
Mathematics Interdisciplinary Research 9 (2) (2024) 151− 169

Original Scientific Paper

Improving Probabilistic Bisimulation for MDPs

Using Machine Learning

Mohammadsadegh Mohagheghi and Khayyam Salehi?

Abstract

The utilization of model checking has been suggested as a formal verifi-
cation technique for analyzing critical systems. However, the primary chal-
lenge in applying to complex systems is the state space explosion problem.
To address this issue, bisimulation minimization has emerged as a prominent
method for reducing the number of states in a system, aiming to overcome the
difficulties associated with the state space explosion problem. For systems
with stochastic behaviors, probabilistic bisimulation is employed to minimize
a given model, obtaining its equivalent form with fewer states. In this paper,
we propose a novel technique to partition the state space of a given prob-
abilistic model to its bisimulation classes. This technique uses the PRISM
program of a given model and constructs some small versions of the model
to train a classifier. It then applies supervised machine learning techniques
to approximately classify the related partition. The resulting partition is
then used to accelerate the standard bisimulation technique, significantly
reducing the running time of the method. The experimental results show
that the approach can decrease significantly the running time compared to
state-of-the-art tools.

Keywords: Probabilistic bisimulation, Markov decision process, Model check-
ing, Machine learning, Support Vector Machine.

2020 Mathematics Subject Classification: 68N30, 68Q60, 68T01.

How to cite this article
M. Mohagheghi and K. Salehi, Improving probabilistic bisimulation for MDPs
using machine learning, Math. Interdisc. Res. 9 (2) (2024) 151-169.

?Corresponding author (E-mail: kh.salehi@sku.ac.ir)
Academic Editor: Mahdi Dehghani
Received 6 August 2023, Accepted 13 October 2023
DOI: 10.22052/MIR.2023.253367.1431

c© 2024 University of Kashan

This work is licensed under the Creative Commons Attribution 4.0 International License.

152 M. Mohagheghi et al. / Improving Probabilistic Bisimulation for...

1. Introduction

In today’s world, computers are everywhere, and when they malfunction, the ef-
fects can be profound. Furthermore, proving the accuracy of computer systems
is important since some safety features that fail could endanger human life. One
mistake in the launch of a rocket, for instance, might have a negative impact on
the entire operation [1].

Testing is a promising approach to ensure the correctness of a system. How-
ever, it is unable to cover all possible scenarios and verify the system’s correctness
entirely [2]. In contrast, formal methods utilize mathematical techniques to deter-
mine if a system would function correctly under all potential circumstances. There
are two widely used formal methods: theorem proving and model checking. The
former employs mathematical proofs to establish the program properties of the
system, often requiring expert involvement. Conversely, model checking automat-
ically verifies that the entire system behavior satisfies the desired properties [2].
This paper will focus on adopting the model checking approach.

Model checking is an approach for formally verifying qualitative or quantita-
tive properties of computer systems. It involves using a Kripke structure [2] or
labeled transition system to represent the underlying system and employing tem-
poral logic or automata to specify the desired properties. By utilizing software
tools, the proposed model is automatically checked to determine if the specified
properties can be guaranteed. Given the stochastic nature of many computer
systems, probabilistic model checking is available to verify the properties of such
systems. Markov decision processes (MDPs) and Discrete-time Markov chains
(DTMCs) are two extensions of transition systems used for modeling stochastic
computer systems [3]. DTMCs are suitable for modeling fully probabilistic sys-
tems, while MDPs can capture both stochastic and non-deterministic behaviors of
computer systems [3]. MDPs often involve uncertainty and randomness in their
decision-making processes. MDPs provide a powerful framework for studying such
scenarios and finding optimal strategies or policies to achieve desired objectives
under uncertain conditions. This makes them valuable tools in various fields, in-
cluding artificial intelligence, control theory, operations research, and robotics,
among others.

The primary obstacle in model checking is the state space explosion problem,
wherein the size of models grows exponentially as the number of components in-
creases. This limitation restricts the explicit representation of large models [1–3].
To address this challenge, various techniques have been developed over the past
few decades. Symbolic model representation [4, 5], compositional verification [6, 7],
statistical model checking [8–10], and reduction techniques [11–13] are among the
key approaches proposed to tackle this problem. These techniques are widely uti-
lized in model checking tools to alleviate the impact of the state space explosion
problem.

One of the techniques used for model reduction is bisimulation minimization,
which establishes an equivalence class on the state space of the model [14, 15].

Mathematics Interdisciplinary Research 9 (2) (2024) 151− 169 153

States within each equivalence class, known as bisimilar states, share the same set
of properties. By applying a bisimulation relation, states within a class can be
collapsed into a single state, resulting in a reduced model that is equivalent to the
original one. Importantly, the reduced model preserves the same set of properties,
allowing a model checker to utilize it as a substitute for the original model [2].

The literature defines various types of bisimulation depending on the class of
transition systems and the properties being considered. One commonly discussed
type is strong bisimulation, where two states, s and t, are considered bisimilar if,
for every successor state of s, there exists at least one bisimilar successor state
of t, and vice versa [2, 16]. Another type is weak bisimulation, which disregards
silent transitions and defines bisimilar states based on a path that includes some
silent moves along with a move having the same action [14]. It is worth noting
that silent moves opposed to observable moves refer to unimportant or internal
transitions [14]. In this paper, our focus is on strong bisimulation, and we pro-
pose a machine learning technique to reduce the computational time of iterative
algorithms used to compute this particular version of the bisimulation relation for
probabilistic systems. Further information about other classes of bisimulation and
their associated algorithms can be found in [17].

