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Abstract

The graph AG(R) of a commutative ring R with identity has an edge link-
ing two unique vertices when the product of the vertices equals the zero ideal
and its vertices are the nonzero annihilating ideals of R. The annihilating-
ideal graph with respect to an ideal (I), which is denoted by AGI(R), has
distinct vertices K and J that are adjacent if and only if KJ ⊆ I. Its vertices
are {K | KJ ⊆ I for some ideal J and K, J * I,K is a ideal of R}. The
study of the two graphs AGI(R) and AG(R/I) and extending certain prior
findings are two main objectives of this research. This studys among other
things, the findings of this study reveal that AGI(R) is bipartite if and only
if AGI(R) is triangle-free.
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1. Introduction
We fix the premise that all rings are commutative with identity throughout this
paper. The main sources for the concepts and notations utilized in this paper are
[1, 2]. To keep this note as self-contained as possible, we first establish certain
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definitions and describe the notation we use before offering an outline of our work.
If the ring R contains any non-zero nilpotent elements, it is said to be reduced.
The length of the shortest cycle in a graph G is known as its girth, and it is
shown by the symbol gr(G). If G does not include any cycles, then the girth
of G is considered infinite. An r-partite graph is one whose vertex set can be
divided into r subsets, none of which includes all of the edge conditions at both
ends. A full graph is one that has an edge connecting each pair of vertices. Z(R)
and min(R), respectively, stand for the set of R zero-divisors and minimal prime
ideals. A non-zero ideal I of R is referred to be an annihilating-ideal if there
exists a non-zero ideal J of R such that IJ = 0, with A(R) being the set of
annihilating-ideals of R. Anderson and Livingston [3] introduced the graph with
zero divisors Γ(R) of a ring R with vertices Z(R)\{0} for which distinct vertices
x, y ∈ Z(R)\{0} are adjacent if and only if xy = 0. Redmond [4] extended the
zero-divisor graph of a commutative ring to an ideal-based zero-divisor graph of
a commutative ring. For a given ideal I of R, he defined a graph ΓI(R) with
vertex set {x ∈ R − I | xy ∈ I for some y ∈ R}. The vertices x and y of
this graph are adjacent if and only if xy ∈ I. According to him there are some
relationships between Γ(R/I) and ΓI(R). According to Behboodi and Rakeei [5]
the annihilating-ideal graph AG(R) is a graph whose vertex set consists of the set
of all non-zero annihilating ideals of R and two distinct vertices are connected by
an edge when their product is the zero ideal. Aliniaeifard et al. [6] defined the
annihilating-ideal graph AGI(R) with respect to an ideal I. This graph has the
vertex set V (AGI(R)) = {K | K E R and ∃J E R s.t. KJ ⊆ I & J * I} and
distinct vertices K and L are adjacent if and only if KL ⊆ I. They obtained some
relationships between AG(R) and AGI(R).

The most significant research on the annihilating-ideal graph was done by
Visweswaran and his co-authors. To determine the necessary and sufficient con-
ditions for the complement of the annihilating ideal graph to be connected in the
instance of this graph, Visweswaran and Patel [7] studied commutative rings with
identities that admit at least one non-zero annihilating ideal. The diameter was
discovered. The complement of the annihilating ideal graph must satisfy both a
necessary and sufficient condition, which was also stated in [8]. The same authors
demonstrated in [8] that if the set of all zero-divisors of a ring with above condi-
tions is not an ideal, then the complement of the annihilating ideal graph does not
contain any infinite clique if and only if its clique number is finite. These authors
classified, up to isomorphism, all rings R such that Z(R) is not an ideal and for
which the complement of its annihilating ideal graph does not admit any infinite
clique. The case that Z(R) is an ideal was also investigated in [8]. Visweswaran
and Parmar [9] of commutative rings with identity which is not an integral do-
main and introduced a graph H(R) with respect to a ring R with given conditions.
They studied interplay between the graph structures of H(R) and ring theoretical
properties of R. Visweswaran and Lalchandani [8] considered commutative rings
with identities that are not integral domains as they investigated the interaction
between the graph structures of H(R) and theoretical ring features of R. The au-
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thors categorize semi-quasilocal rings with at least two maximal ideals that have
planar annihilating-ideal graphs.

This paper tries to investigate some further connections between AG(R) and
AGI(R). It is shown in Section 2 how to draw the graph AGI(R) in relation to the
graph AG(R/I). In Section 3, it is examined how the completeness of AGI(R),
AG(R/I), Γ(R/I) and ΓI(R) relate to each other. In particular, it is shown that
if I is a radical ideal of a ring R, AGI(R) cannot be complete. In Section 4, this
problem that when AGI(R) is bipartite and triangle-free is investigated. As a
consequence of the results of this section, it is proved that AGI(R) is triangle-free
if and only if AGI(R) is bipartite. Our study in Section 5, focuses on the situation
when AGI(R) is r-partite and has a cut-point. It is proved among other results
that if

√
I = I, then AGI(R) is not a complete r-partite graph, r ≥ 3. Theorem

4.4 in [6] is also generalized. To simplify our result, throughout this paper we
assume that V (AGI(R)) = V and V (AG(R/I)) = V ′.

2. Drawing the AGI(R) graph based on AG(R/I)

In [6, Theorem 2.5], it is only stated that AG(R/I) is isomorphic with a subgraph
of AGI(R). According to the following theorem, we can draw the graph AGI(R)
in relation to the graph AG(R/I). Since now on, we refer to "AG(R/I) as a
subgraph of AGI(R)” rather than instead of saying that it is isomorphic with a
subgraph of AGI(R).

Considering J ∈ V , two cases are possible:

1) I ⊂ J , where J ∈ V ′.

2) I * J . It can be simply proved that J ∈ V if and only if J + I ∈ V .

