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Abstract

In emergency situations, accurate demand forecasting for relief materials
such as food, water, and medicine is crucial for effective disaster response.
This research is presented a novel algorithm to demand forecasting for relief
materials using extended Case-Based Reasoning (CBR) with the best-worst
method (BWM) and Hidden Markov Models (HMMs). The proposed algo-
rithm involves training an HMM on historical data to obtain a set of state
sequences representing the temporal fluctuations in demand for different re-
lief materials. When a new disaster occurs, the algorithm first determines
the current state sequence using the available data and searches the case li-
brary for past disasters with similar state sequences. The effectiveness of the
proposed algorithm is demonstrated through experiments on real-world dis-
aster data of Iran. Based on the results, the forecasting error index for four
relief materials is less than 10%; therefore, the proposed CBR-BWM-HMM
is a strong and robust algorithm.
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1. Introduction

Natural disasters such as earthquakes, hurricanes, and floods can cause significant
damage to lives, homes, and infrastructure. In such emergencies, the demand for
relief materials such as food, water, and medicine can rapidly escalate, making
it essential to accurately forecast demand to ensure that aid organizations can
respond effectively [1]. Since the occurrence and severity of these events are often
high, the sudden demand for rescue services and relief for affected people is often
unknown [2]. This creates uncertainty for emergency response planners, hampers
actions needed for the effective deployment of emergency response resources [3].
Similarly, Iran has the fourth highest rate of rapid on-set natural disasters in Asia
countries [4]. It is the sixth highest ranked in the world regarding frequency and
occurrence of immediate on-set natural disasters [5]. Because of the unexpected
nature of these sudden sudden-onset natural disasters, forecasting relief resources
is complex and difficult [6]. It is a severe challenge for emergency and disaster man-
agers worth studying. An urgent task of emergency first responders is to deliver
an appropriately calibrated response [7]. Such an important task requires effective
forecasting and planning and management control of emergency relief resources [8].
Traditional demand forecasting methods for relief materials often rely on limited
data, basic statistical models, and expert judgment, leading to inaccurate fore-
casting and suboptimal allocation of resources [9–11]. Moreover, these approaches
may fail to account for the uniqueness of each disaster situation and the complex
interplay of factors. As a result, aid organizations face the challenge of making
quick decisions under uncertainty and allocating relief materials in a timely and
efficient manner [7, 12]. Therefore, there is a pressing need for innovative and
data-driven approaches for demand forecasting of relief materials that account for
the specific characteristics of each disaster situation and enable effective disaster
response [13]. This paper is based specifically on the demand for the four most
important relief items [14]. The relief items include (1) drinking water (2) tents for
temporary shelter (3) conserves, and (4) food packages. In demand forecasting for
relief items, several published papers have addressed various aspects of the topic.
The problem of demand forecasting for relief items revolves around accurately pre-
dicting the quantity and timing of required items during emergencies. The timely
availability of relief items, such as food, medical supplies, and shelter materials,
is crucial for effective disaster response and mitigation of human suffering. While
existing papers have made valuable contributions to this field, there may still be
specific gaps. Some common issues and gaps in the published papers include:
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• Limited Data Availability: One of the primary challenges in demand
forecasting for relief items is the limited availability of accurate and compre-
hensive historical data. [7, 13, 15] face difficulty obtaining reliable datasets
due to the sporadic nature of disasters, inadequate recording systems, or
inconsistent data collection practices.

• Contextual Factors: Relief item demand is influenced by various contex-
tual factors, including demographics, geographic location, cultural consider-
ations, and the type of disaster. Furthermore, there are interdependencies
between different relief items and their demand patterns. Some published
papers such as [13, 16] did not adequately capture the influence of these
contextual factors.

• Evaluation and Comparison of Forecasting Models: While various
forecasting models have been proposed for relief item demand forecasting,
there is a need for standardized evaluation methodologies and comparative
studies. Published papers provide a limited comparative analysis of different
forecasting techniques [17–19].

