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Abstract

In this paper, we extend the notion of approximate convexity to set-
valued maps and obtain some relations between approximate convexity and
approximate monotonicity of their normal subdifferential.
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1. Introduction
The concept of convexity is very important in optimization theory as a local min-
imum for a convex function becomes a global minimum. In 1998 Jofre et al. [1]
generalized the notion of convexity to ε-convexity and by using it Ngai et al. [2]
presented the notion of approximate convexity which consists of several useful and
interesting properties of convex functions. Daniilidis and Georgiev [3] proved that
for locally Lipschitz functions, approximate convexity is equivalent to the sub-
monotonicity of their Clarke’s subdifferential. By using Clarke’s subdifferential,
Bhatia et al. [4] introduced several extensions of approximate convexity. Malmir
and Barani [5], showed that under the locally Lipschitzian property, the set of
lower-C1 functions and the set of approximately convex functions are the same.
In the past years, characterizing and extending generalized convex functions to set-
valued maps have been considered by many researchers, see [6–8] and references
therein. In a recent paper, Durea and Strugariu [9] introduced a new technique to
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construct subdifferentials and directional derivatives for set-valued maps. In this
paper, we present the definition of approximate convexity for set-valued maps and
by using the concept of normal subdifferential in the sense of Murdukhovich we
show that under some conditions it is equivalent by approximate monotonicity of
its normal subdifferential. This paper is organized as follows. In Section 2, some
preliminary results and notions used in the sequel are given. Section 3 is devoted
to obtaining some relations between the approximate convexity of set-valued maps
and the approximate monotonicity for their normal subdifferentials.

2. Preliminaries
Let X and Y be two Banach spaces. The norm in X and its dual space X∗ will
be denoted by ‖ . ‖. Assume that SX and BX are the unit sphere and closed unit
ball of X, respectively. Also, consider K ⊂ Y to be a closed convex cone.

Definition 2.1. ([10]). A mapping H : Ω ⊂ X ⇒ Y is called

(i) Lipschitz around x0 ∈ Ω if there are l ≥ 0 and a neighborhood U of x0 such
that

H(x) ⊂ H(x′) + l ‖ x− x′ ‖ BY , ∀x, x′ ∈ Ω ∩ U ⊂ X.

(ii) epi-Lipschitz around x0 ∈ Ω if EH(·) := H(·) + K is Lipschitz around this
point.

H is locally epi-Lipschitz on Ω, if for every x ∈ Ω, it is epi-Lipschitz around x.
Now, we present some definitions of subdifferential and coderivative of real and
set-valued mapping.

Definition 2.2. ([10]). Let h : X → R. The limiting subdifferential of h at x0 is
given by

∂Lh(x0) := {ξ ∈ X∗|(ξ,−1) ∈ N((x0, h(x0)); epih)},
where N((x0, h(x0)); epih) is the basic normal cone to epih at (x0, h(x0)).
The normal coderivative of H : X ⇒ Y at (x0, y0) ∈ grH is D∗NH(x0, y0) : Y ∗ ⇒
X∗ defined by

D∗NH(x0, y0)(y∗) := {x∗ ∈ X∗|(x∗,−y∗) ∈ N((x0, y0); grH)}.

Also, the normal subdifferential [11] of H at the point (x0, y0) ∈ epiH is given by
∂H(x0, y0)(y∗) := D∗NEH(x0, y0)(y∗).

Assume that y∗ ∈ Y ∗ and H : X ⇒ Y . We associated to y∗ and H a marginal
function hy∗ : X → R̄,

hy∗(x) := inf
y∈H(x)

y∗(y),

and the set of minimum points

My∗(x) := {y ∈ H(x)| hy∗(x) = y∗(y)}.
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In next theorem, a relation between normal subdifferential of a map and limiting
subdifferential of its marginal functions is given.

Theorem 2.3. ([12]). Let H : X ⇒ Y be a map between two Asplund spaces.
Suppose that x0 ∈ domH, y∗ ∈ K+ and y0 ∈ My∗(x0). If H is epi-Lipschitz
around x0, then ∂hy∗(x0) ⊆ ∂H(x0, y0)(y∗).