Let J = Ki + I, where N is a set, i ∈ N , Ki is an ideal of R, and I * Ki

for each i ∈ N . In this instance, a submatrix of the adjacency matrix of J is the
adjacency matrix of the ideal Ki. As a result, the AGI(R) vertices are either an
AG(R/I) vertex or are located in one of the columns of an AG(R/I) vertex. As a
result, this method is used to extract all AGI(R) vertices. Suppose L, J ∈ V and

L = Li + I, i ∈ T,

J = Kj + I, j ∈ N,

where N and T are sets, for each i ∈ T and j ∈ N , Li and Kj are ideals of R, and
I * Li,Kj . The following theorem explains the method for drawing the AGI(R)
edges.

Theorem 2.1. With our notations,

a) JL ⊆ I if and only if KjL ⊆ I. This means that if J and L are adjacent,
then L is connected to all the members of column J .
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b) If J2 ⊆ I, then JKj ⊆ I and KiKj ⊆ I for each i, j ∈ N . Thus, if J2 ⊆ I,
then J is adjacent to all members of its column. Moreover, all members of
column J are also connected to each other.

c) If J2 * I, then JKj * I and KiKj * I for each i, j ∈ N . Hence, if J2 * I,
then J is not adjacent to any member of its column. In addition, none of
the members of J column are connected to each other.

Therefore, the edges of AGI(R) can be obtained based on those of AG(R/I).
Suppose K is an ideal of R and define:

M =
{
J ∈ V |J = K + I s.t I * K

}
. (1)

Remark 1. By Theorem 2.1, it can be seen that if AGI(R) � AG(R/I), then
M 6= φ and if AGI(R) ∼= AG(R/I), then M = φ.

3. Completeness of AGI(R)

The aim in this section is to look into how the completeness of AG(R/I) and
AGI(R) relate to each other. It is demonstrated that AGI(R) is not complete
if R

I
∼= F1 × F2, F1 and F2 being any fields. Additionary, it will be shown that

in [6, Theorem 6.5(c)] (R,m) is a chain ring, I = m3 and AGI(R) ∼= K2. Then
[6, Theorem 6.5] is enhanced. Finally, it is investigated how the completeness of
AGI(R) relates to the completeness of ΓI(R) and Γ(R/I).

Lemma 3.1. AGI(R) is a complete graph if and only if AG(R/I) is complete and
for each J ∈ M , we have J2 ⊆ I.

Proof. First, we assume that AG(R/I) is complete and for every J ∈ M to have
J2 ⊆ I. Now we assume that K and L are two arbitrary vertices of AGI(R). We
show that these two vertices are adjacent. The following three cases are possible:
a) I ⊆ K,L. In this cases, we have K,L ∈ V ′. Now since AG(R/I) is complete
and an inductive subgraph of AG(R), then L and K are adjacent in AGI(R).
b) I 6⊆ K,L. If L + I 6= K + I, then according to (a), two vertices (L + I) and
(K + I) are connected in AGI(R) and so by part (a) of Theorem 2.1, KL ⊆ I.
If L + I = K + I, hence (L + I) ∈ M and then according to the assumption,
(L+ I)2 ⊆ I. On the other hand, since L+ I = K + I, so K and L are adjacent
in AGI(R).
c) I ⊂ L and I 6⊆ K. If L = K + I, then L ∈M and L2 ∈ I. On the other hand,
since L = K + I, then K is a member of column L and therefore L and K are
adjacent. If L 6= K + I, then by part (a), K + I and L are adjacent in AGI(R).
So, according to part (a) of Theorem 2.1, KL ⊆ I. Now since we selected optional
K and L, then AGI(R) is complete.
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Theorem 3.2. Suppose AG(R/I) � K2. The following statements are equivalent:

a) AG(R/I) is complete.

b) AGI(R) is complete.

c) Z(R/I) is an annihilating ideal of R
I with Z2(R/I) = I.

Proof. Let AG(R/I) be complete. By [10, Theorem 3], Z(R/I) is an annihilat-
ing ideal of R

I with Z2(R/I) = I. For all J
I ∈, V

′, (J
I )2 ⊆ Z2(R

I ) = I which
implies that for all J ∈ M , J2 ⊆ I. We now apply Lemma 3.1 to prove that
AGI(R) is complete. Furthermore, if AGI(R) is complete, then we may easily see
that AG(R/I) is also complete. The equivalence of (b) and (c) is an immediate
consequence of [6, Theorem 6.5].

Theorem 3.3. Consider I be a non-zero proper ideal of R such that R
I
∼= F1×F2,

where F1 and F2 are fields. Then AGI(R) is not a complete graph.

Proof. We first note that R
I = K

I + J
I , where K and J are the only maximal ideals

of R such that K ∩ J = I, K2 + I = K and J2 + I = J . Hence, the only ideals
of R containing I are I, J and K. Suppose AGI(R) is complete. Since K2 * I,
J2 * I, then according to Lemma 3.1, K,J /∈ M . So, V (AGI(R)) = {K,J}. We
prove that K and J are the only maximal ideals of R. Let L 6= K,J be another
maximal ideal of R. Then L+ I = R which shows that LJ + I = J . Since I * LJ ,
J ∈ M which contradicts this fact that J /∈ M . Suppose that a ∈ J \ I. It is
now proved that J = 〈a〉. If 〈a〉 ⊂ J then 〈a〉 * I and 〈a〉 * K. Since 〈a〉K ⊂ I,
K,J 6= 〈a〉 ∈ V (AGI(R)) which contradicts V (AGI(R)) = K,J . Therefore, for
all a ∈ J \ I we have J = 〈a〉. A similar argument shows that for all b ∈ K \ I,
we have K = 〈b〉. Since J2 * I and J2 = 〈a2〉, a2 /∈ I and 〈a〉 = 〈a2〉. This shows
that there exists r ∈ R such that a(1− ra) = 0. If 1− ra = 0, then a is an unity,
that contradicts the maximality of 〈a〉. Thus 1− ra 6= 0.

Considering our discussion, K and J are the only maximal ideals of R and thus
either 1− ra ∈ J or 1− ra ∈ K. Since ra ∈ J , 1− ra ∈ K \ I and so K = 〈1− ra〉.
This proves that JK = 0. In contrast, since J and K are both maximal, they
are comaximal and hence JK = J ∩K. Therefore, I = 0 which contradicts our
assumption and thus AGI(R) is incomplete.

