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Abstract
The Hub Location Problem (HLP) is a significant problem in combinato-

rial optimization consisting of two main components: location and network
design. The HLP aims to develop an optimal strategy for various applica-
tions, such as product distribution, urban management, sensor network de-
sign, computer network, and communication network design. Additionally,
the upgrading location problem arises when modifying specific components
at a cost is possible. This paper focuses on upgrading the uncapacitated
multiple allocation p-hub median problem (u-UMApHMP), where a pre-
determined budget and bound of changes are given. The aim is to modify
certain network parameters to identify the p-hub median that improves the
objective function value concerning the modified parameters. We propose a
non-linear mathematical formulation for u-UMApHMP to achieve this goal.
Then, we employ the McCormick technique to linearize the model. Sub-
sequently, we solve the linearized model using the CPLEX solver and the
Benders decomposition method. Finally, we present experimental results to
demonstrate the effectiveness of the proposed approach.
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1. Introduction

The hub location problem has been widely studied in facility locations for several
decades and has gained significant attention [1]. Hubs are specialized facilities
that provide services within networks by creating connections between origins and
destinations. Such facilities are primarily recognized as sites for collecting, order-
ing, and distributing goods, services, and information. In network design, a hub
network connects origin-destination pairs indirectly through a small set of inter-
mediary nodes called hubs [2]. The utilization of hubs offers several advantages,
which can be attributed to the following factors: (a) reduced transportation costs
due to consolidated flows that leverage economies of scale, particularly between
hubs, (b) decreased costs from establishing a more widely spaced network that
connects numerous dispersed origin-destination pairs, and (c) improved service
delivery by enabling more frequent connections [3].
The hub location has wide-ranging applications in various industries, including
telecommunication and communication [4], air transportation [5, 6], ground trans-
portation [7], postal services [8], etc. This problem was first introduced by Gold-
man [9] and Hakimi & Maheshwari [10], rooted in location and network analysis.
Subsequently, O’Kelly [11, 12] research spurred the emergence of studies and de-
velopment of hub location as a distinct subfield within the broader domain of
facility location analysis. The allocation in HLPs can be classified into two main
categories: single and multiple allocation. Each origin and destination can only
be connected to one hub in a single allocation, as noted by [13, 14]. In multiple
allocation-each non-hub node can be assigned to several hubs [15]. Also, this prob-
lem can be further divided into three classes: the hub median problem, the hub
covering problem, and the hub center problem.

Over recent years, there has been a significant surge in scholarly research re-
garding the hub location problem, with a particular focus on the hub median prob-
lem (HMP). This has led to several advancements in the theory and methodology
of different aspects of the problem [16]. This problem revolves around the selection
of optimal hub locations, coupled with the allocation of non-hub nodes to hubs,
with the overarching objective of minimizing the total transportation cost, encom-
passing factors such as time, distance, and related metrics. When the number of
hubs is equal to p, the problem transforms into the p-HMP. O’Kelly [13] formulated
the p-HMP using quadratic programming. Campbell [17] presented a model for
the p-HMP that considered the multiple and single allocation conditions. Skorin-
Kapov et al., [18] demonstrated that the single allocation hub location problem is
a special case of the multiple allocation problem. Campbell [19] defined a p-HMP,
which is analogous to a p-median, and proposed integer programming formulations
for both multiple and single p-HMPs. Subsequently, Ernst and Krishnamoorthy
[15] developed a more efficient p-hub multiple allocation formulation based on the
concepts presented in their previous work in 1996. They [20] also demonstrated
that their method outperformed the approach proposed by Skorin-Kapov et al.,
[18]. The hub location problem has been extensively studied in the literature,
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and several methods have been proposed for its solution. Klincewicz [21] applied
exchange clustering methods to the problem, while Klincewicz [22] used greedy
and tabu search methods and GRAB. O’Kelly [13] employed an enumeration algo-
rithm, Campbell [19] used a greedy algorithm, and Abdinnour-Helm [23] utilized
the Simulated Annealing method. Klincewicz [24] and Silva & Cunha [25] applied
the tabu search method, while Chen [26] combined the Simulated Annealing algo-
rithm and tabu search. Other approaches include the genetic algorithm and the
Lagrange method used by Kratica et al., [27] and Yaman [28], the Benders de-
composition method employed by [29–31], and the multi-criteria decision-making
method utilized by [32–34].
Moreover, in numerous combinatorial optimization problems, modifications can
be implemented on the problem parameters to augment the efficacy of the net-
work. Fulkerson and Harding [35] examined the shortest path upgrading problem,
while Hambrusch and Tu [36] explored the longest path problem by improving the
length of edges. The minimum spanning tree and Steiner tree upgrading problems
were investigated by [37–39], while Sepasian and Monabbati [40] investigated the
upgrading problem of the min-max spanning tree, utilizing some combinatorial al-
gorithms to solve it. Some improvement issues have also been reviewed by [41, 42].
Gassner [43–45] conducted separate studies on upgrading problems related to 1-
median and 1-center problems.
The uncapacitated multiple allocation p-hub median problem (UMApHMP) refers
to a specific variant of the p-HMP. In this problem, there are no capacity con-
straints imposed on either hubs or edges, and every non-hub node within the
network can be connected to all p-hubs. The research on UMApHMP has primar-
ily focused on identifying the optimal hubs and assigning non-hub nodes to these
hubs. However, the potential for network enhancement by adjusting its parame-
ters has received insufficient attention.

