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Abstract

Our examination of quadratic curvature functionals in Generalized Sym-
metric Spaces has resulted in the comprehensive classification of critical met-
ric sets within diverse categories of these spaces.
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1. Introduction
Exploration of critical points (critical metrics) of functionals that are associated
with second-order scalar curvature invariants on pseudo-Riemannian manifolds
is frequently utilized in theoretical physics, specifically in quantum and relativ-
ity theory. A critical metric refers to a metric that produces the minimum or
maximum value of a functional and includes factors such as curvature and other
metric-associated parameters. While studying functionals in pseudo-Riemannian
geometry, it is important to consider two key factors. Firstly, the construction
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of functionals must be carefully considered, in order to reflect the desired phys-
ical interpretation. Secondly, the mathematical language used to describe these
functionals must also be taken into account.

Given that M is an oriented and closed manifold and M1 is the space of Rie-
mannian metrics with unit volume on M , it’s crucial to note that the total scalar
curvature functional g →

∫
τdvolg has been extensively investigated and is well-

understood. Critical metrics of this functional are Einstein metrics on M1. The
quadratic scalar curvature invariants are created by the set of {∆τ, τ2, ‖%‖2, ‖R‖2},
where R, %, and τ denote the curvature tensor, the Ricci tensor, and the scalar
curvature respectively. For examination of all curvature functionals that relate to
quadratic curvature (QC in short) invariants, it is necessary to analyze a family
of three-parameter functionals that were initially introduced in [1], for arbitrary
real scalars a, b, and c in R,

Φa,b,c : g →
∫

(a‖R‖2 + b‖%‖2 + c‖τ‖2)dvolg.

Working in dimension four, according to the Gauss-Bonnet theorem we have∫
M

‖R‖2dvolg = 32π2χ(M) +

∫
M

(4‖%‖2 − τ2)dvolg,

where χ(M) denotes the Euler characteristic of M . The preceding relation indi-
cates that the functional critical points for the L2-norm of the curvature tensor
and the critical points for the form 4‖%‖2 − τ2 coincide. Therefore, for all QC-
functionals in a four-dimensional space, the metrics that are critical are those
which are critical for both the functionals Ht and S simultaneously.

Ht : g 7→
∫
M

(
tτ2 + ||%||2

)
dvolg, t ∈ R, S : g 7→

∫
M
τ2dvolg.

Evidently, metrics with vanishing scalar curvature are clear examples of criti-
cal metrics for the functional S (as are Ricci-flat metrics for the functional Ht).
Curvature functionals linked to quadratic scalar invariants have been thoroughly
researched by numerous scholars, as exemplified by the works [2–5]. These func-
tionals yield a vast variety of critical points, as evidenced by sphere S3 in [6]. The
criticality of a m-dimensional Riemannian manifold for the functional S in M1

was determined using the Euler-Lagrange Burger equations in [7]. The equation
for criticality must satisfy the condition

2Hesτ −
2

m
∆τg − 2τ%+

2

m
τ2g = 0,

where Hesτ represents the Hessian for scalar curvature. Also, ∆τ = trgHesτ is it’s
Laplacian.

As previously noted in [8], Einstein metrics are well-known families of critical
metrics. Einstein metrics are critical for Ht, regardless of the real value of t.
However, critical metrics for QC-functionals do not have to be Einstein in general.
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If the manifold is compact, the critical metrics for the function S are either
Einstein or have a zero scalar curvature [1], thus there is no particular difficulty in
evaluating them; nonetheless, we are seeking for non-Einstein critical metrics. It is
shown in [1] that there are non-Einstein four-dimensional Riemannian metrics that
are critical for QC-functionals Ht for all values of t. As an example, we may name
the non-smooth cones R+ ×r N , where N is an Einstein manifold of dimension
three with constant sectional curvature of −3.