The ring R is a chain ring if and only if its only maximal ideal is a principal
ideal.

Theorem 3.4. Assume that AGI(R) is complete. in the case of (R
I ,

m
I ) being

local ring with exactly two non-trivial ideals m
I and (m

I )2, then (R,m) is a chain
ring. In this case, I = m3 and AGI(R) ∼= K2.

Proof. Since m2 * I then according to Lemma 3.1, m /∈M . It is proved that m is
the only maximal ideal of R. Assume J 6= m is a maximal ideal of R. Therefore,
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J + I = R which implies that Jm + I = m. This shows that m ∈ M , which is
impossible. Now we claim that m has the form of the principal ideal 〈x〉.

Consider y ∈ m\m2+I. Then 〈y〉 6= m2+I and 〈y〉 * I. Assume that 〈y〉 ⊂ m,
then 〈y〉(m2+I) ⊆ I. Therefore, 〈y〉 ∈ V and by Theorem 2.1, 〈y〉+I = m. Hence
m ∈M , a contradiction. Therefore, m = 〈y〉, for all y ∈ m \m2 + I. Thus (R,m)
is a chain ring. Now we prove that except for 〈y〉 and 〈y2〉 all other proper ideals
of R are subsets of 〈y3〉 and thus I = 〈y3〉 and AGI(R) ∼= K2. Consider the proper
ideal J of R. Note that all elements of J are of the form of ry (r ∈ R). If r is
a unit in R, then J = 〈y〉. Otherwise, r is a multiple of y. Hence, if J 6= 〈y〉
then J ⊆ 〈y2〉. If the same trend continues for a finite number of rounds, we have
〈y5〉 ⊆ 〈y4〉 ⊆ 〈y3〉 ⊆ 〈y2〉 ⊆ 〈y〉.

Corollary 3.5. AGI(R) is complete, if and only if either Z(R
I ) is an annihilating

ideal of R
I such that Z2(R

I ) = I or (R,m) is a chain ring, where I = m3 and
AGI(R) ∼= K2.

Proof. Cosider the scenario where AGI(R) is complete. AG(R/I) is complete
according to Lemma 3.1. Its conceivable to encounter one of the following two
situations.

1) AG(R/I) � K2. By Theorem 3.2, AGI(R) is complete if and only if Z(R
I )

is an annihilating ideal of R
I such that Z2(R

I ) = I.

2) AG(R/I) ∼= K2. In this case, by [10, Theorem 3] either
a) R

I
∼= F1 × F2, where F1, F2 are fields. or,

b) (R
I ,

m
I ) is a local ring with exactly two non-trivial ideals m

I and (m
I )2.

Since AGI(R) is complete, Theorem 3.3 implies that a cannot be occurred. We
now apply Theorem 3.4 to deduce that (R,m) is a chain ring, where I = m3 and
AGI(R) ∼= K2.

Corollary 3.6. The followings hold.

a) Assume that AG(R/I) � K2. AG(R/I) is complete if and only if AGI(R)
is complete if and only if Z(R/I) is an annihilating ideal of R

I such that
Z2(R/I) = I.

b) Assume that AG(R/I) ∼= K2. AGI(R) is complete if and only if AGI(R) ∼=
AG(R/I) ∼= K2 if and only if (R,m) is a chain ring where I = m3.

Corollary 3.7. If
√
I = I then AGI(R) is not complete.

Proof. In order for AGI(R) to be complete, either Z(R
I ) should be an annihilating

ideal of R
I such that Z2(R

I ) = I or (R,m) is a chain ring with I = m3, which both
of them contradicts our assumption.

Theorem 3.8. The followings hold:
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a) AGI(R) and Γ(R/I) are complete if and only if Z(R/I) is an annihilating
ideal of R

I such that Z2(R/I) = I.

b) AGI(R) is complete and Γ(R/I) is not complete, if and only if (R, 〈a〉) is a
chain ring, where I = 〈a3〉.

c) Γ(R/I) is complete and AGI(R) is not complete if and only if R
I
∼= Z2×Z2.

Proof. Suppose that R
I
∼= Z2 × Z2. By Theorem 3.3, AGI(R) is not complete. If

(R, 〈a〉) is a chain ring and I = 〈a3〉, then it is immediate that R
I � Z2 × Z2 and

Z2(R/I) 6= I. Therefore, by [3, Theorem 2.8], Γ(R/I) is not complete. Our result
now follows from Corollary 3.5.

Corollary 3.9. In Theorem 3.8, Γ(R/I) can be replaced with ΓI(R).

Proof. If AGI(R) is complete, then by Corollary 3.7, we have
√
I 6= I. Hence,

Γ(R/I) is complete if and only if ΓI(R) is complete.

Theorem 3.10. Let (R,m) be a local ring such that m2 = 0, K is an ideal of R
and r is the number of non-trivial ideals J with the property that K ⊂ J ⊂ m.
Then r 6= 2.

Proof. Suppose r = 2. Since mJ = 0, AG(R/K) ∼= K2, contradicting [10, Theo-
rem 3].

4. Bipartite AGI(R) graph
This section aims to establish the relationship between the bipartivity of AGI(R)
and AG(R/I). We describe a method for drawing AGI(R) using the graph struc-
ture of AG(R/I) and vice versa, assuming that AGI(R) and AG(R/I) are bipartite
graphs. Additionally, the triangle-free character of AGI(R) is only proven if and
only if AGI(R) is bipartite. It is also check when AGI(R) is a star. The elements
C, B, and A in Theorem 20 of [11], can now be obtained using an easier technique,
which is shown last. our discussion will be divided into two sections.

1)
√
I = I,

2)
√
I 6= I.

Lemma 4.1. Let V (AGI(R)) 6= {J,K}, where J = K + I and I * K. AGI(R)
is bipartite if and only if AG(R/I) is bipartite and for all J ∈M , J2 * I.