By addressing these gaps, this research contributes to more accurate, adaptive,
and context-specific forecasting approaches that enhance the efficiency and effec-
tiveness of disaster response operations. This paper presented a hybrid approach
to demand forecasting for relief materials using extended Case-Based Reasoning
(CBR) with Best Worst Method (BWM) and Hidden Markov Models (HMMs).
Our algorithm involves training an HMM on historical data to obtain a set of
state sequences representing the temporal fluctuations in demand for different re-
lief materials. A case library is then created, consisting of past disasters and their
associated demand patterns for different materials. When a new disaster occurs,
the algorithm first determines the current state sequence using the available data
and searches the case library for past disasters with similar state sequences. It then
adapts the demand patterns from past cases to the current situation by adjusting
for differences in available data and the specific context of the current situation.
Finally, the adapted demand patterns forecast the demand for various relief ma-
terials in the recent disaster. We demonstrate the effectiveness of our algorithm
through experiments on real-world disaster data, achieving significantly improved
demand forecasting accuracy compared to traditional methods.

The remainder of the paper is structured as follows: Section 2 provides a brief
overview of relevant literature on demand forecasting in emergency disaster re-
sponse and conventional approaches to forecasting. Section 3 presents the research
methodology. In Section 4, we deploy and demonstrate the proposed method by
applying it to the case of Tehran province, region 20. The paper concludes with
Section 5.
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2. Relevant literature
Affected people are often unable to accurately provide helpful information about
the items needed and associated levels of demand because of trauma and shock or
because they are in remote, inaccessible areas. In addition, demand information is
often very diverse and communicated under chaotic and irregular conditions [18].
In operations research (OR) and related disciplines, time series analysis and CBR
have been used to forecast demand [20]. Conventional forecasting methods predict
the demand for relief after a disaster are often undertaken based merely on the
experience and subjective judgments of emergency and disaster decision-makers.
Such subjective judgments take place under many constraints and restrictions.

Because qualitative methods are unable to be used accurately and widely for
prediction in volatile and chaotic situations, many researchers present quantita-
tive techniques [6, 18, 20, 21]. With the expansion of emergency relief problems
and issues globally, many researchers now adapt and deploy standard statisti-
cal demand forecasting methods used in stable, routine, repetitive environments
to predict the demand of affected people’s needs in the often volatile aftermath
of disasters [18]. However, the demand created after disasters is often irregular,
volatile, irrational, and ad-hoc. Thus, many statistical methods are invalidated
in forecasting and predicting the demand for emergency resources. Table 1, pre-
sented the various forecasting methods and feature-based comparative research of
these methods. Additionally, CBR is easier for managers to learn and use among

Table 1: Comparison of different relief items forecasting method.

Forecasting approach Based on
historical data

Based on dynamic
environmental variables Need to weight Reference

Artificial Intelligence X × × [9, 11]

Multivariate Regression × X X [22, 23]

Fuzzy Logic X × × [24, 25]

Time Series X × X [4, 18, 26]

CBR X × X [12, 13]

Source: Our elaboration summary comparing relief resource forecasting methods

the historical historical-based techniques discussed. It requires practically little or
no direct expert knowledge acquisition [27, 28]. Consequently, it is picking up sig-
nificance over other historical-based forecast techniques. Thus, in this paper, we
advocate the CBR approach and further develop it by using BWM and HMM as a
more accurate and appropriate method of forecasting and predicting the demand
for emergency relief resources in the immediate relief phase of a large sudden-onset
disaster. The contribution and novelty of this paper can be outlined as follows:

• Integration of CBR and HMM: The novelty of this research lies in integrating
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CBR and HMM specifically for relief material demand forecasting. This in-
tegration combines the benefits of both approaches and addresses the unique
challenges of demand forecasting in relief operations.