Definition 2.4. ([1]). Let h : Ω ⊂ X → R. h is called approximately convex at
x̄ ∈ Ω, if for every α > 0, there exists δ > 0 such that for any x, x′ ∈ B(x̄, δ) ∩ Ω
and any 0 ≤ c ≤ 1, one has

h(cx+ (1− c)x′) ≤ ch(x) + (1− c)h(x′) + αc(1− c) ‖ x− x′ ‖ .

Definition 2.5. ([10]). A ⊂ X is called sequentially normally compact (SNC) at
x ∈ A if for every sequence (εn, xn, x

∗
n) ∈ [0,∞[×A×X∗ satisfying

εn ↓ 0, xn → x, x∗n ∈ N̂εn(xn;A), and x∗n
w∗

→ 0,

one has ||x∗n|| → 0 as n→∞, where N̂ε(x;A) is the set of ε-normals to A at x.
Also, X is called weakly compactly generated (WCG) if there exists a weakly
compact set A ⊂ X such that X = cl(span A).

Note that, any separable Banach space is WCG. [10]

3. Main results

In this section, an extension of approximate convexity for set-valued maps and
approximate monotonicity of their normal subdifferential are presented. Also,
some relations between them are given. Throughout this section, X and Y are
considered to be Asplund spaces.

Definition 3.1. Assume that Ω ⊂ X is a convex set and H : Ω ⊂ X ⇒ Y . H is
called approximately K-convex at x̄ ∈ domH if for any α > 0 there exists δ > 0
(depending on x̄ and α) such that for any x, x′ ∈ B(x̄, δ) and 0 ≤ c ≤ 1, one has

cH(x) + (1− c)H(x′) + αc(1− c) ‖ x− x′ ‖ e ⊆ H(cx+ (1− c)x′) +K,

for an e ∈ intK with ‖ e ‖= 1.

Definition 3.2. The mapping ∂H : X × Y × Y ∗ ⇒ X∗ is called approximately
K-monotone at x̄ ∈ domH if for every α > 0, there exists δ > 0 such that for any
xj ∈ B(x̄, δ), y∗ ∈ SY ∗ ∩K+, yj ∈ My∗(xj) and x∗j ∈ ∂H(xj , yj)(y

∗), (j = 1, 2),
one has

< x∗1 − x∗2, x1 − x2 >≥ −α ‖ x1 − x2 ‖ .
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Remark 1. H : Ω ⊂ X ⇒ Y is said to satisfy Condition (AC)1 (resp. Condition
(AC)2) at x̄ ∈ domH if for any α > 0 there exists δ > 0 such that for every
xj ∈ B(x̄, δ), y∗ ∈ SY ∗ ∩K+ and yj ∈My∗(xj), (j = 1, 2), one has

< x∗, x2 − x1 > −α ‖ x2 − x1 ‖≤ y∗(y2)− y∗(y1),

for some (resp. any) x∗ ∈ ∂H(x1, y1)(y∗).

Lemma 3.3. If H : X ⇒ Y is approximately K-convex, then for any y∗ ∈
SY ∗ ∩K+, hy∗ is a real-valued approximately convex function.

Proof. Suppose that H is approximately K-convex at x0. Then for every α > 0
there exist δ > 0 and e ∈ intK (‖ e ‖= 1) such that for every x, x′ ∈ B(x0, δ) and
0 ≤ c ≤ 1, we have

cH(x) + (1− c)H(x′) + αc(1− c) ‖ x− x′ ‖ e ⊆ H(cx+ (1− c)x′) +K.

Now, for all y∗ ∈ SY ∗ ∩K+, we obtain

inf(y∗(H(cx+(1−c)x′)+K)) ⊆ inf(y∗(cH(x)+(1−c)H(x′)+αc(1−c) ‖ x−x′ ‖ e)).

Since y∗ ∈ SY ∗ and ‖ e ‖= 1, we get

hy∗(cx+ (1− c)x′) ≤ chy∗(x) + (1− c)hy∗(x′) + αc(1− c) ‖ x− x′ ‖ .

It shows approximate convexity of hy∗ at x0.

Theorem 3.4. Suppose that X is WCG, Ω ⊂ X is a closed subset that is SNC
at x ∈ Ω and H : Ω ⊂ X ⇒ Y is locally epi-Lipschitz. If H is approximately
K-convex at x ∈ Ω, then H satisfies Condition (AC)1 at this point.