In previous works, numerous techniques have been proposed for computing
probabilistic bisimulation. The initial works on defining bisimulation for prob-
abilistic automata and Markov Decision Processes (MDPs) can be traced back
to [18, 19]. Definition of both strong and weak bisimulation for probabilistic sys-
tems incorporating non-determinism, along with their associated algorithms, was
first introduced in [20]. These works have contributed significantly to the de-
velopment of techniques for analyzing and verifying probabilistic systems using
bisimulation.

To improve the performance of the standard algorithms for computing prob-
abilistic bisimulation in MDPs, we propose a novel approach. The proposed ap-
proach uses supervised machine learning techniques to directly compute bisimilar
equivalence classes. The computed partition can be used as the initial one for an
iterative partition refinement algorithm. One of the benefits of such an approach
is its capability to extend to other types of bisimulation or transition systems.
To the best of our knowledge, no previous work has used machine learning for
classifying bisimilar blocks of states. In summary, the main contributions of our
work are as follows:

• We use supervised machine learning to classify the state space of a model
to its bisimilar blocks. Our technique uses several small versions of a given
model for the training step.

• We define the superblock concept. A superblock contains several bisimilar
blocks. In computing probabilistic bisimulation, the number of bisimilar
blocks of different versions of a model is different; but, the number of su-
perblocks is fixed.

154 M. Mohagheghi et al. / Improving Probabilistic Bisimulation for...

The structure of the paper is as follows. In Section 2, we review some pre-
liminary definitions of MDPs and probabilistic bisimulation and the standard al-
gorithm for computing a probabilistic bisimulation partition. In Section 3, we
describe the proposed approach for using machine learning to compute bisimilar
classes of a given MDP model. Section 4 provides the experimental results running
on several classes of the standard benchmark models. Finally, Section 5 concludes
the paper and introduces some future work.

2. Preliminaries
In the context of a finite set S, a distribution µ over S is a function µ : S → [0, 1]
that assigns non-negative values to each element of S such that

∑
s∈S µ(s) = 1. In

other words, for every s ∈ S, the value µ(s) represents the probability associated
with s. The set S is considered as the state space, and each member s ∈ S is
referred to as a state.

The set of all distributions over S is denoted by D(S). It encompasses all
possible functions that satisfy the conditions of being a distribution over the set
S. Furthermore, given a subset T ⊆ S and a distribution µ, the accumulated
distribution over T , denoted as µ[T], is defined as the sum of the probabilities or
weights assigned to the states within T . Mathematically, it is defined as µ[T] =∑

s∈T µ(s) [14].
A partition B of a set S consists of non-empty and disjoint subsets, forming

equivalence blocks, which cover the entire set S. An equivalence relation R is
defined based on the blocks, where two states are considered equivalent if they
belong to the same block. Formally: s R t if and only if ∃Bi ∈ B s.t. s, t ∈ Bi.

The set of equivalence classes of R on S is denoted as S/R. For a subset T of S,
T/R represents the set of states related to at least one state in T , that is, T ⊆ S,
T/R = {s ∈ S| ∃t ∈ T : sRt}. A partition B1 is considered finer than B2 if every
block in B1 is a subset of a block in B2. Additionally, the equivalence relation R
on distributions over S can be extended by comparing accumulated distributions
within the equivalence blocks defined by the partition, formally: µRν if and only
if µ[C] = ν[C] for every block C ∈ S/R. That is, the accumulated distribution µ
of C is the same as ν.

Definition 2.1 (Markov Decision Process (MDP)). An MDP M represents as a
tuple (S, s0, Act, δ,G) where S is a finite set of states, s0 ∈ S is an initial state, Act
is a set of finite actions, δ : S × Act→ D(S) is a (partial) probabilistic transition
function, which maps a state and an action to a distribution of states, and G is
the subset of states representing the set of goal states.

MDPs are widely used as mathematical models to represent and analyze sys-
tems that exhibit both non-deterministic and probabilistic behavior. The number
of states in the MDP is denoted by |S|, and the number of actions available is rep-
resented by|Act|. The set of actions enabled in each state s is denoted by Act(s).

Mathematics Interdisciplinary Research 9 (2) (2024) 151− 169 155

In other words, in state s, we can select an action α ∈ Act (s).
MDP M works as follows. It starts by selecting an initial state s0. Once MDP

M is in a particular state s, a nondeterministic choice between the enabled ac-
tions needs to be resolved. Suppose action α ∈ Act(s) is non-deterministically
chosen. Then, according to the induced distribution µ = δ(s, α), the next state
s′ is probabilistically specified. To resolve non-deterministic choices of an MDP,
the notion of policies (also known as adversaries) is utilized. A policy is a (deter-
ministic) mapping that associates each state s ∈ S with a specific enabled action
α ∈ Act(s).

Reachability properties of probabilistic systems are determined as the proba-
bility of achieving a set of states of the model. For MDPs, the properties can be
determined as the extremal (maximal or minimal) probability of reaching a goal
state G over all possible policies. In bounded reachabilities, the number of steps
that can be taken is restricted to a predetermined bound. More comprehensive
details on probabilistic model checking and the specific iterative methods used for
computing reachability properties can be found in [2].

Definition 2.2 (Probabilistic Bisimulation). A probabilistic (strong) bisimulation
R ⊆ S × S is an equivalence for M if and only if for each pair of states s, t ∈ S,
the property sRt implies that for every action α ∈ Act(s) there exists an action
β ∈ Act(t) such that δ (s, α) R δ (t, β). In this case, the probability of leaving
each block is the same for both actions. The name of actions is irrelevant to
characterized the bisimilarity of two states; whereas in probabilistic automata,
actions names should be taken into account.

Two states s, t ∈ S are probabilistically bisimilar if and only if there exists a
probabilistic bisimulation R such that sRt. In the literature, probabilistic bisim-
ulation is characterized in terms of a goal set of states G; that is, we have either
s, t ∈ G or s, t ∈ S \G for any pair of bisimilar states s and t.