Proof. Assume that AG(R/I) is bipartite and for all J ∈ M , J2 * I. We also
assume that (V ′

1 , V
′
2) is a bipartition of AG(R/I). Consider J ∈ V . The following

two cases are possible:

1) I ⊂ J , and J
I ∈ V

′
i if and only if J ∈ Vi, i = 1, 2;
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2) I * J , and J ∈ Vi if and only if J + I ∈ Vi.

Apply Theorem 2.1 to check that V1 and V2 are independent and V1 ∪V2 = V .
Hence, AGI(R) is a bipartite graph.

Conversely, we assume that there exists J ∈ M such that J2 ⊆ I. Therefore,
J = K + I, where K is an ideal of R and I * K. Without loss of generality, we
assume that J ∈ V1. Hence, K ∈ V2. On the other hand, since V (AGI(R)) 6=
{J,K} and AGI(R) is connected, there exists L ∈ V such that JL ⊆ I or LK ⊆ I.
If JL ⊆ I, then according to Theorem 2.1, KL ⊆ I which is impossible. The case
that LK * I will result in similar contradiction. Therefore, for each J ∈ M we
have J2 * I and by Theorem 2.1, for each K ∈ V with I * K, K ∈ Vi if and
only if K + I ∈ Vi. Hence, to obtain the AG(R/I) graph it is enough to delete all
vertices of AGI(R) not included in I. Hence, AG(R/I) is a bipartite graph.

Suppose the bipartite graph AG(R/I) is given and AGI(R) is also bipartite.
To draw AGI(R), we only require to apply the following two conditions.

1) J
I ∈ V

′
i if and only if J ∈ Vi, i = 1, 2;

2) If I * K, then J = K + I and K will be in the same part.

Hence the result follows.

Theorem 4.2. AGI(R) is triangle-free if and only if AGI(R) is bipartite.

Proof. Suppose J = K+I and I * K. If V = {J,K}, then the proof is immediate.
Hence, it can be assumed that V 6= {J,K}. Assume that AGI(R) is triangle-free.
Since AG(R/I) is a subgraph of AGI(R), AG(R/I) is also triangle-free. Thus
according to Theorem 2 and Note 22 in [11], AG(R/I) is a bipartite graph. We
claim that for all J ∈M , J2 * I. Suppose that J = K+ I, where J2 ⊆ I, K is an
ideal of R, and I * K. There exists J 6= J ′ ∈ V such that JJ ′ ⊆ I and J ′K ⊆ I.
On the other hand, since J2 ⊆ I, JK ⊆ I. Thus J − J ′ −K − J is a triangle in
AGI(R), which is impossible. Hence, by Lemma 4.1, AGI(R) is bipartite.

The next lemma shows that if in [11, Theorem 20], C 6= ∅, then AGI(R) is a
complete bipartite.

Lemma 4.3. In [11, Theorem 20], if C 6= φ, then AGI(R) is a complete bipartite
graph, V1(AGI(R)) = V1(AG(R)) = N(I) and V2(AGI(R)) = V c

1 (AG(R)) \ {I},
where I is the only minimal of R.

Proof. Since C 6= φ, B 6= φ. Assume that J ∈ B. We claim that J + I 6= R. Since
(J + I)I = 0, J + I ∈ A. Thus A 6= φ.

1. J + I = R. In this case, for all J ′′ ∈ C, JJ ′′ + IJ ′′ = J ′′ and so I = J ′′,
contradicting definition of C. This shows that for all J ′′ ∈ C and J ′ ∈ A,
J ′J ′′I = 0. Hence, J ′′J ′ = I and thus V (AG(R)) \ {I} ⊆ V (AGI(R)).
We now prove that V (AGI(R)) ⊆ V (AG(R)) \ {I}. To do this, we choose
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L ∈ V (AGI(R))\V (AG(R)). Then for all J ∈ V (AG(R)), LJ 6= 0. We claim
that for all J ∈ V (AG(R)), LJ 6= I. If this is true, then L is not adjacent to
each vertex of the set V (AG(R))\{I}. Therefore, AGI(R) is not connected,
which is a contradiction. Hence, V (AGI(R)) = V (AG(R)) \ {I}.

2. J ∈ B. Since 0 6= LJ ⊆ J and I * J , LJ 6= I. If J ∈ C, then LJI = LI = I
and so LJ 6= I. If J ∈ A, then for all J ′ ∈ B, J ′(JL) = (J ′J)L 6= 0 which
implies that JL 6= I. Thus, ((J ′J)I = J(J ′I) = 0. On the other hand,
J ′J 6= 0. Therefore, J ′J ∈ B. Set V1(AGI(R)) = V1(AG(R)).

3. V1(AGI(R)) and V2(AGI(R)) are independent subsets of the graph. Note
that for all J, J ′ ∈ B, J ′J ⊆ J . Since I * J , J ′J 6= I. On the other
hand, in Theorem 20 in [11], the authors proved that J ′J 6= 0. Therefore,
B is independent. We now prove that A is independent. Suppose J, J ′ ∈
A. Then J ′J 6= 0. On the other hand, we assume that J ′′ ∈ C. Hence,
J ′′JJ ′ = (J ′′J)J ′ = IJ ′ = 0. Therefore, J ′J 6= I and A is independent.
Note that (J ′′J)I = J ′′(JI) = 0 and for all L ∈ B, L(J ′′J) = (LJ ′′)J = 0.
So, J ′′J = I. Suppose that J ∈ A and J ′ ∈ B. Then, 0 6= J ′J ⊆ J ′. Since
I * J ′, J ′J 6= I. This proves that V1(AGI(R)) is independent. By our
definition, V2(AGI(R)) = V2(AGI(R)) \ {I}. To prove that V2(AGI(R)) is
independent, we choose J, J ′ ∈ V2(AGI(R)). Then (JJ ′)I = J(J ′I) = JI =
I and hence J ′J 6= I. So, V2(AGI(R)) is independent.

For all J ∈ V2(AGI(R)) and J ′ ∈ V1(AGI(R)), JJ ′ = 0. If J ′ ∈ B and J ′J = I,
then J ′ ∈ A. Therefore, AGI(R) is a complete bipartite graph.