Generalized symmetric spaces are classes of homogeneous pseudo-Riemannian
manifolds with numerous geometric properties. It’s worth mentioning that these
spaces can be divided into four distinct categories labeled as A, B, C, and D.

These spaces are explored from several perspectives following categorization in
[9]. In this paper, we investigate generalized symmetric spaces (GS-space in short)
and explicitly determine classes of critical metrics for QC-functionals S and Ht.

Following arguments in [10], a proper, simply connected GS-space (M, g) of
dimension n = 4 is either of order 3 or infinity. All of these spaces are indecom-
posable and belong to one of the types A-D (up to an isometry).

This study is organized as follows: In the next section, we present known
facts as well as information required for the study of critical metrics on GS-spaces.
Section 3 is devoted to displaying calculations and geometric findings on the related
spaces. Finally, in Section 4, we look at the categorization of critical metrics on
four-dimensional GS-spaces.

2. Preliminaries
Quadratic curvature functionals: Riemannian settings are used to compute
the well-known Euler-Lagrange equations for a QC-functional [7, 11]. Since the
signature of the base metric is not involved in arguments, the conclusions of the
Riemannian case may be extended to the pseudo-Riemannian circumstances.

The gradient for the functionals Ht : g 7→
∫
M

(
tτ2 + ‖%‖2

)
dvolg and S : g 7→∫

M
τ2dvolg is as follows:

(∇S)ij = 2∇2
ijτ − 2(∆τ)gij − 2τ%ij + 1

2τ
2gij ,

(∇Ht)ij = −∆%ij + (1 + 2t)∇2
ijτ − 1+4t

2 (∆τ)gij
−2tτ%ij − 2%klRikjl + 1

2

(
||%||2 + tτ2

)
gij .

If (∇Ht) = cg for some real constant c, then g is critical for Ht and vice versa. By
tracing the above equation, we have

(m− 4)
(
tτ2 + ||%||2

)
− (m+ 4(m− 1)t)∆τ = 2mc.

Thus, g is critical for Ht if and only if

−∆%ij+(2t+1)∇2
ijτ−

2t

m
(∆τ)gij−2%klRikjl−2tτ%ij+

2

m

(
||%||2 + tτ2

)
gij = 0, (1)
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and
(m− 4)

(
tτ2 + ||%||2 − λ

)
= (m+ 4(m− 1)t)∆τ, (2)

where λ = Ht(g) (see [2]). As a result, Einstein metrics are crucial for Ht for any
value of t. Since quadratic curvature functionals of dimension four are homothety
invariant, one can simplify the exposition by working at the homothetical level.
On the other hand, the aforementioned Euler-Lagrange equations can be greatly
reduced in to four-dimensional cases with constant scalar curvature (especially in
homogeneous spaces). In this situation, (∇S)ij = 2τ

(
1
4τgij − %ij

)
, Equation (2)

is easily met, whereas Equation (1) simplifies to

∆%+ 2tτ%+ 2R [%]− 1

2

(
||%||2 + tτ2

)
g = 0, (3)

where ∆% is the Ricci tensor Laplacian and R[ρ] is the Ricci contraction of the
curvature tensor deducing from R[ρ](u, v) = tr{w → R(u, ρ(w))v}, noticing that
g(ρ(u), v) = %(u, v). Thus, for a metric with constant scalar curvature, the S-
criticality condition is equivalent to being either Einstein or with vanishing scalar
curvature. In the following sections, we will concentrate on the above Equation
(3) and its solutions.