• Extended CBR Algorithm: this research introduces an extended version of
the CBR algorithm with BWM tailored for relief material demand forecast-
ing. This extended algorithm includes modifications to the traditional CBR
process to improve its effectiveness in the given context. The novel algorithm
may incorporate domain-specific features, similarity metrics, case adaptation
strategies, and retrieval mechanisms to optimize forecasting accuracy and
adaptability.

• Improved Demand Forecasting Accuracy: this research demonstrates im-
provements in demand forecasting accuracy compared to existing approaches.
By combining the strengths of CBR and HMM, the proposed algorithm
leverages historical cases, incorporate expert knowledge, capture temporal
dynamics, and model hidden states and their transitions.

• Evaluation and Validation: this research includes an assessment of the pro-
posed algorithm using real datasets. The evaluation process aims to assess
the performance, robustness, and practical applicability of the extended CBR
algorithm integrated with HMM.

3. Methodology

This section describes the methodological steps we took, the data collection and
analysis undertaken, and the specifications we applied. In section three, we also
argued for deploying HMM and extended case-based reasoning in forecasting emer-
gency relief resource requirements. The paper utilizes the extended CBR method
and further develops it using BWM to predict the selected emergency relief re-
source. The BWM approach is productive for weighting the proposed model fac-
tors [29].

The CBR-based HMM Algorithm for forecasting of relief materials demand is
a method to predict the demand for relief materials during any disasters or emer-
gencies. It combines the power of HMMs and CBR to achieve better forecasting
accuracy. The proposed algorithm works as follows:

1. HMM state sequences: The HMM is first trained on historical data to
obtain a set of state sequences that represent the temporal fluctuations in
demand for various relief materials such as food, medical supplies, water,
etc.

2. Case library creation: A case library consists of a set of past disaster
situations, along with their demand patterns for different relief materials.
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3. Classification of the current situation: When a new disaster occurs,
the algorithm determines the current state sequence based on the available
data. Given the current state, this involves estimating the likelihood of the
available demand patterns for the different relief materials.

4. Case retrieval: It then searches the case library for past situations with
similar state sequences to the current situation.

5. Adaptation: If a set of past cases is found, the demand patterns for the dif-
ferent relief materials from those situations are retrieved and adapted to the
current situation based on the similarity of the state sequence. This adap-
tation involves adjusting the demand pattern to account for any differences
in the available data and the specific context of the current situation.

6. Forecasting: Finally, the adapted demand patterns are used to predict the
demand for different relief items in the current situation.

Overall, this algorithm leverages the power of both HMM and CBR techniques
to improve the accuracy and relevance of demand forecasting for relief materials
during emergency situations, enabling aid organizations to respond more effectively
to disasters.
The research data was gathered through two sources: (1) archival data, which in-
cluded documents about Iran’s disasters, and (2) interviews with senior emergency
response managers in Tehran. In the data collection process, a decision panel of 6
experts was formed, and their backgrounds are shown in Table 2.

Table 2: Background of expert panel.

No. Specialty Positions Experience
(year)

E1 Emergency response sector Chairman of Red Crescent Society of Tehran
Province 17

E2 Emergency response sector Deputy of Red Crescent Society of Tehran Province 13

E3 Emergency response sector Director of Tehran Disaster Mitigation and
Management Organization in Region 20 12

E4 Emergency response sector Logistic Manager of Medical Equipment in Red
Crescent Society of Tehran Province 9

E5 Emergency response sector Logistic Manager of Food Items in Red Crescent
Society of Tehran Province 11

E6 Emergency response sector Supervisor of Search & Rescue Team in Region 20 14

Source: Our elaboration summary of the backgrounds of expert panel members

The six experts recruited were selected because of their long experience and
position within emergency response organizations in Tehran’s red crescent society.
After finalizing the selection of the expert panel, we began the data collection pro-
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cess. Afterward, the expert responses were collated. The research methodological
steps deployed are illustrated in Figure 1.