Lemma 4.4. In accordance with Lemma 4.3, we have the following

a) for each J ∈ C, J is idempotent.

b) for each J ′ ∈ A we have (J ′)2 ∈ B.

Proof. a) Set P = Ann(I). In [11, Result 24] it is proved that P is a maximal
ideal. Since I2 = 0, then I ⊆ P . If I = P , in [11, Result 24] it is proved that
AG(R) is the only point in I. Therefore, by [5, Theorem 1.4], the only non-trivial
ideal of R is I, and this result contradicts the non-emptiness of C. Hence, by
Lemma 4.4, we have P ∈ V1(AG(R)). Moreover, since P is maximal we have, for
all J ∈ V2(AG(R)), P+J = P or R. If P+J = P , since PI = 0, then JI = 0 and
contradiction is achieved. Therefore, P + J = R which implies that I + J2 = J .
Since J * I, then J2 * I. On the other hand, for all J ′ ∈ B J ′J2 ⊆ J ′J = 0
which shows that J ′J2 = 0. Therefore J2 ∈ C and J2 is concluded I. Then
I + J2 = J2 = J .
b) For all J ′ ∈ A, J ′′ ∈ C J ′′J ′2 = (J ′′J ′)J ′ = IJ ′ = 0. Now we show that J ′2 6= 0
and thus J ′2 ∈ B. For all J ∈ B, JJ ′ ∈ B. Therefore J ′2J = J ′(JJ ′) 6= 0. Then
J ′2 6= 0.
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Now the following Theorem presents an easy way of obtaining the members of
C in [11, Theorem 20].

Theorem 4.5. Considering assumptions of [11, Theorem 20] , if C 6= φ , then:

a) The ring R has only two minimal prime ideals, one of them is (P1 = Ann(I))

b) C = {0 6= J | I 6= J ⊆ P, J is an ideal of R}

c) |A| 6= 1

Proof. In Lemma 4.3 it was proved that AGI(R) is a bipartite complete graph.
Hence, by Lemma 4.1 AG(R/I) is also a bipartite complete graph.

Claim: R/I is reduced.
Claim proof: Assume R/I is not reduced. Therefore, by Theorem 20 in [11],
R/I has only one non-zero minimal ideal in the form of 〈y〉+I

I where 〈y〉2 ⊆ I.
We have 〈y〉+I

I ∈ V (AG(R/I)), then 〈y〉 + I ∈ V (AGI(R)) and thus 〈y〉 + I ∈
A∪C, which is contradictory to Lemma 4.4. Hence, R/I is reduced and by Result
24 in [11], R/I has only two prime minimal ideals: (P1

I ,
P2

I ). According to (a),
V1(AG(R/I)) = {J/I|I ⊂ J ⊆ P1} and V2(AG(R/I)) = {J/I|I ⊂ J ⊆ P2}.
Therefore C = {J |I ⊂ J ⊆ P2} and P1 = Ann(I). We show that |A| 6= 1. Suppose
|A| = 1. By the proof of part (b) , we obtain: A = {Ann(I)}. Since Ann(I) is a
maximal ideal of R, then for all J ′′ ∈ C, we have

Ann(I) + J ′′ = R, (2)

Since the only minimal ideal of R is I and B 6= φ, then

|B| =∞. (3)

Consider J, J ′ ∈ B with J 6= J ′. By (2),

J + I + J ′′ = J + J ′′ = R, (4)

and also

J ′ + I + J ′′ = J ′ + J ′′ = R . (5)

By (4): JJ ′ + J ′′J ′ = J ′ which shows that J ′ ⊆ J . By (5):

JJ ′ + J ′′J = J,

which shows that J ⊆ J ′. Therefore J = J ′. Since J, J ′ ∈ B (J 6= J ′) were
arbitrarily selected from B, then |B| = 1, which contradicts Lemma 4.4. Therefore,
|A| 6= 1. �

In the following, we consider two states of
√
I = I and

√
I 6= I to investigate

the issue of bipartite AGI(R). First, in Theorem 4.6 to Corollary 4.9, we assume√
I 6= I.
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Theorem 4.6. One of the following situations may occur If AGI(R) is bipartite,
then one of the following cases occurs.

a) R/I consists of exactly two minimal ideals and R/I ∼= F × S where F is a
field and S a ring with exactly one non-trivial ideal.

b) The only minimal ideal over I in R is in the form of the principal ideal 〈x〉
for a x ∈ R and we have 〈x〉2 ⊆ I.

Proof. According to Lemma 4.1, AG(R/I) is bipartite and thus according to The-
orem 2 in [11], two cases are possible:

1) R/I admits exactly two minimal ideals, and R/I ∼= F ×S where F is a field
and S is a ring with exactly one non-trivial ideal.

2) R/I admits only one minimal ideal, in which case the minimal ideal is of the
form of 〈x+ I〉 and we have 〈x+ I〉2 = I.

In case (2), we have 〈x〉 * I and 〈x〉2 ⊆ I. Therefore, 〈x〉 is a vertex in AGI(R).
The following two cases are assumed:

A) I ⊆ 〈x〉, in which case (b) is proved.

B) I * 〈x〉, therefore according to Theorem 2.1, J = 〈x〉 + I is a vertex in
AGI(R). Now since 〈x〉2 ⊆ I, then according to Theorem 2.1, J ∈ M and
J2 ⊆ I. On the other hand, AGI(R) is bipartite, hence AGI(R) has the
following form according to Lemma 4.1.

〈x〉 〈x〉+ I

And AG(R/I) is in the following form


〈x〉+ I

I

and therefore contradiction is achieved and B does not occur.

So far, we have proved that if AGI(R) is a bipartite graph, one of the cases of the
Theorem 4.6 occurs. Now using the following two theorems, we try to determine
when AGI(R) is a star or bipartite graph.

