{n+1}\right) a_{n}+(1-\nu) \sum_{n=1}^{+\infty}\left(z^{n+1}-x_{1}^{n+1}\right) b_{n} \tag{17}
\end{align*}
$$

Even though $H\left(x_{0}\right) \leq 1, H\left(x_{1}\right) \geq 1$. Then x_{2} exists so that $H\left(x_{2}\right)=1$, where $x_{2} \in\left[x_{0}, x_{1}\right]$. Hence

$$
\begin{equation*}
x_{2} h\left(x_{2}\right)=1 \tag{18}
\end{equation*}
$$

As a result $h \in \Sigma_{(1)}$. Also from (17), (18) and (8), we infer that

$$
\begin{aligned}
& \sum_{n=1}^{+\infty}\left(\frac{W}{\Phi}+x_{2}^{n+1}\right)\left(\nu a_{n}+(1-\nu) b_{n}\right) \\
& =\nu \sum_{n=1}^{+\infty}\left(\frac{W}{\Phi}+x_{2}^{n+1}\right) a_{n}+(1-\nu) \sum_{n=1}^{+\infty}\left(\frac{W}{\Phi}+x_{2}^{n+1}\right) b_{n} \\
& \leq \nu \sum_{n=1}^{+\infty}\left(\frac{W}{\Phi}+x_{0}^{n+1}\right) a_{n}+(1-\nu) \sum_{n=1}^{+\infty}\left(\frac{W}{\Phi}+x_{1}^{n+1}\right) b_{n} \\
& \leq \nu+1-\nu=1 .
\end{aligned}
$$

Hence $h \in \mathcal{M}_{1}^{k}\left(R, S, T, x_{2}\right)$. Since x_{0}, x_{1} and x_{2} are arbitrary, the family $\mathcal{M}_{1}^{k}(R, S, T, I)$ is convex. Conversely, if I is not connected, then there exists x_{0}, x_{1} and x_{2} such that $x_{0}<x_{2}<x_{1}$ and $x_{0}, x_{1} \in I$, but $x_{2} \notin I$.
Let $f \in \mathcal{M}_{1}^{k}\left(R, S, T, x_{0}\right)$ and $g \in \mathcal{M}_{1}^{k}\left(R, S, T, x_{1}\right), f(z)$ and $g(z)$ are not both equal to z^{-1}. Then for fixed x_{2} and $0 \leq \nu \leq 1$, by (16), we obtain

$$
H(\nu)=H\left(x_{2}, \nu\right)=1+\nu \sum_{n=1}^{+\infty}\left(z^{n+1}-x_{0}^{n+1}\right) a_{n}+(1-\nu) \sum_{n=1}^{+\infty}\left(z^{n+1}-x_{1}^{n+1}\right) b_{n}
$$

Since $H\left(x_{2}, 0\right)<1$ and $H\left(x_{2}, 1\right)>1$, there exists $\nu_{0}\left(0<\nu_{0}<1\right)$ such that $H\left(x_{2}, \nu_{0}\right)=1$ or $x_{2} h\left(x_{2}\right)=1$, where $h(z)=\nu_{0} f(z)+\left(1-\nu_{0}\right) g(z)$. Thus $h(z) \in$
$\mathcal{M}_{1}^{k}\left(R, S, T, x_{2}\right)$. From Theorem 3.4, we have $h(z) \notin \mathcal{M}_{1}^{k}(R, S, T, I)$. Since $x_{2} \in I$ and $h(z) \neq z^{-1}$, this implies that the family $\mathcal{M}_{1}^{k}(R, S, T, I)$ is not convex which is a contradiction and the proof is complete.

Remark 4. We note that by the same techniques where used in Theorem 3.4 and Theorem 3.5, we can prove the same results for the class $\mathcal{M}_{2}^{k}(R, S, T, I)$, and so the details were omitted.

Conflicts of Interest. The authors declare that they have no conflicts of interest regarding the publication of this article.