This paper aims to enhance the UMApHMP by modifying some network com-
ponents. Specifically, we propose a novel model to improve the total transportation
cost in the UMApHMP by adjusting the length of the edges while respecting the
constraints of a pre-determined budget and bounded changes. The problem is for-
mulated as a mixed integer non-linear programming, and to linearize the resulting
non-linear model, we use the McCormick relaxation technique. We solved this
mixed integer linear programming formulation using the CPLEX solver and the
Benders decomposition method.
The rest of the paper is organized as follows: Section 2 summarizes the UMApHMP,
introduces and linearizes the u-UMApHMP, and presents its corresponding math-
ematical formulation. Section 3 presents a Benders decomposition method for
solving the linear u-UMApHMP. The computational results and concluding re-
marks are presented in Sections 4 and 5, respectively.
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2. Problem statement and modeling
Combinatorial optimization problems may require modifications to their constituent
parameters to improve the underlying network’s efficiency, commonly known as an
upgrading problem. Researchers have investigated various aspects of this topic.
For instance, Sepasian and Monabbati [40] conducted a study on upgrading the
min-max spanning tree. Sepasian and Rahbarnia [46] focused on upgrading 1-
median on the path. In addition, Sepasian [47] attempted to upgrade the 1-center
problem on the network.

The p-HMP constitutes a significant variant of the HLP, in which the number
of hubs, denoted as ’p’, is predetermined and fixed. The objective of the p-HMP is
to determine p optimal hubs in the network such that the total cost is minimized.
In p-HMP, it is possible to modify certain problem parameters, and by considering
the potential for these changes, the optimal location is determined based on the
optimal parameters. This study aims to investigate upgrading the UMApHMP
through an edge cost modification approach. Specifically, we aimed to improve
the p-hub network’s overall performance by modifying the length of edges while
adhering to a predetermined budget and bounded changes. To achieve this ob-
jective, we design a model that considers the conditions of the UMApHMP and
incorporates them into the upgrading process.

2.1 A short review of UMApHMP
The hub median location problem is a well-known optimization problem with di-
verse applications in transportation and industry, including service center location,
sensor network design, computer network design, product distribution network
design, air transport network design, fuel distribution network design, and postal
item distribution network design. The UMApHMP is a specialized version of the
HMP in the field of network optimization. In this problem, there are no limitations
on the capacity of hubs or edges.
Moreover, each non-hub node in the network has the potential to be connected
to all p-hubs without any restrictions. The main objective of this problem is to
identify the optimal location of hubs that minimizes the total transportation cost
[17, 19, 48]. Scholars in this area, have provided a comprehensive overview of
the various models, classifications, solution techniques, and applications of HLPs
[49, 50]. Several models have been proposed to address the HMP [15, 17–19, 48].
Mokhtar et al., [31] presented a linear integer programming model to solve the
UMApHMP on an undirected network. We present the required variables (see
Table 1) and parameters (see Table 2) for this model as follows:
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Table 1: Variables of UMApHMP.

Parameter Type Value
Xijkm Non-negative real Fraction of flow from origin i to destination j

that passes through hubs k and m, respectively.
hk Binary If location k is considered as a hub, the value

is 1, otherwise, the value is 0.

Table 2: Sets and required parameters of UMApHMP.

Parameter Type Value
V The set of nodes and |V | = n.
E The set of edges.
α A discount factor to provide reduced unit

costs on links between hubs.