Theorem 4.7. Suppose AGI(R) is a bipartite graph. The two parts of AGI(R)
are named V1 and V2. Then one of the following cases occurs.

a) V1 = {J1, J2} ∪ {K | K is an ideal of R, I * K * I} and V2 = {J3, J4},
where J1

I
∼= F × T , J2

I
∼= F × 〈o〉, J3

I
∼= 〈o〉 × S and J4

I
∼= 〈o〉 × T . Therefore

|V1| ≥ 2 and |V2| = 2. Moreover, we have for all J ∈ V1, J4J ⊆ I and for all
J1 6= J ∈ V1, J3J ⊆ I or
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b) V1 = {J |J ⊆ P1, J * I} and V2 = {J |〈x〉 ⊆ J ⊆ P2} where P1 and P2 are
the only two minimal ideals R over 〈x〉 and P2

I = Ann(x+ I). or

c) V1 = {J |J ⊆ P1, J 6= 〈x〉, J ⊆ I} and V2 = {〈x〉} where P1

I = Ann(x+ I).

Proof. If case (a) occurs in the Theorem 4.6, we have V (AG(R
I )) = {J1

I ,
J2

I ,
J3

I ,
J4

I }.
Clearly, J1

I , J2

I , J3

I and J4

I from R/I have one-to-one correspondence with the
F ×T , F ×〈o〉, 〈o〉×S and 〈o〉×T that T is non-trivial ideal of S. We prove that
J4 /∈M . Since (〈o〉 × T )2 = 〈o〉 × 〈o〉, then J2

4 ⊆ I and thus by Lemma 4.1,

J4 /∈ M. (6)

Assume that J3 ∈ M , that is to say, J3 = K + I where K is an ideal of R and
I * K. J3 is a maximal ideal of R and on the other hand, J1 * J3, therefore
J3 + J1 = R which shows that K + I + J1 = R which shows that KJ4 + I = J4,
KJ4 * I and I * KJ4. Hence J4 ∈M which contradicts (6) and therefore J3 /∈M ,
then V ′

2 =
{

J3

I ,
J4

I

}
. On the other hand, J3, J4 /∈M and thus V2 =

{
J3, J4

}
and

|V2| = 2. Assume that J1 ∈ M , thus J1 = K + I such that I * K * I. On the
other hand, J4 ⊂ J1. Therefore I ⊂ J4 ⊂ K + I, then J4 = (K ∩ J4) + I, which is
contradictory to J4 /∈M and thus J1 /∈ M .

Now it is shown that all ideals of R that do not contain I, as well as all ideals
of R that are not subsets of I, are vertices in AGI(R). We assume that L is an
ideal of R so that I * L * I and L /∈ V . Therefore, according to Theorem 2.1,
L + I = R then LJ4 + I = J4, I * LJ4 * I and thus J4 ∈ M , which contradicts
(6).

We have V ′
1 =

{
J1

I ,
J2

I

}
. On the other hand, we proved that only J2 can be in

M . Therefore,

V1 =
{
J1, J2

}
∪
{
J |I * J * I J is an ideal ofR

}
.

Therefore, |V2| ≥ 2.
If case 2 occurs in Theorem 4.7, R

I has only one minimal ideal ( 〈x〉
I ). Hence,

by [11, Theorem 20], the following cases are possible.
i) C 6= φ which by Theorem 4.5 we have:

V ′
1 =

{J
I

∣∣I ⊂ J ⊆ P1, J 6= 〈x〉
}
,

and
V ′
2 =

{J
I

∣∣I ⊂ J ⊆ P2

}
,

where P1 and P2 are the only two minimal ideals of R over 〈x〉. We claim that all
ideals of R, which do not contain I, as well as all ideals of R that are not subsets
of I, are placed in V1 and thus part (b) is proved.
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Claim proof: We first show that M ⊆ B. Assume that M * B and thus there
exists I * K * I such that (K + I) ∈ V \ B. Since 〈x〉2 ⊆ I, by Lemma 4.1 we
have K + I 6= 〈x〉 and I ⊂ 〈x〉 ⊂ K + I which shows that 〈x〉 = (K ∩ 〈x〉) + I
which shows that 〈x〉 ∈ M . This is contradictory to Lemma 4.1. Hence, M ⊆ B
and therefore

for all K ∈ V, s.t I * K * I.

Then,
K ∈ B.

Now we should prove that all R ideals, which do not contain I, as well as all ideals
of R that are not subsets of I, are vertices in AGI(R).

We assume that K is an ideal of R so that I * K * I and K /∈ V . Therefore,
by Theorem 2.1, L = K + I /∈ V and thus L

I /∈ V ′. Hence,

L

I
× 〈x〉

I
=
〈x〉
I
,

which shows that
L〈x〉+ I = 〈x〉,

then we have:
K〈x〉+ I = 〈x〉,

then 〈x〉 ∈M . Therefore, by Lemma 4.1, we get a contradiction.
ii) C = φ, we have two cases:

1) B = φ. Similar to the proof of part (i) we obtain:

M ⊆ B.

Now since B = φ, then AGI(R) ∼= AG(R/I).

2) B 6= φ. Again, with a proof similar to part (i), it is possible to show that
all the ideals of R, which do not contain I, as well as all ideals of R that are
not subsets of I, are vertices in AGI(R).

Therefore, part (c) is proved.

Corollary 4.8. Assume that AGI(R) is a bipartite graph. Then the following
statements are equivalent:

a) AGI(R) is a complete bipartite graph.

b) AGI(R) is star.

c) AG(R/I) is star.

d) Z(R/I) = Ann(x+ I), which the only minimal ideal in relation to I in R is
of the form of the principal ideal 〈x〉 for a x ∈ R.
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Proof. According to previous Theorem, equality of a, b and c is immediate. Also
according to Result 26 in [11], c and d are equivalent.

Corollary 4.9. IfAGI(R) is bipartite, then girth(AGI(R)) = 4 or girth(AGI(R)) =
∞.

In the continuation of the study of the topic of bipartite AGI(R) in Theo-
rem 4.10 and Theorem 4.11 we assume

√
I = I.