Figure 1: Research framework.

3.1 Case-based reasoning

CBR is a recent approach to problem-solving and learning that has received signif-
icant attention over the last few years [30]. CBR models imitate human reasoning,
using specific knowledge collected on previously encountered situations to solve
new cases [31]. The CBR method was inspired by humans’ experiential behavior
in dealing with contemporary issues [32].

When a new problem arises, and its conditions compare closely and favorably
with the previously addressed issue through similarity comparison mechanisms,
then CBR is appropriate for deployment. To provide a solution for new problems,
the data and circumstances from the retrieved historical case and the proposed
solution are reviewed and prepared. The case generally includes two parts (1)
case attribute description and (2) case solution, of which the former one (#1) is
the indicator of the structure of cases, and the latter one (#2) is the solution of
a case. Therefore, demand forecasting of emergency relief resources of comprises
two parts: a characteristic description of emergency response and a description of
the nature and features of emergency resource demand.
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In the emergency resource demand prediction, the case can be formulated as
[33]: Case (F,D), that F = (f1, f2, . . . , fn), fn is a characteristic attribute of
emergency response; D is the demand attribute of emergency resource and n is
the number of case. Given that there are n cases in the case library, the case i is
expressed as Ci (i = 1, 2, . . . , n).

Its characteristic factor set B = {b1, b2, . . . , bm}. Therefore, the membership
function of case Ci to the characteristic factor bj(j = 1, 2, . . . ,m) is expressed as
nCi(bj), in which m is the number of characteristic factors, and the characteristic
vector corresponding to the case Ci in the case library is as Equation (1):

VCi
= {nCi

(b1), nCi
(b2), . . . , nCi

(bm)} = {nCi
(bj)| j = 1, 2, . . . ,m}. (1)

Given that the characteristic vector set of prediction demand case is T , which can
be expressed as Equation (2):

VT = {nT (b1), nT (b2), . . . , nT (bm)} = {nT (bj)| j = 1, 2, . . . ,m}. (2)

The nearest neighbor method used to retrieve the case with HMM, namely Equa-
tion (3): ∑n

i=1 wi · sim(bIi , b
R
i )∑n

i=1 wi
. (3)

Then the similarity calculated by the Equation (4):

sim (A,B) =

∑m
j=1 wj · (nA (xj) ∧ nB(xj))∑m
j=1 wj · (nA (xj) ∨ nB (xj))

. (4)

Where,
sim : is the similarity function,
bIi : is the inputcase value of characteristic factor i,
bRi : is the retrieve case value of characteristic factor i,
wi : is the important weight value of characteristic factor (results of BWM),
nA(xj) : is the value of characteristic factor xj in the case A,
nB(xj) : is the value of characteristic factor xj in the case B,
∧: is the maximum lower limit,
∨: is the minimum upper limit.
In the next step, the weight of each characteristic factor can be calculated re-
searchers in this study for this purpose and developing the CBR method used the
BWM that described in section 3.2. Then to validate the model, the standard
error rate and estimation accuracy must be calculated by using Equations (5)–(6):

SER =

∣∣Dactual −DCBR−final solution

∣∣
Dactual

∗ 100%, (5)

EA = 100− SER. (6)
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Dactual is the average of actual demand, and DCBR−final/solution is the average of
forecasted demand for each relief item. Also, EA is the estimated accuracy of the
CBR model. The mean absolute estimate error (MAEE) was obtained by using
Equation (7):

MAEE =

∑
N
|Dactual−DCBR−final solution|

Dactual

N
∗ 100. (7)

Here N is the number of cases.