Proof. By Lemma 3.3 and Lemma 3.2 [12] for every y∗ ∈ SY ∗ ∩ K+, hy∗ is ap-
proximately convex at x and locally Lipschitz. Hence, for every α > 0, there exists
δ > 0 such that for any xj ∈ B(x, δ) ∩ Ω, (j = 1, 2) and 0 ≤ c ≤ 1, one has

hy∗(cx1 + (1− c)x2) ≤ chy∗(x1) + (1− c)hy∗(x2) + αc(1− c) ‖ x1 − x2 ‖ .

Therefore

hy∗(cx1 + (1− c)x2)− hy∗(x2)

c
≤ hy∗(x1)− hy∗(x2) + α(1− c) ‖ x1 − x2 ‖, (1)

for any c ∈ (0, 1). Since hy∗ is locally Lipschitz, 0 < θ < 1 can be found such
that hy∗ is Lipschitz on an open set containing [x2, x2 + c(x1 − x2)] for any c ∈
[0, θ]. Now, by using Corollary 3.51 in [10] (mean value inequality), there exist
ac ∈ [x2, x2 + c(x1 − x2)[ and x∗c ∈ ∂hy∗(ac) such that

c < x∗c , x1 − x2 >≤ hy∗(x2 + c(x1 − x2))− hy∗(x2).
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From relation (1), we have

< x∗c , x1 − x2 >≤ hy∗(x1)− hy∗(x2) + α(1− c) ‖ x1 − x2 ‖ .

By the locally boundedness of ∂hy∗ (see Corollary 1.81 in [10]), there are k > 0 and
a neighborhood of x2 such that for each u in this neighborhood and x∗ ∈ ∂hy∗(u),
we have ‖ x∗ ‖≤ k. Since, ac → x2 when c → 0, for c be sufficiently small
‖ x∗c ‖≤ k. Hence, without loss of generality we can suppose that x∗c → x∗ in
w∗-topology. Because the mapping ∂h(·) has closed graph (see Theorem 3.60 in
[10]), we have x∗ ∈ ∂hy∗(x2) and

< x∗, x1 − x2 >≤ hy∗(x1)− hy∗(x2) + α ‖ x1 − x2 ‖ .

Now, by using Theorem 2.3, H satisfies Condition (AC)1.

Lemma 3.5. Let H : Ω ⊂ X ⇒ Y satisfies Condition (AC)2 at x̄. Then ∂H is
approximately K-monotone at this point.

Proof. Suppose that H satisfies Condition (AC)2. Therefore, for every α > 0 there
exists δ > 0, such that for any xj ∈ B(x̄, δ), y∗ ∈ SY ∗ ∩K+, yj ∈ My∗(xj) and
ξj ∈ ∂H(xj , yj)(y

∗), (j = 1, 2), we get

< ξ1, x2 − x1 > −α ‖ x2 − x1 ‖≤ y∗(y2)− y∗(y1),

and
< ξ2, x1 − x2 > −α ‖ x1 − x2 ‖≤ y∗(y1)− y∗(y2).

By adding these two relations, we obtain

< ξ2 − ξ1, x2 − x1 >≥ −2α ‖ x2 − x1 ‖ .

It says that ∂H is approximately K-monotone at x̄.

In the next theorem, an extension of Theorem 3.5 in [13] is presented.

Theorem 3.6. Let H : X ⇒ Y be locally epi-Lipschitz. If ∂H is approximately
K-monotone, then H satisfies Condition (AC)2.

Proof. Let ∂H be approximately K-monotone at x̄ ∈ X. Hence, for every α > 0
there exists δ > 0 such that for every xj ∈ B(x̄, δ), y∗ ∈ SY ∗ ∩K+, yj ∈My∗(xj)
and ξj ∈ ∂H(xj , yj)(y

∗), (j = 1, 2), one has

< ξ2 − ξ1, x2 − x1 >≥ −α ‖ x2 − x1 ‖ .