The key feature of probabilistic bisimulation is that for any pair of bisimilar
states s, t ∈ S, the same set of bounded and unbounded reachability properties are
satisfied in both states [2]. Consequently, a reduced bisimilar (especially smaller)
MDP can be created by exchanging all bisimilar states of any block Bi ∈ B of
original MDP M by one state.

Example 2.3. Consider an MDP model depicted in Figure 1. It has 8 states
including s1 and G that are initial and goal state, respectively. State s7 is a
dead state that can never reach the goal state G. Assume that MDP is in state
s5, it nondeterministically select one of the actions a or b. If a is selected, the
next state of MDP is chosen probabilistically, that is, with probability of 0.8,
the next state is s7 and with probability of 0.2, the next one is goal state G.
Based on Definition 2.2, s5 and s6 are bisimilar because they have the same prob-
ability distributions in each action over the state models. However, s4 is not
bisimilar with any other state. Because of bisimilarity of s5 and s6, there is also
a bisimilarity between s2 and s3. These two states have only one action with

156 M. Mohagheghi et al. / Improving Probabilistic Bisimulation for...

s1

s2

s3

s4

s5

s6

s7

G

a

0.1
0.4

0.5
b

1

a

0.2

0.4

0.4

a

0.2

0.5

0.3

a

b

0.5

0.5

1

a

b

0.8

0.2

0.5

0.5

a b

0.8

0.2

0.5

0.5

a

1

Figure 1: A sample MDP model.

the same accumulated probability of reaching bisimilar blocks {s4} and {s5, s6}.
Finally, initial state s1 is not bisimilar with other states. Thus, we have par-
tition B1 = {{s1}, {s2, s3}, {s4}, {s5, s6}, {s7}, {G}}. Also, a trivial partition is
B0 = {{s1, s2, s3, s4, s5, s6, s7, G}}. It is clear that B1 is finer than B0, beacuse
each block in B1 is a subset of a block in B0.

2.1 The standard algorithm for computing a probabilistic
bisimulation

Partition refinement is a widely applicable algorithm for computing a bisimulation
relation in various types of transition systems. The algorithm begins with an initial
partition and proceeds iteratively by refining the partitions through the splitting
of certain blocks into smaller, more refined blocks. The iterations continue until
a fixed point is reached, meaning that no further splitting of blocks is possible
(Figure 2).

In each iteration, a block is chosen (randomly or based on some orderings [21])
as a splitter to divide some predecessor blocks into smaller and finer ones. The
specific method of splitting a block depends on the definition of bisimulation tai-
lored to the underlying transition system being analyzed. Algorithm 1 outlines
the steps involved in this approach [2].

In probabilistic bisimulation, the refinement procedure for partitioning blocks
takes into account the probabilities associated with reaching a splitter block C.
This procedure involves splitting a block Bi from the current partition B into

Mathematics Interdisciplinary Research 9 (2) (2024) 151− 169 157

Figure 2: Successive partition refinement procedure.

Algorithm 1: Partition refinement algorithm [2]
Input: An MDP model M
Output: bisimulation partition B

1 Initialize B to a first partition;
2 while there is a splitter for B do
3 Choose a splitter C for B;
4 B := Refine(B, C);
5 return B;

multiple subblocks Bi,1, Bi,2, · · · , Bi,k based on the following conditions:

1. ∪1≤j≤kBi,j = Bi,

2. Bi,j ∩Bi,l = ∅ for 1 ≤ j < l ≤ k,

3. for each 1 ≤ j ≤ k and every two states s, t ∈ Bi,j , it holds that for each
action α ∈ Act(s) there is an action β ∈ Act(t) where δ(s, α)[C] = δ(t, β)[C].

By utilizing an efficient data structure, the time complexity of the Refine
method in Algorithm 1 (Line 4) is in O(|M |+ |S| · |Act| · log |Act|) [16]. In the algo-
rithm, a queue of blocks is used, where after refining each block, all computed sub-
blocks, except the largest one, are added to the queue as potential splitters. This
strategy ensures that each state is considered in some splitters for at most log(|S|)
times. Based on this approach, the overall time complexity of Algorithm 1 for com-
puting probabilistic bisimulation is in O(|M | · log |S|+ |S| · log |S| · |Act| · log |Act|).

There are various approaches to compute the initial partition B ⊆ S × S. One
possible method is to consider two blocks, G and S \G, as the initial partition and
use G as the first splitter. Using a finer initial partition, Algorithm 1 requires fewer
iterations to reach the fixed point. In this paper, a novel heuristic is proposed for
computing the initial partition. This heuristic incorporates a machine learning
technique to approximate the relevant partition of the probabilistic bisimulation
relation. Ideally, the approximated partition aligns with the final partition of the
probabilistic bisimulation relation, yielding the best-case scenario.

158 M. Mohagheghi et al. / Improving Probabilistic Bisimulation for...

2.2 The PRISM modeling language

The standard approach in model checking is to use a high-level modeling language
to propose a description of the underlying system. A model checker translates the
proposed program to a transition system as the semantics of the model. PRISM
programs [22] can be used for the case of probabilistic model checking. In this
modeling language, each program contains one or more modules, while each module
has several variables with a defined domain of values. Several guarded commands
describe possible transitions of the model. A probabilistic model checker (such as
PRISM [22] or STORM [23]) parses a program to a related MDP or DTMC. An
example of a PRISM program is proposed in Figure 3. It defines an MDP model

7/27/2021 coin8.nm

file:///E:/Research/Learning-for-Verification/our paper/international-journal-on-software-tools-for-technology-transfer/prism-code/coin8.nm.html 1/1

mdp

const int N=2;
const int K;
const int range = 2*(K+1)*N;
const int counter_init = (K+1)*N;
const int left = N;
const int right = 2*(K+1)*N - N;

global counter : [0..range] init counter_init;

module process1

 pc1 : [0..3];
 coin1 : [0..1];