Generalized symmetric spaces of dimension four: Choose a point p be-
longing to the pseudo-Riemannian manifold (M, g) which is connected. We refer
to an isometry sp of the manifold M that maintains p as a fixed isolated point as
a symmetry at p. Each point p on a symmetric space (M, g) allows a symmetry
sp, reversing geodesic to pass through the point. The definition of a regular s-
structure by A. J. Ledger, who generalized this condition, is a set of {sp : p ∈M}
symmetries of (M, g) satisfying

sp ◦ sq = sr ◦ sp, r = sp(q),

for all points p, q of M . A s-structure’s order is the smallest integer t ≥ 2 that
guarantees that (sp)

t = idM for all p ∈M .
If (M, g) has a regular s-structure, it is called a GS-space. The order of a

GS-space is determined by the highest integer t ≥ 2 that allows for a regular s-
structure of order t on M . It’s important to note that s-structures on (M, g) are
not unique, which is why this definition is necessary.

Four-dimensional GS-spaces were investigated by J. Černy and O. Kowalski,
who also categorized these spaces in the local coordinates and algebraically (see
[9]). It is an incontrovertible fact that all (pseudo-)Riemannian GS-spaces possess
homogeneity. Furthermore, considering the condition of the invariant metric, we
can say that there is at least one reductive homogeneous space structure [9].

In the case of four-dimensional instances, such a reductive decomposition cor-
responds to the realizations as coset spaces G/H throughout of four classes men-
tioned in [9]. Several investigations have been conducted on GS-spaces of di-
mension four. Geometric structures, Ricci solitons and conformal geometry, for
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example, were studied in [12], [10] and [13], respectively. The reference [14] dis-
cusses the geometrical properties of GS-Spaces of dimension four. It highlights
that the subclass, which has an underlying Lorentzian metric, is locally symmetric
and locally isometric to a Cahen-Wallach symmetric space. Therefore, to be spe-
cific, we do not consider the type C from their original classification of GS-spaces
due to this reason.

If a metric is critical for two distinct QC-functionals, then it is unequivocally
critical for all quadratic curvature functionals. It is imperative to note that in the
homogeneous situation (e.g., GS-spaces), the metric which is critical for all QC-
functionals (as that is S-critical) is either Einstein or the scalar curvature vanishes.
Apart from the Einstein metrics, it is therefore imperative to understand that only
those GS-spaces of dimension four which are conformally Einstein (since the Bach
tensor vanishes and thus they are Ht-critical for t = −1/3) and with vanishing
scalar curvature may be critical for all QC-functionals (see [13]).

3. Geometric computations on GS-spaces

Type A: Riemannian settings. Suppose that (M = G/H, g) is a GS-space of
dimension four of type A, where the invariant metric signature is (0, 4) or (4, 0).
According to [9], the Lie algebra g = m⊕ h posses a basis {ε1, ε2, ε3, ε4, e1}, where
{ε1, ε2, ε3, ε4} and {e1} are bases of m and h respectively, so that (we reverse the
metric if necessary) the Lie communicators on g and the scalar product on m are
specified as

[e1, ε1] = −ε2, [e1, ε2] = ε1, [e1, ε3] = 2ε4,
[e1, ε4] = −2ε3, [ε1, ε3] = −ε1, [ε1, ε4] = ε2,
[ε2, ε3] = ε2, [ε2, ε4] = ε1, [ε3, ε4] = −2e1,

and

g = (ω2)2 + (ω1)2 +
2

ζ

(
(ω4)2 + (ω3)2

)
, (4)

where ζ > 0, is an arbitrary real value. Using direct calculations, one can deduce
the Levi-Civita connection according to the basis {ε1, · · · , ε4} by the following
non-zero covariant derivatives

∇ε1ε1 = ζ
2 ε3, ∇ε1ε2 = − ζ2 ε4, ∇ε1ε3 = −ε1,

∇ε1ε4 = ε2, ∇ε2ε1 = − ζ2 ε4, ∇ε2ε2 = − ζ2 ε3,
∇ε2ε3 = ε2, ∇ε2ε4 = ε1.