3.2 Best worst method

We describe below the steps of BWM to derive the weight of the criteria [34]:

1. Determine the set of decision criteria {c1, c2, . . . ,cn} by decision-makers.

2. Determine the best and the worst criterion to be used for the decision envi-
ronment.

3. Determine the preference of the best criterion over all the other criteria.

A number between 1 and 9 (1: equally important, 9: extremely more critical)
is used to indicate this value. The resulting Best-to-Others vector would be as
AB= (aB1,aB2, . . . ,aBn). Where aBj indicates the preference of criterion B (best
criterion) over criterion j and aBB= 1.

4. Determine the preference of each of the other criteria over the worst criterion.

5. Find the optimal weights (w∗1 , w∗2 , . . . ,w∗n).

Solving Equation (8) will result in the optimal weights for the criteria. To de-
termine the optimal weights of the criteria, the maximum absolute differences
{|wB−aBjwj | , |wj−ajwww|} for all j should be minimized.

minmaxj

{∣∣∣∣wB

wj
− aBj

∣∣∣∣ , ∣∣∣∣ wj

ww
− ajw

∣∣∣∣},
s.t.∑

j

wj = 1, (8)

wj ≥ 0, for all j.

By solving this problem, the optimal weights (w
∗
1, w

∗
2 , . . . ,w

∗
n) and the optimal

value of the BWM objective function (The first row of Equation (8)) were obtained.
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3.3 Hidden Markov model
HMM is a stochastic process at any distinct time instant [35]. This process is pre-
sumed in a state, and random functions corresponding to the preset state generate
observation. Before applying HMM for a problem, an HMM should be trained.
Numerous criteria might be used for problem learning. The one is maximizing the
sequence probability of observation, O = (o1 o2 . . . oT ) , which is made by HMM
λ, i.e.,P [O|λ]. Equations (9)–(10) show the re-estimation equation:

π = α1 (i)β1(i)/

N∑
j=1

αT (j) , (9)

aij =

T∑
t=1

αt−1 (i) aijbj (ot)βt(j)/

T∑
t=1

αt−1 (i)βt−1(i), (10)

In which π, aij , cjk, µjk and U ij represent the model parameters of λ, γt (j, k)
which is defined as the probability of being in state j at time t with kth mixture
component accounting for ot of the form (Equation (11)):

γt (j, k) =

[
αt (j)βt(j)∑N
i=1 αt (i)βt(i)

][
cjkG(ot, µjk, Ujk)∑M

m=1 cjmG(ot, µjm, Ujm)

]
, (11)

and αt (i) is the forward variable [36] of the form Equation (12):

αt (i) =

{
πibi (oi) , t = 1, 1 ≤ i ≤ N,[∑N

i=1 αt−1 (i) aij

]
bj (ot) , 1 < t ≤ T, 1 ≤ i ≤ N.

(12)

Also, βt(i) is the backward variable [36] of the form Equation (13):

βt (i) =

{
1, t = T, 1 ≤ i ≤ N,∑N

j=1 aijbj (ot+1)βt+1 (j), 1 ≤ t ≤ T, 1 ≤ i ≤ N.
(13)

4. Application to a case: region 20 of Tehran
The forecasting process specified above can be applied to forecasting an emergency
materials demand. Given the extent of affected peoples’ needs, this research fo-
cuses on the four most essential needs based on [37]. These include drinking water;
tents; conservation; and food packaging. In this research, demand forecasting was
undertaken for the four relief items for an earthquake occurring in region 20 of
Tehran, Iran’s capital city. In Figure 2, we present the map of Tehran and region
20.

After investigating previous earthquakes in Iran in general and Tehran in par-
ticular, we collect detailed data about 13 historical earthquakes (C = C1 − C13).
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Figure 2: Map of Tehran and Region 20.

The authors extracted and entered the data into the database with each of the
13-case data, including demand information about the quantity demanded for the
four selected most important needs tents, drinking water, conserves, and food
packages (Table 3).