 [] (pc1=0) -> 0.5 : (coin1'=0) & (pc1'=1) + 0.5 : (coin1'=1) & (pc1'=1);
 [] (pc1=1) & (coin1=0) & (counter>0) -> (counter'=counter-1) & (pc1'=2) & (coin1'=0);
 [] (pc1=1) & (coin1=1) & (counter<range) -> (counter'=counter+1) & (pc1'=2) & (coin1'=0);
 [] (pc1=2) & (counter<=left) -> (pc1'=3) & (coin1'=0);
 [] (pc1=2) & (counter>=right) -> (pc1'=3) & (coin1'=1);
 [] (pc1=2) & (counter>left) & (counter<right) -> (pc1'=0);
 [done] (pc1=3) -> (pc1'=3);

endmodule

// construct remaining processes through renaming
module process2 = process1[pc1=pc2,coin1=coin2] endmodule

// labels
label "finished" = pc1=3 & pc2=3 ;
label "all_coins_equal_0" = coin1=0 & coin2=0 ;
label "all_coins_equal_1" = coin1=1 & coin2=1 ;
label "agree" = coin1=coin2 ;

Figure 3: The PRISM code for the Coin MDP model.

with two modules process1 and process2 while the second module is a copy of
the first one. The first module has two variables pc1 and coin1 with the defined
domain of values. Moreover, several constants with known values and a parameter
constant (K) are used in the definition. A global variable counter is defined that
its upper-bound is determined byK. Thus, using different values for the parameter
K, we may have different models with different sizes. In the process1 module, the
first guarded command states that if pc1 equals to 0, with a probability of 50%
coin1 and pc1 will be 0 and 1, respectively; while, with a 50% coin1 and pc1 will
be 1.

Mathematics Interdisciplinary Research 9 (2) (2024) 151− 169 159

Any valid valuation for the set of model variables induces a state of its asso-
ciated transition system. However, only the set of states that are reachable from
the initial state are needed for model checking and are stored explicitly or implic-
itly. Formally, for the set of model variables, a state si ∈ S maps any of these
variables to a value in its domain. For a set vi, vj , · · · , vk of state variables, we use∏

vi,vj ,...,vk
(s) as a projection function, which gets a list of the value of these vari-

ables in s. For any subset R ⊆ S, we define
∏

vi,vj ,...,vk
(R) = ∪s∈R

∏
vi,vj ,...,vk

(s).
For a model M of a given PRISM program, we use Vars(M) for the set of its vari-
ables (not constants) and use Params(M) for those variables where upper bounds
are bounded by a parameter. We call such variables parametric. For the induced
MDP M of Figure 3., we have Vars(M) = {counter, pc1, coin1, pc2, coin2} and
Params(M) = {counter}. The MDP variable counter is parametric because its
upper bound is determined by the model parameter K.

3. The proposed approach
In this section, we propose a novel heuristic for approximating the initial partition.
The correctness of the approximated result is checked by the partition refinement
method (Algorithm 1). If the approximation requires more refinements, it can
be used as a more precise initial partition that may result in faster convergence
towards the fixed point. In other words, this can be considered as a preprocessing
step of the partition refinement method.

For the sake of simplicity, we assume that every program graph has only one
parameter. It should be noted that even with this assumption, a variable with
a parametric value domain may have several copies in the model definition and
also in the induced MDP. The general scheme of our approach is proposed in
Algorithm 2.

In the following subsections, we explain each step in detail. Recall that the
main purpose of our approach is to facilitate the computation of bisimilar blocks
for a large model, where the running time may be an obstacle. Even in non-precise
computed blocks, they can be used to reduce the main model to an abstract version
to cope with memory limitations.

3.1 Constructing sample models and computing probabilis-
tic bisimulation

As the first step of our approach, we consider several sample models by using
smaller values p1, p2, · · · , pn for the parameter of the given PRISM program (Line 1
of Algorithm 2). Depending on the structure of the given program, the parameters
can be so small that result in some tiny models or they may be large enough to
have the same structure as the given model. In the next section, we explain more
about the values of parameters for several case studies. Although the precision
of machine learning may increase by using more samples, in practice using two or

160 M. Mohagheghi et al. / Improving Probabilistic Bisimulation for...

Algorithm 2: Approximating Initial Partition
Input: A PRISM program with known values as parameters
Output: An approximated partition B for the induced MDP

1 Construct several sample models Mp1 ,Mp2 , ...,Mpn , using smaller values
for the model parameter (Section 3.1);

2 For each sample model Mpi
, apply the probabilistic bisimulation

algorithm and compute its equivalence partition Bpi
(Algorithm 1);

3 For each partition Bpi
, compute the set {sp1, sp2, ..., spk} of its

superblocks (Section 3.2);
4 Let η(s) denote the superblock that s belongs to. (Definition 3.1);
5 Fix a classifier and use η for training (Section 3.3);
6 Use the trained classifier to predict which superblock each state of the

underlying model belongs to (Section 3.4);
7 Split states of each superblock to their blocks according to their

parameter values (Section 3.5);
8 return the partition B including the computed blocks of step 7;

three sample MDP models with several thousand states may be enough. In this
case, we have at least ten thousand states as training samples that are considered
enough in machine learning. Furthermore, we compute probabilistic bisimulation
and the equivalence blocks of each model by utilizing the standard algorithm for
MDP models of each probabilistic program (Line 2 of Algorithm 2).

3.2 Computing superblocks
The main idea of our approach is to use a classifier to map each state of the
underlying model to a block of the bisimulation equivalence relation. To do so,
we consider each variable of an MDP as a feature of samples and each block
as a class. Considering the variable values of each state as its feature values,
the classifier should determine which class (block) the state may belong to. An
important challenge of using computed partitions of the sample models is that
the number of blocks is different among different samples (versions) of an MDP
model. In this case, a classifier is unable to map states to the correct classes. To
cope with this challenge, we gather several blocks of a partition to a superblock.
We define a superblock as a collection of several bisimulation blocks such that any
state of a block has similar states in the other blocks where the variables are the
same except the parametric variables (Line 3 of Algorithm 2).