Let z = x2 + 1
2 (x1 − x2) and let y∗ ∈ SY ∗ ∩K+ be arbitrary. From Lemma 3.2

in [12], hy∗ is locally Lipschitz. Now, by using Corollary 3.51 in [10] (mean value
inequality), there exist c1, c2 such that 0 < c2 ≤ 1

2 < c1 ≤ 1, ξ1 ∈ ∂hy∗(u1),
ξ2 ∈ ∂hy∗(u2) such that

hy∗(x1)− hy∗(z) ≥ 1

2
< ξ1, x1 − x2 >, (2)
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and
hy∗(z)− hy∗(x2) ≥ 1

2
< ξ2, x1 − x2 >, (3)

where u1 = c1x1 + (1 − c1)x2 and u2 = c2x1 + (1 − c2)x2. Now, Theorem 2.3
implies ξj ∈ ∂hy∗(uj) ⊂ ∂H(uj , zj)(y

∗) that zj ∈My∗(uj), (j = 1, 2). Since ∂H is
approximately K-monotone at x and u1, u2 ∈ B(x, δ), we have

< ξ1 − w, u1 − x2 >≥ −α ‖ u1 − x2 ‖,

for every y2 ∈My∗(x2) and w ∈ ∂H(x2, y2)(y∗). Now, by using inequality (2), we
get

hy∗(x1)− hy∗(z) ≥ 1

2
(< w, x1 − x2 > −α ‖ x1 − x2 ‖).

In a similar way, we can obtain

hy∗(z)− hy∗(x2) ≥ 1

2
(< w, x1 − x2 > −α ‖ x1 − x2 ‖).

By adding the latter two inequalities, we deduce that

hy∗(x1)− hy∗(x2) ≥< w, x1 − x2 > −α ‖ x1 − x2 ‖ .

Hence, for every xj ∈ B(x, δ), yj ∈My∗(xj), j = 1, 2 and w ∈ ∂H(x2, y2)(y∗), we
have

y∗(y1)− y∗(y2) ≥< w, x1 − x2 > −α ‖ x1 − x2 ‖ .
It shows that H satisfies Condition (AC)2.

Theorem 3.7. Let H : X ⇒ Y be a locally epi-Lipschitz map EH with being
a closed convex-valued. If H satisfies Condition (AC)2, then it is approximately
K-convex.

Proof. Suppose that H satisfies Condition (AC)2 at x̄. By using Theorem 2.3,
we can deduce that hy∗ is a real-valued function satisfying Condition (AC)2 at
x̄. Hence, for every α > 0 there exists δ > 0 such that for every xj ∈ B(x̄, δ),
(j = 1, 2), one has

< ξ, x2 − x1 > −α ‖ x2 − x1 ‖≤ hy∗(x2)− hy∗(x1), ∀ξ ∈ ∂hy∗(x1).

Now, by applying the above inequality for x1, xc = x2 + c(x1 − x2) and also for
x2, xc where 0 < c < 1, we obtain

(1−c) < ξ, x1−x2 > −α(1−c) ‖ x1−x2 ‖≤ hy∗(x1)−hy∗(xc), ∀ξ ∈ ∂hy∗(xc), (4)

− c < ξ, x1 − x2 > −αc ‖ x1 − x2 ‖≤ hy∗(x2)− hy∗(xc), ∀ξ ∈ ∂hy∗(xc). (5)

By multiplying (4) by c and (5) by (1 − c) and adding the resulting inequalities,
we obtain

−2αc(1− c) ‖ x1 − x2 ‖≤ chy∗(x1) + (1− c)hy∗(x2)− hy∗(xc),
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and therefore

hy∗(x2 + c(x1 − x2)) ≤ chy∗(x1) + (1− c)hy∗(x2) + 2αc(1− c)‖x1 − x2‖.

It means that hy∗ is approximately convex at x̄.
Now, we suppose to the contrary that H is not approximately K-convex at x̄.
Therefore, there is α > 0 such that for any δ > 0 and e ∈ intK, there exist
xj ∈ B(x̄, δ), yj ∈ H(xj), (j = 1, 2), and c ∈ [0, 1], such that

cy1 + (1− c)y2 + αc(1− c) ‖ x1 − x2 ‖ e /∈ H(cx1 + (1− c)x2) +K.

By using the separating theorem to the non-empty disjoint convex sets: {cy1 +
(1− c)y2 + αc(1− c)e ‖ x1 − x2 ‖} which is compact and H(x2 + c(x1 − x2)) +K
which is convex and closed, a functional ȳ∗ ∈ Y ∗\{0} can be found such that

ȳ∗(cy1 + (1− c)y2 + αc(1− c) ‖ x1 − x2 ‖ e) < inf ȳ∗(H(x2 + c(x1 − x2)) +K)

= inf ȳ∗(H(x2 + c(x1 − x2))) + inf ȳ∗(K).