To prove part two of Theorem 4.1 in [6], it is only proved that Vi ∪ CI is
a prime ideal from the I(R) semiring and it is not proved that CPi

= Vi ∪ CI .
Another method for proving this part of Theorem 4.1 is presented in the following.
Moreover, it is proved that P1 and P2 introduced in part two of Theorem 4.1 in
[6] are only two prime minimal ideals of R in relation to I.

Remark 2. In Remark 22 in [11], we have V1 = {J |0 6= J ⊆ P1} and V2 = {J |0 6=
J ⊆ P2}. P1 and P2 are the only minimal prime ideals of the ring R.

Proof. Suppose that J ⊆ P1 and J ′ ⊆ P2. We have JJ ′ ⊆ P1 and JJ ′ ⊆ P2. Since
P1 ∩ P2 = 0, then JJ ′ = 0.

Theorem 4.10. Suppose AGI(R) is a non-empty bipartite graph, the following
statements are equivalent:

a) R only has two prime minimal ideals in relation to I: (P1 andP2).

b) V1(AGI(R)) = {J |J ⊆ P1, J * I} and V2(AGI(R)) = {J |J ⊆ P2, J * I}.

Proof. a) By Lemma 4.1, AG(R/I) is bipartite. Therefore by [11, Result 24]:∣∣∣Min(R/I)
∣∣∣ = 2.

b) By above note: V1(AG(R/I)) =
{

J
I

∣∣∣I ⊂ J ⊆ P1

}
and V2(AG(R/I)) =

{
J
I

∣∣∣I ⊂
J ⊆ P2

}
, thus by the proof of Lemma 4.1 and Theorem 2.1, V1(AGI(R)) = {J |J ⊆

P1, J * I} and V2(AGI(R)) = {J |J ⊆ P2, J * I}.

Let’s prove [6, Theorem 4.1] below in a simple way.
Suppose AGI(R) is a complete bipartite graph. We prove that I = P1 ∩ P2.

By Theorem 4.1, R only has two prime minimal ideals in relation to I: (P1andP2).
Now since

√
I = I and

√
I = P1 ∩ P2, therefore I = P1 ∩ P2.

In addition, in part (b) of the previous Theorem we show that CPi
= Vi ∪ CI .

Theorem 4.11. The following statements are equivalent:

a) AGI(R) is bipartite.

c) AGI(R) is complete bipartite.

d) AG(R/I) is complete bipartite.
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e) AG(R/I) is triangle-free.

f) AGI(R) is triangle - free.

g) I = P1 ∩ P2 where P1 and P2 are the only two prime minimal ideals of R in
relation to I.

Proof. Since
√
I = I, for each J ∈ M we have J2 * I and thus by Lemma 4.1,

equivalency of (a) and (b) is proved.
Now since for each J ∈ M we have J2 * I, then by Theorem 2.1, (e) and (f) are
also equivalent.
In Note Remark 2, it is proved that c and g are equivalent.
In [11, Note 22], equivalency of (b), (d), and (e) is proved. Since (a) and (b) are
equivalent. We now apply Theorem 4.2 and the proof of Lemma 4.3 to prove that
(c) and (d) are equivalent.

5. Cut point and r-partite AGI(R) graph

Theorem 5.1. Suppose I is a non-zero proper ideal of the ring R. If AGI(R) is a
complete r-partite graph, r ≥ 3, then at most one part has more than one vertex
and

a) if Vi = {A} is a part of AGI(R), then A2 ⊆ I. Therefore, all vertices of
AGI(R) such as A, where A2 * I, are placed in one part.

b) Consider T = {J |J + I ∈ M, J2 ⊆ I}. Each element of T is located in a
separate part and so r ≥ |T |+ 1.

Proof. Since the first part of the Theorem is proved in [6, Theorem 4.4], it only
requires to prove a and b.

a) If all parts only include one vertex, then AGI(R) is a complete graph and
since r ≥ 3, then AGI(R) � K2. By Corollary 3.5 we have Z2(R/I) = I.
Therefore, for all vertices of AGI(R), which include I (such as J), we have
J2 ⊆ I and thus by Theorem 2.1 we have J2 ⊆ I for all vertices of AGI(R)
such as J . Now without loss of generality, we suppose |V1| ≥ 2. Then, we
assume that X ∈ V1, Y ∈ Vl, and Z ∈ Vt (t 6= l, t, l 6= 1). Now we have

{Z} ∪ (I : Z) = CI ∪ (

r⋃
i=1
i6=t

Vi) ∪ {Z},

{Y } ∪ (I : Y ) = CI ∪ (

r⋃
i=1
i6=l

Vi) ∪ {Y },
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{X} ∪ (I : X) = CI ∪ (

r⋃
i=2

Vi) ∪ {X}.

And therefore we have (I : Z) ⊆ (I : Y ) ∪ (I : X). On the other hand,
(I : Z) * (I : X). Therefore, by [6, Lemma 4.2 and 4.3], we have (I : Z) ⊆
(I : Y ). On the other hand, since we know Y ∈ (I : Z), then Y ∈ (I : Y ),
i.e. Y 2 ⊆ I. In addition, Vl was arbitrarily selected from the V2, · · · , and
Vr sets, hence

for all Y ∈ V \ V1, Y 2 ⊆ I.

b) We claim that for all J ∈ T J2 /∈ V1 and thus part b is proved.

Calim proof: Assume that J ∈M ∩ T . Now we have

J = Ki + I, i ∈ N,

where N is a set, and for each i ∈ N , Ki is an ideal of R and I * Ki. By
Theorem 2.1 we have

(I : Ki) = (I : J).

On the other hand, since J2 ⊆ I, by Theorem 2.1 we have J Ki ⊆ I and thus
J,Ki /∈ V1.

Corollary 5.2. If
√
I = I, then AGI(R) cannot be a complete r-partite graph

(r ≥ 3).

Part (c) of [6, Theorem 3.5] can be developed as follows. Parts (d) and (e)
could also be included in this Theorem.