Wij Non-negative integer Flow (demand) between node i, j ∈ V.
cij Non-negative integer Distance (transmission cost) between node

i, j ∈ V .
Cijkm Non-negative integer The cost of transferring a unit of flow from

origin i to destination j by passing through
hubs k,m ∈ h.
This cost is equal to Cijkm=cik+αckm+cmj .
If k = m, origin i sends flow to destination j
through hub k.

p Non-negative integer The number of hubs.
Fk Non-negative integer The cost of opening hub k.

The mathematical model of UMApHMP is expressed as follows:

min
∑
i

∑
j

∑
k

∑
m

WijXijkmCijkm +
∑
k

Fkhk,

s.t∑
k

hk = p, (1)

∑
k

∑
m

Xijkm = 1, ∀i, j ∈ V, (2)

∑
m

Xijkm ≤ hk, ∀i, j, k ∈ V, (3)
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∑
k

Xijkm ≤ hm, ∀i, j,m ∈ V, (4)

0 ≤ Xijkm ≤ 1, ∀i, j, k,m ∈ V, (5)

hk ∈ {0, 1}, ∀k ∈ V. (6)

In the above model, the objective function minimizes the total cost, including
transportation and establishment costs. Constraint (1) guarantees that the num-
ber of hubs exactly equals p. Constraint (2) ensures that the flow for each origin-
destination pair is directed through via some hub pair. Constraints (3), (4) guar-
antee that the flow which goes through a hub only happens if that hub is installed.
Constraint (5) is the non-negativity of the continuous variables Xijkm, while con-
straint (6) restricts the integer variable hk to be 0 or 1.

2.2 The problem of u-UMApHM
To state the problem, consider the complete undirected graph G = (V,E), such
that V is the set of nodes of this graph, including origin nodes, destination nodes,
and V={1, 2, ..., n} (p ≤ n). Also, suppose that E is the edge set of the graph
assigned to edge ij ∈ E of length (cost) cij ∈ Z+ and Wij ∈ Z+ is the amount of
flow (demand) required between node i and node j. Now suppose that in order to
improve the service delivery, it is possible to modify the edge lengths of the context
graph under the predefined budget B. Due to some real-world restrictions in the
existing structures, modifying the edges to any desired size is impossible. There-
fore, for each edge ij ∈ E, the amount of edge length modification is displayed
with the variable yij ∈ Z+, and the maximum amount of length modification is
not less than lij ∈ Z+. Also, the cost paid for the correction of each unit of edge
length ij ∈ E is denoted by uij . To avoid redundancy, we will avoid repeating
similar information presented in Table 1 and Table 2.

The primary objective of this problem is to strategically adjust the edge lengths
within graph G under the constraints of the available budget, aiming to improve
the UMApHM’s objective function value by optimizing the modified edge lengths.
The u-UMApHMP is formulated as follows:

min
∑
i

∑
j

∑
k

∑
m

WijXijkmCijkm −
∑
i

∑
j

∑
k

∑
m

WijXijkm

(
yik + αykm + ymj

)
+
∑
k

Fkhk,

s.t

(1)− (6),∑
i

∑
j

uijyij ≤ B, (7)

yij ≤ (cij − lij), ∀i, j ∈ V, (8)

yij ≥ 0, ∀i, j ∈ V. (9)



Mathematics Interdisciplinary Research 9 (2) (2024) 131− 150 137

The objective function of the above model minimizes the total cost, cost improve-
ment due to edge modification with respect to the budget consuming, and the
cost of establishing hub nodes. Constraint (7) states that the cost of edge im-
provements should not exceed the available budget. Constraint (8) bounds the
maximum value of edge length improvement from above.

The presented model for the u-UMApHMP contains non-linear terms in the
form of the product of two continuous variables. Non-linear models are more com-
plicated than linear models. The McCormick linearization is a suitable method
for relaxing a non-linear expression of the product of two continuous variables. To
accomplish this, a change in variables is implemented in the problem, accompanied
by the corresponding constraints [51].

The changes in the variables are as follows:

Qijkm = Xijkm × yik,
Pijkm = Xijkm × ykm, (10)
Rijkm = Xijkm × ymj .