The standing emergency relief and rescue plans for this type of earthquake
emergency relief response in the same municipality (Tehran) are the same. After
informal interviews with the 6 experts and a review of standing disaster relief plans
for Tehran, six characteristics reflecting the key characteristics of typical Tehran
earthquake emergency response are selected. The characteristic factors in set B
are composed of:

1. Earthquake magnitude (b1),

2. Earthquake depth (b2),

3. Number of affected people (b3),

4. Number of direct victims (b4),

5. Number of injured persons (b5), and

6. Disaster life cycle (b6).

The relevant data and information on the six characteristics above are drawn from
each consecutive earthquake case in the database presented in Table 4. The six
attributes of each of the 13 cases are drawn respectively as follows:

4.1 Weighting characteristic factors by using the BWM
As mentioned in Section 5, six characteristic factors were identified. It is im-
possible to assume that all the identified factors have equal importance. In this
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Table 3: Relief items consumed in earthquakes are available at the case library.

Case Earthquake
name Tents (number) Drinking water

(kg)
Food packages

(number)
Conserves
(number)

C1 Dashti 6934 185730 59600 7624

C2 Khormoj 4600 136475 30000 5740

C3 Bashagard 2600 10230 560 4000

C4 Goharan 1849 6730 2921 1267

C5 Ahar 10515 30248 22260 11592

C6 Varzaghan 11304 27866 867 13067

C7 Haris 4470 15435 9460 1000

C8 Bam 13000 326450 21216 26740

C9 Manjil 56400 765426 9568 69570

C10 Zahan zirkoh 1678 10334 5283 3000

C11 Hossein abad 1560 98400 3500 2680

C12 Zarand 10000 150000 4000 8654

C13 Ardebil 3248 10560 2000 4860

Source: Our elaboration summary of relief supplies consumed in previous earthquakes

Table 4: Characteristics of each case of previous earthquakes.

Earthquake Year Magnitude Depth
(Km)

Affected
people

Killed
people

Injured
people

Disaster life
cycle (Day)

Dashti 2013 6.1 12 3500 38 997 4

Khormoj 2013 6.2 12 2400 37 1170 4

Bashagard 2014 6.2 15 1500 1 17 4

Goharan 2014 6.2 15 1200 2 14 5

Ahar 2012 6.2 10 4134 120 854 6

Varzaghan 2012 6 10 6900 132 937 6

Haris 2012 6 10 3472 54 354 6

Bam 2003 6.6 10 65760 26797 30000 10

Manjil 1990 7.4 13.3 120000 40021 105090 9

Zahan zirkoh 2012 5.5 8 1200 6 23 5

Hossein abad 2010 6.5 10 750 11 535 4

Zarand 2005 6.4 11 11526 625 1621 4

Ardebil 1997 6.1 6 16510 14 131 6

Source: Our elaboration summary of each case of previous earthquakes derived from Ghasemian (2015)
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study, BWM is used to determine the factors’ weights. The opinion of Expert 1 is
illustrated in Table 5.

Table 5: BO vector for Expert 1.

Best criterion b1 b2 b3 b4 b5 b6

b1 1 4 2 8 5 6

Similar to the previous step, a value between 1 and 9 is used. The opinion of
Expert 1 is illustrated in Table 6, for instance.

Table 6: OW vector for Expert 1.

Worst criterion b4

b1 8

b2 5

b3 6

b4 1

b5 3

b6 2

The weights of factors are determined with a linear model (Equation (9)) of
BWM. These results are illustrated in Table 7 and Figure 3. Also, in this table,
the summary statistics of this phase are shown.

Table 7: Final factor weights.

Factor Weight (mean) Min Max s.d.

b1 0.079 0.036 0.101 0.022

b2 0.111 0.042 0.168 0.036

b3 0.326 0.183 0.453 0.104

b4 0.051 0.031 0.085 0.022

b5 0.126 0.081 0.141 0.022

b6 0.307 0.168 0.461 0.117

ξ∗ 0.102

Source: Our calculation summary of each characteristic factor weight based on BWM

As can be seen from the results, in this case, ‘Number of affected people (b3)’,
‘Disaster life cycle (b6)’ and ‘Number of injured persons (b5)’ are the most critical
characteristic factor and ‘Earthquake depth (b2)’, ‘Earthquake magnitude (b1)’
and ‘Number of direct victims (b4)’ are the least essential characteristic factor
respectively.
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Figure 3: Summary of weighting phase results.