Definition 3.1. A superblock sp of an MDP M is the largest collection of blocks
that for each pair of different blocks Bi, Bj , the following condition holds:

∀s ∈ Bi ∃t ∈ Bj :
∏

non−params(M)

(s) =
∏

non−params(M)

(t).

Mathematics Interdisciplinary Research 9 (2) (2024) 151− 169 161

Block #61 --> 25:(3,0,0,1,0) 30:(3,1,0,0,0) 346:(13,0,0,1,1) 356:(13,1,1,0,0)

Block #62 --> 39:(3,1,1,2,0) 44:(3,2,0,1,1) 353:(13,1,0,2,0) 363:(13,2,0,1,0)

Block #63 --> 27:(3,0,0,2,0) 42:(3,2,0,0,0) 347:(13,0,0,2,0) 362:(13,2,0,0,0)

Block #64 --> 57:(4,0,0,1,0) 62:(4,1,0,0,0) 314:(12,0,0,1,1) 324:(12,1,1,0,0)

Block #65 --> 58:(4,0,0,1,1) 68:(4,1,1,0,0) 313:(12,0,0,1,0) 318:(12,1,0,0,0)

Block #66 --> 65:(4,1,0,2,0) 75:(4,2,0,1,0) 327:(12,1,1,2,0) 332:(12,2,0,1,1)

Block #67 --> 59:(4,0,0,2,0) 74:(4,2,0,0,0) 315:(12,0,0,2,0) 330:(12,2,0,0,0)

Block #68 --> 38:(3,1,1,1,1) 351:(13,1,0,1,0)

Block #69 --> 96:(5,1,0,1,1) 101:(5,1,1,1,0) 288:(11,1,0,1,1) 293:(11,1,1,1,0)

Block #70 --> 89:(5,0,0,1,0) 94:(5,1,0,0,0) 282:(11,0,0,1,1) 292:(11,1,1,0,0)

Block #71 --> 88:(5,0,0,0,0) 280:(11,0,0,0,0)

Block #72 --> 64:(4,1,0,1,1) 69:(4,1,1,1,0) 320:(12,1,0,1,1) 325:(12,1,1,1,0)

Block #73 --> 127:(6,1,0,1,0) 262:(10,1,1,1,1)

Block #74 --> 121:(6,0,0,1,0) 126:(6,1,0,0,0) 250:(10,0,0,1,1) 260:(10,1,1,0,0)

Block #75 --> 122:(6,0,0,1,1) 132:(6,1,1,0,0) 249:(10,0,0,1,0) 254:(10,1,0,0,0)

Block #76 --> 71:(4,1,1,2,0) 76:(4,2,0,1,1) 321:(12,1,0,2,0) 331:(12,2,0,1,0)

Block #77 --> 129:(6,1,0,2,0) 139:(6,2,0,1,0) 263:(10,1,1,2,0) 268:(10,2,0,1,1)

Block #78 --> 123:(6,0,0,2,0) 138:(6,2,0,0,0) 251:(10,0,0,2,0) 266:(10,2,0,0,0)

Block #79 --> 102:(5,1,1,1,1) 287:(11,1,0,1,0)

Block #80 --> 160:(7,1,0,1,1) 165:(7,1,1,1,0) 224:(9,1,0,1,1) 229:(9,1,1,1,0)

Figure 4: Some blocks of a Bisimulation Partition for the Coin case study.

The intuition behind this definition is that by increasing the value of a pa-
rameter, we expect to have new blocks that are similar to some previous ones
except for their parametric values that are higher than the others. In this case,
the total number of subblocks does not change among different models of a PRISM
program.

For more clarification, consider Figure 4 which shows a list of some blocks of
bisimilar states for the Coin case study with K = 3 as its parameter value. For
each block, its number as the order that it is computed and the list of its states
including state number and its feature values are reported. As an example, the
73’rd block contains two states: s127 and s262. For this case, a superblock contains
the 68’th, 73’nd and 79’th blocks because the states of these blocks are of the form
(x, 1, 0, 1, 0) and (y, 1, 1, 1, 1) where x and y are the parametric variables. To use
superblocks for a classification process, we define η as a mapping from states to
superblocks (Line 4 of Algorithm 2). For each state s ∈ S of a sample model, η(s)
determines its corresponding superblock:

η(s) = spi iff ∃B ∈ spi, s ∈ B. (1)

3.3 Training step
In the approach, a classifier uses a set of superblocks for a training step. A Support
Vector Machine (SVM) is used to accomplish this step. The purpose of this step is

162 M. Mohagheghi et al. / Improving Probabilistic Bisimulation for...

to construct a classifier model to predict classes of the state space for a new given
model of the same class of the training step. Hence, we use η as a mapping from
state space to superblocks (Line 5 of Algorithm 2). For a given PRISM program,
we consider its variables as model features. For the example of Coin case study
with two modules in the PRISM code, there are five variables where each variable
is considered as a model feature. Referring to Figure 4, state 58 can be considered
as a state where the value of the first feature is 4 and so on. For any parametric
variable, we add the difference of the variable value and its domain upper bound
(maximum value for the variable) as an additional feature of the model. This
additional feature guarantees the uniqueness of states over all training models,
i.e., it is not possible to have the same states among different models. For each
state of a model, its features are considered as inputs to η. This mapping is used
to label each state for the training step.

3.4 Classifying states into superblocks

For any state of a new model, the classifier determines its related superblock. The
precision of a classifier for detecting the correct superclass depends on the structure
of the models and associated PRISM programs. Because the training models and
the given model have the same structure and only differ in their parameters, we
expect to have promising results in most cases.