So, the integer linear model of the u-UMApHMP is obtained as follows:

min
∑
i

∑
j

∑
k

∑
m

WijXijklCijkm −
∑
i

∑
j

∑
k

∑
m

Wij

(
Qijkm + α Pijkm +Rijkm

)
+
∑
k

Fkhk,

s.t

(1)− (9),

Qijkm ≥ (lik − cik) + (cik − lik) Xijkm + yik, ∀i, j, k,m ∈ V, (11)

Qijkm ≤ yik, ∀i, j, k,m ∈ V, (12)

Qijkm ≤ (cik − lik) Xijkm, ∀i, j, k,m ∈ V, (13)

Pijkm ≥ (lkm − ckm) + (ckm − lkm) Xijkm + ykm, ∀i, j, k,m ∈ V, (14)

Pijkm ≤ ykm, ∀i, j, k,m ∈ V, (15)

Pijkm ≤ (ckm − lkm) Xijkm, ∀i, j, k,m ∈ V, (16)

Rijkm ≥ (lmj − cmj) + (cmj − lmj) Xijkm + ymi, ∀i, j, k,m ∈ V, (17)

Rijkm ≤ ymj , ∀i, j, k,m ∈ V, (18)

Rijkm ≤ (cmj − lmj) Xijkm, ∀i, j, k,m ∈ V, (19)

Qijkm ≥ 0, ∀i, j, k,m ∈ V, (20)

Pijkm ≥ 0, ∀i, j, k,m ∈ V, (21)

Rijkm ≥ 0, ∀i, j, k,m ∈ V. (22)
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The above model is a McCormick linearization of the u-UMApHMP, referred to
as Lu-UMApHMP. While the multiple allocation hub median problem with fixed
hub locations can be solved in polynomial time, the general case of UMApHMP
is known to be NP-hard [31]. To address this difficulty, we apply the Benders
decomposition algorithm, which is successfully employed to tackle a wide range
of optimization problems [52]. To obtain an approximate optimal solution for
the original problem, we apply the Benders decomposition method to solve Lu-
UMApHMP.

3. The Benders decomposition method

The Benders decomposition method, originally introduced by Benders [53], was
initially designed for mixed-integer linear programming problems that involve con-
tinuous subproblems. Over time, this method has been extended to tackle a broad
range of problems, including nonlinear, integer, stochastic, bilevel, multi-stage,
and other optimization problems [52].
The Benders decomposition method is a powerful technique for resource alloca-
tion in large-scale problems, and it has been successfully applied to solve numerous
practical optimization problems, such as routing, locating, planning, and schedul-
ing. The method involves reformulating the problem using duality and primary
duality relations. Specifically, the complex integer problem is divided into a mas-
ter problem (MP) and a dependent subproblem (SP), which are iteratively solved
using each other’s solutions [53].

In order to use the Benders decomposition method for a problem, the solu-
tion obtained by the MP is used as input for the SP, where integer and complex
variables are fixed. The dual of the SP is then solved, and the resulting solution
serves as an upper bound for the overall problem. The dual solution of the SP
is also used to construct a Benders cut that includes continuous variables and is
added to the MP. In the next iteration, this cut is incorporated into the MP, and
a new lower bound is obtained by solving the updated problem. This lower bound
is guaranteed to be no worse than the current lower bound. The MP and the SP
are solved iteratively until a termination condition is met, such as the upper and
lower bound difference being less than a small number. Geoffrion and Graves have
proven that the Benders decomposition method converges to the optimal solution
in a finite number of iterations [54]. Therefore, it is a powerful tool for solving
large-scale optimization problems with complex integer variables.

3.1 The Benders decomposition algorithm for the Lu-UMApHMP
In this subsection, we develop a classical Benders decomposition method to solve
Lu-UMApHMP. To use this method, we decompose the original problem into a
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master problem consisting of variables associated with the hub locations and their
corresponding constraints and a SP consisting of the remaining variables and con-
straints. The hub location variable h = hk is fixed in each iteration, and linear
programming is formulated as follows, which is denoted as SP.