4.2 Case retrieve-similarity calculation
Here are the steps to combine CBR with HMM for emergency items prediction.
This approach leverages the strengths of both CBR and HMM [38], allowing aid
organizations to accurately forecast demand for resources during emergencies and
allocate resources efficiently. Through the previous section, the membership func-
tion of 13 cases are as follows respectively:

n(C1 (b)) =
0.8

b1
+

0.7

b2
+

0.4

b3
+

0.4

b4
+

0.6

b5
+

0.6

b6
,

n(C2 (b)) =
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b1
+
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b2
+
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b3
+
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b4
+

0.9

b5
+

0.6

b6
,

n(C3 (b)) =
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b1
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b2
+

0.6

b3
+

0.6

b4
+

0.5

b5
+
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b2
+

0.7

b3
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n(C5 (b)) =
0.5

b1
+

0.7

b2
+

0.8

b3
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b4
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b5
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b6
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n(C10 (b)) =
0.7

b1
+
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b2
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0.8
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b2
+

0.6

b3
+

0.5

b4
+

0.6

b5
+

0.6

b6
,

Given that an earthquake occurs in region 20 of Tehran and emergency relief re-
sponse occurs immediately, emergency managers need to conduct a demand fore-
cast and prediction of emergency managers need to conduct a demand forecast
and predict emergency resource demands. Given that the relief materials demand
prediction is expressed as T , and its membership function is expressed in the
following:

n(T (b)) =
0.6

b1
+

0.6

b2
+

0.6

b3
+

0.4

b4
+

0.6

b5
+

0.4

b6
.

According to the similarity calculation procedure, the similarity of each case is
presented as follows:

sim (T,C1)= 0.602, sim (T,C2)= 0.732, sim (T,C3)= 0.711,

sim (T,C4)= 0.722, sim (T,C5)= 0.645, sim (T,C6)= 0.736,

sim (T,C7)= 0.744, sim (T,C8)= 0.702, sim (T,C9)= 0.360,

sim (T,C10)= 0.673, sim (T,C11)= 0.740, sim (T,C12)= 0.491,

sim (T,C13)= 0.720.

In Table 8, the priority of each case due to its similarity to the target case is listed.
It can be seen from the calculations above that this emergency response is similar

Table 8: Priority of cases according to their similarities with the target case.

Case C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

Priority 11 4 7 5 10 3 1 8 13 9 2 12 6

Source: Our calculation of cases similarity based on CBR

to case C7 in the case library. Several cases are highly similar to the target case.
For this reason, cases in which their similarity is more than 70% (according to
experts’ panel opinion) are selected for retrieval. In this research, cases C2, C3,
C4, C6, C7, C8, C11, and C13 are retrieved because they have high similarity. The
arithmetic average demand of selected cases was used to retrieve (i.e., cases with
similarity above 70%). The amount of emergency relief items for the given target
case is as follows in Table 9.
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Table 9: Prediction of selected needs for region 20 of Tehran.

Characteristic Factor in the target case
Quantity of relief materials Tents Drinking

water Food package Conserves

Magnitude:6.4

5329 79018 8591 7419

Depth: 12
Affected: 5555
Killed:150

Injured:1000
Life cycle:4day

Source: Our calculation of demand forecasting of selected needs for Tehran region 20

Then, to validate results, the MAEE index was calculated:

MAEEtents =
|6934−5329|

6934 + · · ·+ |3248−5329|3248

13
= 6.03%

MAEEdrinking water =
|185730−79018|

185730 + · · ·+ |10560−79018|10560

13
= 8.52%

MAEEfood package =
|59600−8591|

59600 + · · ·+ |2000−8591|2000

13
= 9.27%

MAEEconserves =
|7624−7419|

7624 + · · ·+ |4860−7419|4860

13
= 7.84%

MAEE index in the four relief items calculated less than 10%; therefore, the pro-
posed CBR-BWM-HMM algorithm is robust in demand forecasting in the emer-
gency and disaster response.