To improve the precision of our approach, we partition the state space of the
given model to several subclasses according to its features. A subclass is assigned
according to non-parametric variables of the PRISM program and possible values
of these variables (reachable from the initial state). We apply these partitions for
both training samples and the given model. For each subclass, a classifier is used
to predict related superblocks of its states. In our approach, we first separate state
space into several subclasses and then use a support vector machine classifier to
improve the precision of classification (Line 6 of Algorithm 2).

3.5 Splitting superblocks to bisimilar classes

As the final step of our approach, the states of each superclass should map to
the correct bisimilar blocks. According to our definition of superblocks, a re-
lation among parametric variables of bisimilar states of training sample models
determines the possible values for the parameters of bisimilar states. For the ex-
ample of Subsection 3.2, the bisimilar states are as the form tuples (x, 1, 0, 1, 0)
and (y, 1, 1, 1, 1) where x + y = 16. For the parametric variable of this sample,
we have counter = 16. For a given model with a known value for the counter
parameter, our approach splits states of this superblock to bisimilar blocks where
x + y = counter holds (Line 7 of Algorithm 2). It is noteworthy that the pro-
posed approach is an initialization step for partition refinement algorithm. The
soundness of the approach is as the following.

Mathematics Interdisciplinary Research 9 (2) (2024) 151− 169 163

Soundness. To ensure the soundness of the approach proposed in this section,
we consider several cases, where the initial partition may contain non-exact bisim-
ilar states:

• Case 1: A block B′ includes two or more bisimilar blocks Bj1, Bj2, ... where
each Bjk is a block of the correct bisimilar partition. This case happens in
the standard bisimulation methods where a coarse relation is considered as
an initial partition and the bisimulation algorithm terminates with a set of
bisimilar blocks.

• Case 2: A block B′′ is proposed in the initial partition where it is a mere
subset of an exact bisimilar block. In this case, at least one state s exists
that is bisimilar with the states of B′′, but the method drops it in another
block. For such initial partitions, the bisimulation algorithm results in a finer
relation than the correct bisimilar one. Although such partition is not the
minimized equivalence relation on the state space, it is sound and satisfies
the same properties as a minimized model does [2].

• Case 3: A block contains some but not all states of two or more blocks.
A standard bisimulation method will eventually divides the states of such
block to several blocks of Case 2. In fact, some splitters will be used for
this division. This leads to split some other blocks to finer ones of Case 2.
Finally, the algorithm terminates where all blocks are either of Case 2 or the
correct blocks.

4. Evaluation

4.1 Experimental setup

In order to demonstrate the effectiveness and scalability of the proposed approach,
we consider five classes of standard Markov decision process models. These MDP
models serve as representative examples that cover a wide range of scenarios and
characteristics. These classes include Coin, Wlan, Firewire, Zeroconf, and Brp
case studies from the PRISM benchmark suit [22]. All of them are parametric and
are used to compare our machine learning-based approach. More details about
these case studies are available at [22].

To compare our implementation of the proposed methods for computing prob-
abilistic bisimulation with the standard approaches, we consider PRISM [21] ,
STORM [23], and mCRL2 [24] as the well-known and state-of-the-art tools for com-
puting probabilistic model checking for MDPs. It is worth noting that PRISM im-
plemented in [22] does not have supported probabilistic bisimulation. Mohagheghi
and Salehi developed an extensions to PRISM for computing probabilistic bisim-
ulation [21]. In this paper, their implementation is used to compare with the
proposed approach.

164 M. Mohagheghi et al. / Improving Probabilistic Bisimulation for...

Table 1: PRISM MDP models for training.
Model Number of Parameter Number of states
Name variables names for training

Coin(N = 4) 9 counter 76,032
Wlan(N =5) 13 TRANS_TIME_MAX 2,794,536

Firewire(delay = 3) 3 deadline 710,924
Zeroconf (N = 900) 22 K 577,128

Brp 18 MAX 39,796

We have implemented our proposed approach as an extension to the PRISM
model checker using PRISM 4.7, which is currently the last version. We imple-
mented the proposed algorithm on a machine running Ubuntu 20.04 LTS with
Intel(R) Core (TM) i7 CPU Q720@1.6GHz with 8GB of memory.

4.2 Results and discussion

We propose some information on the selected models in Table 1. For each model,
we report the parameter name in the third column while fixing another parameter
(which is shown in the first column).

For the proposed approach and each computed partition, the set of superblocks
are computed by using the proposed technique in the previous section. To simplify
our approach, we gather all singular blocks (blocks with only one state) in one
superblock. As the output of this step, we define η as a mapping from states of
each sample to the index of their corresponding superblock. This information is
stored in some files (one file per sample model).

For the classification step, we develop our approach in Python. Our program
reads the stored information of sample models including information of their states
(variable values of each state) and the computed mapping. It separates the state
space into several subclasses as explained in subsection 3.4. For each subclass,
we apply SVM with its default parameters for classification. We first train the
classifier for each subclass and then apply it to the states of a given model. In
some cases, all states of a subclass are mapped to the same superblock and we
need not to use a classifier for them. The number of states in training step on
small sample models is shown in the last column in Table 1.

The experimental results are presented in Table 2. The number of states,
actions, and transitions are shown in the third, fourth, and fifth columns, re-
spectively. The running time for computing probabilistic bisimulation in PRISM,
STORM, and mCRL2 as well as our proposed approach, ML-based, on the selected
models are demonstrated in seconds. The Terms killed and timeout in Table 2 refer
to the out of memory error and the running time after one hour.