SP:

min
∑
i

∑
j

∑
k

∑
m

WijXijkmCijkm −
∑
i

∑
j

∑
k

∑
m

Wij(Qijkm + α Pijkm +Rijkm),

s.t∑
k

∑
m

Xijkm = 1, ∀i, j ∈ V,

∑
m

Xijkm ≤ hk, ∀i, j, k ∈ V,

∑
k

Xijkm ≤ hm, ∀i, j,m ∈ V,

∑
i

∑
j

uijyij ≤ B

yik ≤ (cik − lik), ∀i, k ∈ V,

ykm ≤ (ckm − lkm), ∀k,m ∈ V,

ymj ≤ (cmj − lmj), ∀m, j ∈ V,

Qijkm ≥ (lik − cik) + (cik − lik) Xijkm + yik, ∀i, j, k,m ∈ V,

Qijkm ≤ yik, ∀i, j, k,m ∈ V,

Qijkm ≤ (cik − lik) Xijkm, ∀i, j, k,m ∈ V,

Pijkm ≥ (lkm − ckm) + (ckm − lkm) Xijkm + ykm, ∀i, j, k,m ∈ V,

Pijkm ≤ ykm, ∀i, j, k,m ∈ V,

Pijkm ≤ (ckm − lkm) Xijkm, ∀i, j, k,m ∈ V,

Rijkm ≥ (lmj − cmj) + (cmj − lmj) Xijkm + ymj , ∀i, j, k,m ∈ V,

Rijkm ≤ ymj , ∀i, j, k,m ∈ V,

Rijkm ≤ (cmj − lmj) Xijkm, ∀i, j, k,m ∈ V,

0 ≤ Xijkm ≤ 1, ∀i, j, k,m ∈ V,

Qijkl, Pijkm, Rijkm ≥ 0, ∀i, j, k,m ∈ V,

yij ≥ 0, ∀i, j ∈ V.

Let (Π1
ij ,Π

2
ijk,Π

3
ijm,Π

4,Π5
ik,Π

6
km,Π

7
mj ,Π

8
ijkm, ...,Π

16
ijkm,Π

17
ijkm) be the dual vari-

ables associated with constraints SP model, respectively. In the context of math-
ematical optimization, the dual SP (DSP) can be formulated as follows:

DSP:

max
∑
i,j

Π
1
ij −

∑
i,j,k

hk Π
2
ijk −

∑
i,j,m

hm Π
3
ijm − B Π

4 −
∑
i,k

(cik − lik) Π
5
ik −

∑
k,m

(ckm − lkm) Π
6
km−
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∑
m,j

(cmj − lmj)Π
7
mj −

∑
i,j,k,m

(cik − lik)Π
8
ijkm −

∑
i,j,k,m

(ckm − lkm)Π
11
ijkm −

∑
i,j,k,m

(cmj − lmj)Π
14
ijkm

−
∑

i,j,k,m

Π
17
ijkm,

s.t

Π
1
ij − Π

2
ijk − Π

3
ijm − (cik − lik)Π

8
ijkm + (cik − lik)Π

10
ijkm − (ckm − lkm)Π

11
ijkm + (ckm − lkm)Π

13
ijkm−

(cmj − lmj) Π
14
ijkm + (cmj − lmj) Π

16
ijkm + Π

17
ijkm ≤ Wij Cijkm, ∀i, j, k,m ∈ V, (23)

− uik Π
4 − Π

5
ik −

∑
m,j

Π
8
ijkm +

∑
mj

Π
9
ijkm ≤ 0, ∀i, k ∈ V, (24)

− ukm Π
4 − Π

6
km −

∑
i,j

Π
11
ijkm +

∑
i,j

Π
12
ijkm ≤ 0, ∀k,m ∈ V, (25)

− umj Π
4 − Π

7
mj −

∑
ik

Π
14
ijkm +

∑
ik

Π
15
ijkm ≤ 0, ∀m, j ∈ V, (26)

Π
8
ijkm − Π

9
ijkm − Π

10
ijkm ≤ −Wij , ∀i, j, k,m ∈ V, (27)

Π
11
ijkm − Π

12
ijkm − Π

13
ijkm ≤ −α Wij , ∀i, j, k,m ∈ V, (28)

Π
14
ijkm − Π

15
ijkm − Π

16
ijkm ≤ −Wij , ∀i, j, k,m ∈ V, (29)

Π
1
ij ∈ R ∀i, j ∈ V, (30)

Π
1
ij ,Π

2
ijk,Π

3
ijm,Π

4
,Π

5
ik,Π

6
km,Π

7
mj ,Π

8
ijkm, ...,Π

16
ijkm,Π

17
ijkm ≥ 0, ∀i, j, k,m ∈ V. (31)

If the DSP is feasible with an optimal solution, an optimality cut is generated by
means of its optimal solution, and then it is added to the MP.