Theorem 5.3. Let I be a non-zero proper ideal of the ring R. In these case we
have:

a) Suppose X = (x) is a principal ideal including I, where X2 * I. Moreover,
assume that (x) 6= (x2), in which case X in AGI(R) is not a cut-point.

b) If X has a column, i.e. X ∈M , then X cannot be a cut-point in AGI(R).

c) If X in AG(R/I) is not a cut-point, then it is not a cut-point in AGI(R)
either.

Proof. a) Based on the proof by contradiction approach, X is assumed to be
situated along all paths from U to W . Since X2 * I, then X2 is a ver-
tex.The variable X is replaced with the variable X2 In very path from U to
W . Now since X2 6= X, using the Resulting permutation it is possible to
identify a path from U to W , which lacks X, and this Result contradicts the
assumption.
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b) Based on the proof by contradiction approach, we assume that X represents
a cut-point. Therefore, it is possible to assume that U and W are vertices of
AGI(R) such that J is situated along each path from U toW . Set X = K+I
where K is an ideal of R and I * K. Consider the following path

UT1 . . . TnXTn+1 · · ·TrW.

By Theorem 2.1, the following permutation exists from U to W .

UT1 . . . TnKTn+1 · · ·TrW.

Therefore, we found a path from U toW , which does not cross the X vertex,
and this result contradicts X being a cut-point.

c) Based on the proof by contradiction approach, it is assumed that in AGI(R),
X is positioned in every path from U to W , where U,W ∈ V . Consider the
following three cases:

1) I ⊂ U,W , in which case by Theorem 2.1, X is in every path from U to
W in AG(R/I), and this result is contradictory to the assumption.

2) I ⊂W and I * U . Two cases are possible.
A) U + I 6= W , therefore by Theorem 2.1, X is located in every path

from U + I to W , and thus X is situated in every path from U + I
to W in AG(R/I), which contradicts the assumption. Note that
according to part (d), X 6= U + I.

B) U + I = W . Since X is situated in every path from U to W , W
is only adjacent to X. Therefore, there exists J ′ ∈ V such that
J ′X ⊆ I. (by Theorem 4.7, since AGI(R) � K2, then AG(R/I) �
K2 and J ′ exists). Thus X is situated in every path from W to
J ′, and thus by case (1), X is one cut-point in AG(R/I) and we
achieved a contradiction.

3) I * W And I * U . It is assumed that X is in every path from U to
W . Two cases are possible.
A) U + I 6= W + I Therefore, by Theorem 2.1, X it is in every path

from U + I to W + I, and thus in AG(R/I), X is in every path
from U + I to W + I, and thus contradiction is obtained.

B) U + I = W + I Therefore, by Theorem 2.1, X is in every path
from U to W + I. Now we act similar to case (2) and thus the
proposition is proved.

Conflicts of Interest. The authors declare that they have no conflicts of interest
regarding the publication of this article.



128 Z. Mahmudiankoruie et al. / Some Remarks on the Annihilating-Ideal...

References

[1] R. Y. Sharp, Step in Commutative Algebra, London Mathematical Society
Student Texts (51), Cambridge University Press, Cambridge, 2000.

[2] B. R. McDonald, Finite Rings with Identity, Pure and Applied Mathematics,
28, M. Dekker, Inc., New York, 1974.

[3] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative
ring, J. Algebra 217 (1999) 434−447, https://doi.org/10.1006/jabr.1998.7840.

[4] S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring,
Commun. Algebra 31 (2003) 4425 − 4443, https://doi.org/10.1081/AGB-
120022801.

[5] M. Behboodi and Z. Rakeei, The annihilating - ideal graph of
a commutative rings I, J. Algebra Appl. 10 (2011) 727 − 739,
https://doi.org/10.1142/S0219498811004896.

[6] F. Aliniaeifard, M. Behboodi, E. Mehdi-Nezhad and A. M.
Rahimi, The annihilating-ideal graph of a commutative ring with
respect to an ideal, Comm. Algebra 42 (2014) 2269 − 2284,
https://doi.org/10.1080/00927872.2012.753606.

[7] S. Visweswaran and H. D. Patel, Some results on the complement of the
annihilating ideal graph of a commutative ring, J. Algebra Appl. 14 (2015) p.
1550099, https://doi.org/10.1142/S0219498815500991.

[8] S. Visweswaran and H. D. Patel, On the clique number of the complement of
the annihilating ideal graph of a commutative ring, Beitr. Algebra Geom. 57
(2016) 307− 320, https://doi.org/10.1007/s13366-015-0247-5.

[9] S. Visweswaran and A. Parmar, Some results on a spanning subgraph
of the complement of the annihilating-ideal graph of a commutative
reduced ring, Discrete Math. Algorithms Appl. 11 (2019) p. 1950012,
https://doi.org/10.1142/S1793830919500125.

[10] G. Aalipour, S. Akbari, M. Behboodi, R. Nikandish, M. J. Nikmehr
and F. Shaveisi, The classification of the annihilating - ideal
graph of a commutative ring, Algebra Colloq. 21 (2014) 249 − 256,
https://doi.org/10.1142/S1005386714000200.

[11] G. Aalipour, S. Akbari, R. Nikandish, M. J. Nikmehr and F. Shaveisi, On
the coloring of the annihilating - ideal graph of a commutative ring, Discrete
Math. 312 (2012) 2620− 2626, https://doi.org/10.1016/j.disc.2011.10.020.



Mathematics Interdisciplinary Research 9 (1) (2024) 111− 129 129

[12] S. Visweswaran, P. T. Lalchandani, When is the annihilating ideal
graph of a zero-dimensional semiquasilocal commutative ring planar?
Nonquasilocal case, Boll. Unione Mat. Ital. 9 (2016) 453 − 468,
https://doi.org/10.1007/s40574-016-0061-5.

Zahra Mahmudiankoruie
Department of mathematics,
Faculty of science,
University of Qom,
I. R. Iran
e-mail: mahmudianz65@gmail.com

Mohammad Hasan Naderi
Department of mathematics,
Faculty of science,
University of Qom,
I. R. Iran
e-mail: mhnaderi50@gmail.com