We report the running time for computing the initial partition in sub-column
init-part and also the total running time after applying the partition refinement
algorithm on initial partition in sub-column total. The results show that the time

Mathematics Interdisciplinary Research 9 (2) (2024) 151− 169 165

for computing the initial partition of ML-based approach is approximately half of
the total time for computing the partition refinement algorithm. In the proposed
approach, we use a supervised machine learning classifier (SVM). To compute a
labeled targets for small version of sample data requiered in SVM, we sholud run
the traditional probabilistic bisimulation algorithm. Thus, computing the initial
partition requires a significant time.

Table 2: Performance comparison of computing bisimulation for the selected MDP
with large values.
Model
name Parameter |S| |Act| |Trns| PRISM STORM mCRL2 ML-based

×10−3 ×10−3 ×10−3 init-part total

Coin
(N=5)

K=30 2341 7832 9787 2.35 112 18.9 1.02 1.97
K=50 3890 13016 16267 3.45 303 31.4 1.66 3.08
K=70 5439 18200 22747 4.32 554 45.2 1.97 3.93
K=100 7762 25976 32467 7.22 1178 killed 3.23 6.42

Zeroconf
(N=1500)

K=12 3753 6898 8467 9.33 killed 22.7 1.01 2.76
K=14 4426 8144 9988 12.57 killed 25.9 1.2 2.97
K=16 5010 9223 11307 15.6 killed 30.8 1.56 3.47
K=18 5476 10085 12359 18 killed 37 1.68 3.9
K=20 5812 10711 13124 21.43 killed 39.3 1.75 4.04

Firewire
(dl = 36)

ddl=3000 2238 3419 4059 2.08 2283 6.9 0.84 1.71
ddl=10000 7670 11742 13936 10.73 timeout 27 1.97 6.5
ddl=15000 11550 17687 20991 13.02 timeout killed 2.17 7.62

Brp
(N=400)

max=150 787 787 1087 0.41 2.9 2.4 0.35 0.88
max=300 1567 1567 2167 0.81 12.5 5.1 0.6 1.37
max=600 3127 3127 4327 2.19 51.4 10.6 1.45 3.61

Wlan
(N=6)

ttm=1000 8093 12543 17668 0.89 320 killed 0.71 1.61
ttm=2500 12769 21925 27051 1.36 1900 killed 1.22 2.57

For Coin case study, the total running time of our machine learning-based
approach outperforms the other tools. For example, when parameter K = 100,
our approach runs in 6.42 seconds, while PRISM runs in 7.22, STORM in 1178,
and mCRL2 is killed by out of memory error.

In case of Zeroconf, STORM is killed by out of memory error for the whole
parameter values. Our approach reduced the total running time by 3 up to 5 times
compared to PRISM, and 8 to 9 times compared to mCRL2.

For Firewire, STORM has timeout in greater parameter values, while mCRL2
is killed by memory error. PRISM and ML-based approach run effectively on all
models; whereas the running time of ML-based approach is half of the PRISM
running time.

On Brp models, PRISM runs in the best running time compared to the other
tools. Our approach takes more time than PRISM, but dominates STORM and
mCRL2. In Wlan models, mCRL2 is killed by out of memory error. The running
time of STORM increases exponentially as the parameter value increases. Simi-
lar to Brp, our approach takes more time compared to PRISM, but the time is
approximately close to each other. According to the structure of these models, a
great amount of states are bisimilar and are gathered in the same block. Therfore,
computing a probabilistic bisimulation takes a few number of iterations and con-

166 M. Mohagheghi et al. / Improving Probabilistic Bisimulation for...

sequently a littile time. Thus, our approach may not greatly reduce the running
time of computing it. In these two cases, using other classifiers rather than SVM
may result in better performance. This is left as a future work.

5. Conclusion
In this work, we have proposed a novel approach to improve the performance of
the standard algorithms for computing probabilistic bisimulation for MDP models.
The approach uses a machine learning classification technique to even directly
determine a bisimulation partition. Experimental results show that our approach
outperforms the other available tools. For future work, we aim to extend the
proposed technique to the other classes of transition systems such as probabilistic
automata or discrete-time and continuous-time Markov chains. On can use other
classifiers rather than SVM and compare their running time with the state-of-
the-art tools. As another future work, we plan to apply the proposed approach
to analyze security protocols, especially anonymity protocols [25] such as dining
cryptographers [26], single preference voting [27], crowds [28], and TOR [29].

Conflicts of Interest. The authors declare that they have no conflicts of interest
regarding the publication of this article.

References
[1] E. M. Clarke, T. A. Henzinger and H. Veith, Introduction to model checking,

Handbook of model checking (2018) 1− 26.

[2] C. Baier and J. P. Katoen, Principles of Model Checking, MIT press, 2008.

[3] J. P. Katoen, The probabilistic model checking landscape, In: Proc. of the
31st Annual ACM-IEEE Symp. on Logic in Comput. Sci. (2016) 31 − 45,
https://doi.org/10.1145/2933575.2934574.

[4] K. L. McMillan, Symbolic Model Checking, Springer, 1993.

[5] D. A. Parker, Implementation of Symbolic Model Checking for Probabilistic
Systems, Ph.D. thesis, University of Birmingham, 2003.

[6] E. M. Clarke, D. E. Long and K. L. McMillan, Compositional model checking,
In: Proc. of the 4th IEEE Symp. on Logic in Comput. Sci. (1989) 353− 362,
https://doi.org/10.1109/LICS.1989.39190.

[7] L. Feng, M. Kwiatkowska and D. Parker, Compositional verification
of probabilistic systems using learning, In: Proc. 7th Int. Conf. on
Quantitative Evaluation of Systems, IEEE CS Press (2010) 133 − 142,
https://doi.org/10.1109/QEST.2010.24.

Mathematics Interdisciplinary Research 9 (2) (2024) 151− 169 167

[8] G. Agha and K. Palmskog, A survey of statistical model check-
ing, ACM Trans. Model. Comput. Simul. 28 (2018) 1 − 39,
https://doi.org/10.1145/3158668.