Now, it can be easily verified that ȳ∗ ∈ K+\{0} and thus inf ȳ∗(K) = 0. Further-
more, without loss of generality, we may assume that ȳ∗(e) = 1. Therefore,

cȳ∗(y1) + (1− t)ȳ∗(y2) + αc(1− c) ‖ x1 − x2 ‖< hȳ∗(x2 + c(x1 − x2)). (6)

Since hȳ∗ is approximately convex at x̄, we obtain

hȳ∗(x2 + c(x1 − x2)) ≤ chȳ∗(x1) + (1− c)hȳ∗(x2) + αc(1− c) ‖ x1 − x2 ‖ .

Because y1 ∈ H(x1) and y2 ∈ H(x2), definition of marginal functions implies that

hȳ∗(x2 + c(x1 − x2)) ≤ cȳ∗(y1) + (1− c)ȳ∗(y2) + αc(1− c) ‖ x1 − x2 ‖,

which is a contradiction with (6).

Conflicts of Interest. The authors declare that they have no conflicts of interest
regarding the publication of this article.

References

[1] A. Jofré, D. T. Luc and M. Théra, ε-subdifferential and ε- monotonic-
ity, Nonlinear Anal. 33 (1998) 71 − 90, https://doi.org/10.1016/S0362-
546X(97)00511-7.

[2] H. V. Ngai, D. T. Luc and M. Théra, Approximate convex functions, J.
Nonlinear Convex Anal. 1 (2000) 155− 176.



344 Z. Kefayati et al. / Approximate Convexity for Set-Valued Maps

[3] A. Daniilidis and P. Georgiev, Approximate convexity and sub-
monotonicity, J. Math. Anal. Appl. 291 (2004) 292 − 301,
https://doi.org/10.1016/j.jmaa.2003.11.004.

[4] D. Bhatia, A. Gupta and P. Arora, Optimality via generalized approx-
imate convexity and quasiefficiency, Optim. Lett. 7 (2013) 127 − 135,
https://doi.org/10.1007/s11590-011-0402-3.

[5] F. Malmir and A. Barani, Generalized submonotonicity and approximately
convexity in Riemannian manifolds, Rend. Circ. Mat. Palermo 71 (2022)
299− 323, https://doi.org/10.1007/s12215-021-00625-7.

[6] A. Götz and J. Jahn, The Lagrange multiplier rule in set-
valued optimization, Siam J. Optim. 10 (2000) 331 − 344,
https://doi.org/10.1137/S1052623496311697.

[7] Y. Han and N. Huang, Continuity and convexity of a nonlinear scalarizing
function in set optimization problems with applications, J. Optim. Theory
Appl. 177 (2018) 679− 695, https://doi.org/10.1007/s10957-017-1080-9.

[8] K. Seto, D. Kuroiwa and N. Popovici, A systematization of convex-
ity and quasiconvexity concepts for set-valued maps, defined by l-type
and u-type preorder relations. Optimization 67 (2018) 1077 − 1094,
https://doi.org/10.1080/02331934.2018.1454920.

[9] M. Durea and R. Strugariu, Directional derivatives and subdifferentials for
set-valued maps applied to set optimization, J. Global Optim. 85 (2023) 687−
707, https://doi.org/10.1007/s10898-022-01222-3.

[10] B. S. Mordukhovich, Variational Analysis and Generalized Differential I,
Springer, Berlin, 2006.

[11] T. Q. Bao and B. S. Mordukhovich, Variational principles for set-valued map-
pings with applications to multiobjective optimization, Control Cybern. 36
(2007) 531− 562.

[12] M. Oveisiha and J. Zafarani, Super efficient solutions
for set-valued maps, Optimization 62 (2013) 817 − 834,
https://doi.org/10.1080/02331934.2012.712119.

[13] M. Oveisiha and M. Aghabagloo, Scalarized solutions of set-valued optimiza-
tion problems and generalized variational-like inequalities, Filomat 31 (2017)
3953− 3963, https://doi.org/10.2298/FIL1712953O.



Mathematics Interdisciplinary Research 8 (4) (2023) 337− 345 345

Zohreh Kefayati
Department of Pure Mathematics,
Imam Khomeini International University,
Qazvin, Iran
e-mail: zohrekefayati68@gmail.com

Morteza Oveisiha
Department of Pure Mathematics,
Imam Khomeini International University,
Qazvin, Iran
e-mail: oveisiha@sci.ikiu.ac.ir