References

[1] H. Aldweby and M. Darus, Certain subclass of meromorphically univalent functions defined by q-analogue of Liu-Srivastava operator, AIP Conf. Proc. 1571 (2013) 1069 - 1076, https://doi.org/10.1063/1.4858795.
[2] K. H. Challob, M. Darus and F. Ghanim, A linear operator and associated families of meromorphically q-hypergeometric functions, AIP Conf. Proc. 1830 (2017) p. 070013, https://doi.org/10.1063/1.4980962.
[3] K. A. Challab, M. Darus and F. Ghanim, On q-hypergeometric functions, Far East J. Math. Sci. 101 (2017) 2095 - 2109, https://doi.org/10.17654/MS101102095.
[4] K. A. Challab, M. Darus and F. Ghanim, On a certain subclass of meromorphic functions defined by a new linear differential operator, J. Math. Fund. Sci. 49 (2017) 269-282, https://doi.org/10.5614/j.math.fund.sci.2017.49.3.5.
[5] S. Najafzadeh, q-derivative on p-valent meromorphic functions associated with connected sets, Surv. Math. Appl. 14 (2019) 149 - 158.
[6] S. H. Sayedain Boroujeni and S. Najafzadeh, Error function and certain subclasses of analytic univalent functions, Sahand Commun. Math. Anal 20 (2023) 107 - 117, https://doi.org/10.22130/scma.2022.556794.1136.
[7] S. H. Sayedain Boroujeni, S. Najafzadeh and I. Nikoufar, A new subclass of univalent holomorphic functions based on q - analogue of Noor operator, Int. J. Nonlinear Anal. Appl. In Press, https://doi.org/10.22075/ijnaa.2023.29020.4045.
[8] F. Ghanim, A study of a certain subclass of Herwitz-Lerch Zeta function related to a linear operator, Abstr. Appl. Anal. 2013 (2013) Article ID 763756, https://doi.org/10.1155/2013/763756.
[9] F. Ghanim and M. Darus, New result of analytic functions related to Hurwitz-Zeta function, Sci. World J. 2013 (2013) Article ID 475643, https://doi.org/10.1155/2013/475643.
[10] S. Najafzadeh and E. Pezeshki, A subclass of analytic functions associated with the Hurwitz-Lerch Zeta function, Acta Universitatis Apulenisis 34 (2013) $355-369$.
[11] H. M. Srivastava, A new family of the λ-generalized Hurwitz-Lerch Zeta functions with applications, Appl. Math. Inf. Sci. 8 (2014) 1485 - 1500, https://doi.org/10.12785/amis/080402.
[12] H. M. Srivastava, S. Gaboury and B. J. Fugére, Further results involving a class of generalized Hurwitz-Lerch Zeta functions, Russ. J. Math. Phys. 21 (2014) 521 - 537, https://doi.org/10.1134/S1061920814040104.
[13] H. M. Srivastava, R. K. Saxena, T. K. Pogány and R. Saxena, Integral and computational representations of the extended Hurwitz-Lerch Zeta function, Integral Transforms Spec. Funct. 22 (2011) 487 - 506, https://doi.org/10.1080/10652469.2010.530128
[14] A. M. Mathai, R. K. Saxena and H. J. Haubold, The H-function: Thoery and Applications, Springer New York, NY, 2009.

Seyed Hadi Sayedain Boroujeni
Department of Mathematics, Payame Noor University,
Tehran, Iran
e-mail: h.sayedain@pnu.ac.ir; hadisayedain@gmail.com.
Shahram Najafzadeh
Department of Mathematics, Payame Noor University,
Tehran, Iran
e-mail: shnajafzadeh44@pnu.ac.ir; najafzadeh1234@yahoo.ie.

[^0]: *Corresponding author (E-mail:shnajafzadeh44@pnu.ac.ir)
 Academic Editor: Mahdi Dehghani
 Received 17 June 2022, Accepted 29 August 2023
 DOI: $10.22052 /$ mir.2023.246039.1356

[^1]: This work is licensed under the Creative Commons Attribution 4.0 International License.