Lemma 3.1. The dual of SP is guaranteed to be both feasible and bounded for any
valid location of hubs. As a result, only optimality cuts are incorporated into the
MP.

By an optimal solution (Π̂1
ij , Π̂

2
ijk, Π̂

3
ijm, Π̂

4, Π̂5
ik, Π̂

6
km, Π̂

7
mj , Π̂

8
ijkm, ..., Π̂

16
ijkm, Π̂

17
ijkm)

of DSP for a given iteration, we can construct the optimality cut as follows:

ϕ ≥
∑
i,j

Π̂1
ij −

∑
i,j,k,m

hk Π̂2
ijk −

∑
i,j,k,m

hmΠ̂3
ijm −BΠ̂4 −

∑
i,k

(cik − lik)Π̂5
ik −

∑
k,m

(ckm − lkm)Π̂6
km−∑

m,j

(cmj − lmj)Π̂7
mj −

∑
i,j,k,m

(cik − lik)Π̂8
ijkm −

∑
i,j,k,m

(ckm − lkm)Π̂11
ijkm −

∑
i,j,k,m

(cmj − lmj)Π̂14
ijkm

−
∑

i,j,k,m

Π̂17
ijkm, (32)

where ϕ is a real non-negative variable. Thus, the MP can be formulated as follows:

MP:

min
∑
k

Fkhk + ϕ,
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s.t

(32),∑
k

hk = p, (33)

hk ∈ {0, 1}, ∀k ∈ V, (34)
ϕ ≥ 0. (35)

The classical Benders decomposition algorithm (CBDA) is formally stated below
in which UB and LB are the upper bound and lower bound, respectively. We de-
note the optimal solutions obtained by solving the current MP and DSP as Z∗MP

and Z∗DSP , respectively.

Algorithm 1 : classical Benders decomposition for Lu-UMApHMP
1: Start
2: Set initial feasible hk and UB = +∞, LB = −∞, ε = 10−3;
3: While (UB − LB) ≥ ε do
4: Solve the dual problem DSP;
5: Generate optimality cut (32);
6: Set UB = Z∗DSP +

∑
k Fkhk;

7: Add Benders cut to MP;
8: Solve the MP, obtaining objective value(Z∗

MP ) and the optimal values for hk;
9: Set LB = Z∗

MP ;
10: End While

4. Computational results

This section presents the results of the numerical computations for the proposed
model and algorithms. The Benders algorithm and the original model were im-
plemented in the GAMS software environment (version 24.1.2), and the CPLEX
optimization solver (version 12.8) was used to solve the SP, DSP, and original
models. The computations were performed on a computer with an Intel Core i5
processor, operating at 4200 M processor speed, with 6 Gigabytes of internal mem-
ory, and running Windows 11 operating system. To evaluate the proposed model,
we utilized the CAB dataset provided by the US Civil Aeronautics Board [13, 55]
with some minor modifications. These modifications involved adjustments to the
establishment costs, budget allocations for changes, lower bounds for edges, and
penalties incurred for corrections.
Our study involved experiments on three different datasets, categorized based on
the number of nodes in each instance. Dataset 1 consisted of instances with 10
and 15 nodes (see Table 3), Dataset 2 included instances with 20 and 25 nodes
(see Table 4), and Dataset 3 encompassed instances with 30, 35, 40, and 45 nodes
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(see Table 6).

Table 3: Computational results for Dataset 1.

Parameters Opt. Sol. Opt. Sol. CPLEX CBDA Hub
N, p, α B=0 (×10+7) B=20000(×10+7) T ime CPU(s) T ime CPU(s) B=20000
10, 2, 0.2 1.624950 1.600549 8 12 {5, 9}
10, 2, 0.4 1.868851 1.844399 8 15 {5, 9}
10, 2, 0.6 2.102095 2.073367 7 12 {5, 9}
10, 2, 0.8 2.304412 2.275910 7 9 {5, 9}
15, 2, 0.2 5.658423 5.578907 90 98 {5, 15}
15, 2, 0.4 6.240293 6.191206 77 97 {5, 14}
15, 2, 0.6 6.727997 6.678911 76 104 {5, 14}
15, 2, 0.8 7.172010 7.125825 76 91 {5, 14}
15, 4, 0.2 2.917392 2.884262 71 78 {3, 5, 9, 14}
15, 4, 0.4 4.058826 4.024079 78 102 {3, 5, 9, 14}
15, 4, 0.6 5.122051 5.084017 78 90 {3, 5, 9, 14}
15, 4, 0.8 6.150809 6.112404 76 103 {3, 5, 9, 14}

In Table 3, the first column represents the input parameters of the problem.
The second and third columns display the optimal solution values for the problem
under two different scenarios: when the budget is set to 0 (no upgrading can be
done) and when a specific budget is allocated for upgrading (the Lu-UMApHMP),
respectively. The fourth and fifth columns of the table display the elapsed time
(measured in seconds) required by the CPLEX solver and CBDA to solve the given
model successfully. Finally, the last column displays the optimal hubs obtained
through the utilization of these solvers.