[9] A. Legay, A. Lukina, L. M. Traonouez, J. Yang, S. A. Smolka and R. Grosu,
Statistical model checking, Computing and software science: state of the art
and perspectives, Springer (2019) 478− 504.

[10] A. Legay and M. Viswanathan, Statistical model checking: challenges and
perspectives, Int. J. Softw. Tools Technol. Transfer 17 (2015) 369 − 376,
https://doi.org/10.1007/s10009-015-0384-z.

[11] F. Ciesinski, C. Baier, M. Größer and J. Klein, Reduction techniques
for model checking markov decision processes, In: Proc. 5th Int. Conf.
on Quantitative Evaluation of Systems, IEEE CS Press. (2008) 45 − 54,
https://doi.org/10.1109/QEST.2008.45.

[12] H. Hansen, M. Kwiatkowska and H. Qu, Partial order reduction for model
checking markov decision processes under unconditional fairness, In: Proc.
8th Int. Conf. on Quantitative Evaluation of Systems (2011) 203 − 212,
https://doi.org/10.1109/QEST.2011.35.

[13] M. Kwiatkowska, G. Norman and D. Parker, Symmetry reduction for proba-
bilistic model checking, In: Proc. 18th Int. Conf. Computer aided verification,
Springer (2006) 234− 248.

[14] C. Baier, P. R. D’Argenio and H. Hermanns, On the probabilistic bisim-
ulation spectrum with silent moves, Acta Inform. 57 (2020) 465 − 512,
https://doi.org/10.1007/s00236-020-00379-2.

[15] K. Salehi, A. A. Noroozi, S. Amir-Mohammadian and M. Mohagheghi, An
automated quantitative information flow analysis for concurrent programs,
In: Proc. 19th Int. Conf. on Quantitative Evaluation of Systems, Springer
(2022) 43− 63.

[16] J. F. Groote, J. Rivera Verduzco and E. P. De Vink, An efficient algo-
rithm to determine probabilistic bisimulation, Algorithms 11 (2018) p. 131,
https://doi.org/10.3390/a11090131.

[17] S. Cattani and R. Segala, Decision algorithms for probabilistic bisimulation,
In: Proc. 13th Int. Conf. on Concurrency Theory, Springer (2002) 371−385.

[18] K. G. Larsen and A. Skou, Bisimulation through probabilistic testing, Inform.
and Comput. 94 (1991) 1− 28.

[19] R. Segala, Modeling and Verification of Randomized Distributed Real-Time
Systems, Ph.D. thesis, Massachusetts Institute of Technology, 1995.

168 M. Mohagheghi et al. / Improving Probabilistic Bisimulation for...

[20] M. I. A Stoelinga, Alea Jacta Est: Verification of Probabilistic, Real-Time
and Parametric Systems, Ph.D. thesis, Radboud University, Nijmegen, 2002.

[21] M. Mohagheghi and K. Salehi, Splitter orderings for probabilistic bisimula-
tion, arXiv:2307.08614 (2023)

[22] M. Kwiatkowska, G. Norman and D. Parker, Prism 4.0: Verification of proba-
bilistic real-time systems, In: Proc. Int. Conf. on Computer aided verification,
Springer (2011) 585− 591.

[23] C. Hensel, S. Junges, J. P. Katoen, T. Quatmann and M. Volk, The proba-
bilistic model checker storm, Int. J. Softw. Tools Technol. Transfer 24 (2022)
589− 610, https://doi.org/10.1007/s10009-021-00633-z.

[24] O. Bunte, J. F. Groote, J. J. A. Keiren, M. Laveaux, T. Neele, E. P. de
Vink, W. Wesselink, A. Wijs and T. A. C. Willemse, The mcrl2 toolset for
analysing concurrent systems: improvements in expressivity and usability,
In: Proc. 25th Int. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (2019) 21–39.

[25] C. Shields and B. N. Levine, A protocol for anonymous communication over
the internet, In: Proc. ACM Conf. Comput. Commun. Secur. (2000) 33− 42,
https://doi.org/10.1145/352600.352607.

[26] A. A. Noroozi, K. Salehi, J. Karimpour and A. Isazadeh, Secure informa-
tion flow analysis using the prism model checker, Int. Conf. on Information
Systems Security, Springer (2019) 154− 172.

[27] K. Salehi, J. Karimpour, H. Izadkhah and A. Isazadeh, Channel ca-
pacity of concurrent probabilistic programs, Entropy 21 (2019) p. 885,
https://doi.org/10.3390/e21090885.

[28] M. K. Reiter and A. D. Rubin, Crowds: anonymity for web
transactions, ACM Trans. Inf. Syst. Secur. 1 (1998) 66 − 92,
https://doi.org/10.1145/290163.290168.

[29] M. G. Reed, P. F. Syverson and D. M. Goldschlag, Anonymous connec-
tions and onion routing, IEEE J. Sel. Areas Commun. 16 (1998) 482 − 494,
https://doi.org/10.1109/49.668972.

Mohammadsadegh Mohagheghi
Department of Computer Science,
Vali-e-Asr University of Rafsanjan,
Rafsanjan, I. R. Iran
e-mail: mohagheghi@vru.ac.ir

Mathematics Interdisciplinary Research 9 (2) (2024) 151− 169 169

Khayyam Salehi
Department of Computer Science,
Shahrekord University,
Shahrekord, I. R. Iran
e-mail: kh.salehi@sku.ac.ir

	The standard algorithm for computing a probabilistic bisimulation
	The PRISM modeling language
	Constructing sample models and computing probabilistic bisimulation
	Computing superblocks
	Training step
	Classifying states into superblocks
	Splitting superblocks to bisimilar classes
	Experimental setup
	Results and discussion