Our approach of combining CBR and HMMs for demand forecasting of relief
materials has several strengths. HMMs allow us to capture the temporal fluctua-
tions in demand for different relief materials over time, while the CBR approach
enables us to account for the specific context of a disaster situation and adapt
demand patterns from similar past cases to the current situation. As shown in
our experiments on real-world disaster data, this combination of HMM and CBR
significantly improves demand forecasting accuracy compared to traditional meth-
ods. Moreover, our proposed algorithm offers a powerful tool for aid organizations
to make data-driven decisions, allocate resources more effectively, and respond
more efficiently to disasters. By reliably predicting the demand for various relief
materials, our approach can help aid organizations to better plan and prepare for
disaster responses and minimize potential logistical constraints and operational
bottlenecks.

5. Concluding remarks and further research
In this research, we have presented a hybrid approach to demand forecasting of
relief materials using a combination of CBR and HMMs. Our proposed algo-



Mathematics Interdisciplinary Research 9 (1) (2024) 89− 109 105

rithm provides a powerful tool for predicting the demand patterns of different
relief materials during a disaster, enabling aid organizations to plan better, allo-
cate resources, and respond more effectively. Our experiments demonstrate that
our approach outperforms traditional methods, significantly improving demand
forecasting accuracy. CBR has recently attracted enormous scholarly interest in
various research fields, and is at the forefront of research in artificial intelligence
and machine learning.

The hybrid approach combining CBR and HMM for relief item demand fore-
casting offers several advantages. CBR allows the system to adapt to the specific
context of relief item demand forecasting by considering past cases and their sim-
ilarities to the current situation. By leveraging CBR, the hybrid approach utilizes
historical cases similar to the present forecasting scenario. This consideration of
past cases helps capture demand patterns and trends, especially in situations where
reliable historical data may be limited or fragmented. The past instances act as
valuable references that aid in estimating future demand [38]. CBR integrates
expert knowledge and domain expertise through the case base. The HMM compo-
nent of the hybrid model provides probabilistic outputs, indicating the likelihood
of different demand scenarios. Combining probabilistic forecasts from HMM with
the retrieved and adapted cases from CBR, the hybrid approach offers a com-
prehensive prediction that considers both the temporal dynamics and historical
patterns, resulting in more robust and reliable forecasts. Hybridization of CBR
and HMM for relief item demand forecasting offers a synergistic combination of
data-driven modeling, historical case relevance, contextual adaptability, and ex-
pert knowledge incorporation. By leveraging the strengths of both approaches, it
has the potential to provide enhanced forecast accuracy, adaptability to dynamic
environments, and actionable insights for effective relief operations.

However, there are some limitations and challenges associated with our ap-
proach. For example, the quality of historical data used for training the HMM
models can impact the quality of the demand forecasts. Furthermore, the scala-
bility of our algorithm may be challenging for large-scale disasters or on a global
scale, given the computation requirements needed for training HMMs. In future
work, we suggest exploring ways to improve scalability and incorporate more data
from sources such as social media or mobile phone data to improve demand fore-
casting accuracy. Overall, our approach represents a promising direction for more
effective demand forecasting in disaster response, helping to improve the efficiency
and efficacy of disaster relief efforts worldwide. It is also suggested, future re-
searcherdevelop game-theoreticmodels such as cooperative [39] or non-cooperative
[40] game that consider the strategic interactions between multiple relief organi-
zations involved in the allocation of relief items.
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