According to Table 3, the optimal solution of Lu-UMApHMP with an allocated
budget has shown improvement, and the CPLEX solver demonstrates faster solving
times compared to CBDA when applied to small-sized datasets. For the test
involving the instances with 10 nodes, the CPLEX solver exhibits a time difference
rate of 45% compared to the CBDA. The time difference rates for the instances
with 15 nodes with 2 and 4 hubs are 18% and 19%, respectively.

The present study conducted a series of tests on Dataset 2 to evaluate the
performance of the CPLEX solver and the CBDA. The experiments encompassed
instances with different node sizes. The CPLEX solver exhibited remarkable ef-
ficiency in achieving the optimal solution for instances consisting of 20 nodes.
Specifically, the CPLEX solver demonstrated a 2%-time difference compared to
the CBDA, although the disparity between the two was negligible. Notably, for
instance, with 25 nodes, the CPLEX solver encountered an out-of-memory error
(indicated by ‘M error’), while the CBDA solved the problem (see Table 4).
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Table 4: Computational results for Dataset 2.

Parameters Opt. Sol. Opt. Sol. CPLEX CBDA Hub
N, p, α B=0 (×10+7) B=20000(×10+7) T ime CPU(s) T ime CPU(s) B=20000
20, 4, 0.2 6.737578 6.686855 668 689 {5, 9, 14, 16}
20, 4, 0.4 8.260774 8.219935 451 469 {5, 9, 14, 16}
20, 4, 0.6 9.522764 9.475700 665 678 {5, 9, 14, 16}
20, 4, 0.8 10.69626 10.64740 998 1020 {5, 9, 14, 16}
25, 8, 0.2 13.97660 13.84931 M error 2382 {3, 5, 9, 14, 19, 21, 22, 23}
25, 8, 0.4 21.19367 21.10392 M error 3661 {5, 9, 14, 16, 21, 22, 23, 24}
25, 8, 0.6 27.72824 27.61434 M error 6193 {5, 9, 14, 16, 21, 22, 23, 24}
25, 8, 0.8 33.98784 33.82976 M error 6217 {5, 9, 14, 16, 21, 22, 23, 24}

In this paper, we employed the CAB dataset as a case study. For data with
25 nodes, p=8, and α = 0.9, we changed the budget and compared the results.
When the budget is set to zero, the optimal total cost aligns precisely with the
value reported in reference [55]. The disparity between the two values lies solely in
the setup costs for opening the hubs. However, for example, by considering a bud-
get of the amount of 40,000 units for improving the performance of the network,
the optimal total cost is decreased 21,417 units. This alteration underscores the
pivotal role of budget allocation in optimizing the total cost within the context
of our study. Our research findings illustrate that augmenting the budget results
in either an improvement in the total cost or its stabilization at a consistent level
(see Table 5). Also, with the change in the amount of the budget, the hubs can be
changed. For example, by increasing the budget from 25000 to 30000, we observe
that the hubs are changed.

Table 5: Computational results related to the changes of the budget.

Budget Opt. Sol. Hub
(×10+6)

0 369.0851 {3, 5, 9, 14, 16, 21, 22, 23}
5000 368.4236 {3, 5, 9, 14, 16, 21, 22, 23}
10000 367.8755 {3, 5, 9, 14, 16, 21, 22, 23}
15000 367.6661 {3, 5, 9, 14, 16, 21, 22, 23}
20000 367.4542 {3, 5, 9, 14, 16, 21, 22, 23}
25000 367.3022 {3, 5, 9, 14, 16, 21, 22, 23}
30000 367.1617 {3, 5, 9, 14, 16, 19, 21, 23}
35000 367.0474 {3, 5, 9, 14, 16, 19, 21, 23}
40000 366.9434 {3, 5, 9, 14, 16, 19, 21, 23}
45000 366.8644 {3, 5, 9, 14, 16, 19, 21, 23}

Figure 1 illustrates the process of budget alteration and its consequential impact
on the optimal total cost value.
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Figure 1: Optimal total cost values with respect to budget change.

It is noteworthy that when working with Dataset 3, which comprises instances
of larger sizes, the calculations performed using the CPLEX solver resulted in a
memory shortage error and hence could not be included in the analysis. The CBDA
is a suitable approach in such scenarios as it decomposes the problem into smaller
subproblems. Subsequently, the tests were exclusively conducted on Dataset 3,
utilizing the CBDA, as indicated in Table 6. According to the results presented
in Table 6, it is evident that the CPLEX solver faced memory shortage errors
while attempting to solve instances with 30, 35, 40, and 45 nodes. In contrast,
the CBDA demonstrated the ability to solve these instances by decomposing the
problem into smaller subproblems.

Table 6: Computational results for Dataset 3.

Parameters Opt. Sol. Opt. Sol. CPLEX CBDA Hub
N, p, α B=0 (×10+8) B=20000(×10+8) T ime CPU(s) T ime CPU(s) B=20000
30, 8, 0.2 2.574522 2.562840 M error 15112 {5, 9, 14, 21, 23, 28, 29, 30}
30, 8, 0.4 3.902305 3.887137 M error 16282 {5, 9, 14, 21, 23, 28, 29, 30}
30, 8, 0.6 5.122472 5.102279 M error 13982 {5, 9, 14, 21, 22, 23, 28, 30}
30, 8, 0.8 6.267675 6.245660 M error 11982 {5, 9, 14, 21, 22, 23, 28, 30}
35, 8, 0.2 3.746114 3.727827 M error 12524 {5, 9, 14, 21, 28, 30, 31, 32}
35, 8, 0.4 5.332018 5.317167 M error 13926 {5, 9, 14, 21, 28, 29, 30, 32}
35, 8, 0.6 6.791775 6.774643 M error 14975 {5, 9, 14, 21, 28, 29, 30, 32}
35, 8, 0.8 8.112937 8.089146 M error 18251 {5, 9, 14, 21, 22, 23, 28, 30}
40, 4, 0.2 7.732198 7.697829 M error 14450 {5, 21, 23, 28}
40, 4, 0.4 8.764980 8.726314 M error 15103 {5, 21, 23, 28}
40, 4, 0.6 9.544658 9.510205 M error 16111 {5, 21, 23, 28}
40, 4, 0.8 10.15572 10.11534 M error 19224 {5, 21, 23, 28}
45, 4, 0.2 9.666607 9.627035 M error 15519 {5, 28, 38, 44}
45, 4, 0.4 11.21598 11.15735 M error 16725 {5, 21, 23, 28}
45, 4, 0.6 12.24736 12.18669 M error 18758 {5, 21, 23, 28}
45, 4, 0.8 13.05107 12.97818 M error 23253 {5, 21, 23, 28}

In the subsequent analysis, Figure 2 shows the convergence process to the optimal
solution using CBDA for instances containing 45 nodes. In this figure, it is clear
that the upper and lower bounds are close to each other in some steps, and finally
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Figure 2: The convergence process to the optimal solution using CBDA for n = 45.

they meet.
In summary, the computational findings indicate that the optimal solution of

Lu-UMApHMP with a specifically allocated budget consistently demonstrates im-
provement across all instances. Furthermore, the CPLEX solver effectively solves
small problem instances, whereas the CBDA demonstrates greater applicability
across a more comprehensive range of instances. As the problem size increases,
the CBDA proves advantageous as it can decompose the problem into smaller sub-
problems, enabling efficient and faster execution. Therefore, utilizing the CBDA
for improved efficiency and quicker solution generation is recommended for larger
instances.

5. Conclusions

In this paper, we investigated the upgrading of the uncapacitated multiple allo-
cation p-hub median problem (u-UMApHMP). This problem aims to improve the
value of the optimal objective function of UMApHMP by adjusting edge lengths
while adhering to a pre-defined budget and bound constraints. We developed a
nonlinear mixed integer programming model for the u-UMApHMP and then pro-
ceeded to linearize the model. We utilized the CPLEX solver and the Benders
decomposition method to solve the linearized version. The proposed approach
was implemented using the GAMS software, and the resulting outcomes were sub-
sequently compared across multiple datasets for analysis and evaluation.
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