(5)
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Then, we determine by the following non-vanishing tensor values the curvature
tensor

R(ε1, ε2)ε1 = −ζε2, R(ε1, ε2)ε2 = ζε1, R(ε1, ε2)ε3 = −ζε4,
R(ε1, ε2)ε4 = ζε3, R(ε1, ε3)ε1 = ζ

2 ε3, R(ε1, ε3)ε2 = − ζ2 ε4,
R(ε1, ε3)ε3 = −ε1, R(ε1, ε3)ε4 = ε2, R(ε1, ε4)ε1 = ζ

2 ε4,

R(ε1, ε4)ε2 = ζ
2 ε3, R(ε1, ε4)ε3 = −ε2, R(ε1, ε4)ε4 = −ε1,

R(ε2, ε3)ε1 = ζ
2 ε4, R(ε2, ε3)ε2 = ζ

2 ε3, R(ε2, ε3)ε3 = −ε2,
R(ε2, ε3)ε4 = −ε1, R(ε2, ε4)ε1 = − ζ2 ε3, R(ε2, ε4)ε2 = ζ

2 ε4,
R(ε2, ε4)ε3 = ε1, R(ε2, ε4)ε4 = −ε2, R(ε3, ε4)ε1 = −2ε2,
R(ε3, ε4)ε2 = 2ε1, R(ε3, ε4)ε3 = 4ε4, R(ε3, ε4)ε4 = −4ε3,

(6)

and the Ricci tensor with respect to the basis {ω1, · · · , ω4} is calculated immedi-
ately as

% = −6
(
(ω3)2 + (ω4)2

)
, (7)

which indicates that (M, g) is never Einstein. The scalar curvature is then τ =
−6ζ.
Type A: Pseudo-Riemannian settings. Suppose that (M = G/H, g) is a
GS-space of dimension four of type A, such that the signature of the invariant
metric g is (2, 2). According to [9], the Lie algebra g = m ⊕ h accepts a basis
{ε1, ε2, ε3, ε4, e1}, where {ε1, ε2, ε3, ε4} and {e1} are bases of m and h respectively,
so that (if needed we reverse the metric [15]) the Lie communicators on g and the
scalar product on m with respect to the dual basis {ω1, · · · , ω4} are completely
determined by

[e1, ε1] = −ε2, [e1, ε2] = ε1, [e1, ε3] = 2ε4,
[e1, ε4] = −2ε3, [ε1, ε3] = −ηε1, [ε1, ε4] = ηε2,
[ε2, ε3] = ηε2, [ε2, ε4] = ηε1, [ε3, ε4] = −2η2e1,

where η > 0 is a real constant, and

g = (ω2)2 + (ω1)2 − 2
(
(ω4)2 + (ω3)2

)
. (8)

Applying the basis {ε1, · · · , ε4} for m and by the well-known Koszul formula, the
following non-zero covariant derivatives specify the Levi-Civita connection as fol-
lows

∇ε1ε1 = −η2 ε3, ∇ε1ε2 = η
2 ε4, ∇ε1ε3 = −ηε1,

∇ε1ε4 = ηε2, ∇ε2ε2 = η
2 ε3, ∇ε2ε3 = ηε2,

∇ε2ε4 = ηε1.
(9)

Applying the equation Rij := R(vi, vj) = [Λvi ,Λvj ]−Λ[vi,vj ], we can compute the



Mathematics Interdisciplinary Research 9 (2) (2024) 171− 183 177

non-vanishing terms of the curvature tensor as following:

R(ε1, ε2)ε1 = η2ε2, R(ε1, ε2)ε2 = −η2ε1, R(ε1, ε2)ε3 = η2ε4,

R(ε1, ε2)ε4 = −η2ε3, R(ε1, ε3)ε1 = −η
2

2 ε3, R(ε1, ε3)ε2 = η2

2 ε4,

R(ε1, ε3)ε3 = −η2ε1, R(ε1, ε3)ε4 = η2ε2, R(ε1, ε4)ε1 = −η
2

2 ε4,

R(ε1, ε4)ε2 = −η
2

2 ε3, R(ε1, ε4)ε3 = −η2ε2, R(ε1, ε4)ε4 = −η2ε1,
R(ε2, ε3)ε1 = −η

2

2 ε4, R(ε2, ε3)ε2 = −η
2

2 ε3, R(ε2, ε3)ε4 = −η2ε2,
R(ε2, ε4)ε1 = η2

2 ε3, R(ε2, ε3)ε2 = −η
2

2 ε4, R(ε2, ε4)ε3 = η2ε1
R(ε2, ε4)v4 = −η2ε2, R(ε3, ε4)ε1 = −2η2ε1, R(ε3, ε4)ε2 = 2η2ε1,
R(ε2, ε4)ε3 = 4η2ε4, R(ε3, ε4)ε4 = −4η2ε3.

(10)

By the relation %(u, v) = Tr{w → R(w, u)v}, we get the Ricci tensor as

% = −6η2
(
(ω3)2 + (ω4)2

)
, (11)

which shows that (M, g) can never be Einstein. The scalar curvature in then
τ = 6η2 by contracting the Ricci tensor indices.

It should be noted that the generalized symmetric spaces of type A (in both the
Riemannian and neutral signature settings) come with an almost Kähler structure
and an opposite Kähler structure. The existence of these structures is the char-
acteristic of generalized symmetric spaces of this type [16, 17]. As a result, these
spaces can be locally described as left-invariant metrics on certain Lie groups,
which makes analyzing them much simpler [18].
Type B. Assume that (M, g) is a GS-space of dimension four of type B. In this
type, M = G/H. Also, we have g =m⊕ h and it is generated by {ε1, ε2, ε3, ε4, e1},
where {ε1, ε2, ε3, ε4} and {e1} generate m and h respectively. The Lie communica-
tors on g and the metric product on m are specified according to the subsequent
relations

[e1, ε3] = −2ε2, [e1, ε4] = 2ε1, [ε1, ε3] = −ε1,
[ε1, ε4] = εe1 + ε2, [ε2, ε3] = −εe1 + ε2, [ε2, ε4] = ε1,

where ε = ±1, and

g = −2
(
ω1ω3 + ω2ω4

)
+ 2λ

(
(ω3)2 + (ω4)2

)
, (12)

such that λ is an undetermined real value (see [9]).
According to the basis {ε1, · · · , ε4}, the following non-vanishing covariant deriva-

tives are deduced
∇ε3ε1 = ε1, ∇ε3ε2 = −ε2, ∇ε3ε3 = −2λε1 − ε3,
∇ε3ε4 = 2λε2 + ε4, ∇ε4ε1 = −ε2, ∇ε4ε2 = −ε1,
∇ε4ε3 = 2λε2 + ε4, ∇ε4ε4 = 2λε1 + ε3.

(13)

Now, we specify the curvature tensor by the subsequent non-vanishing tensor val-
ues

R(ε1, ε4)ε3 = 2εε2, R(ε1, ε4)ε4 = −2εε1, R(ε2, ε3)ε3 = −2εε2,
R(ε2, ε3)ε4 = 2εε1, R(ε3, ε4)ε1 = 2ε2, R(ε3, ε4)ε2 = −2ε1,
R(ε3, ε4)ε3 = 2ε4, R(ε3, ε4)ε4 = −2ε3,

(14)
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and immediately the Ricci tensor is

% = −2(1 + ε)
(
(ω3)2 + (ω4)2

)
, (15)

which shows that (M, g) is never Einstein for ε = 1 and is trivially Einstein (Ricci-
flat) for ε = −1. The scalar curvature vanishes identically.
Type D. Suppose that (M = G/H, g) is a GS-space of type D. We apply the
results in [9], so for g = m ⊕ h as the Lie algebra of G, a basis {ε1, ε2, ε3, ε4, e1}
exists such that {ε1, ε2, ε3, ε4} and {e1} are bases of m and h respectively. In this
case

[e1, ε1] = −ε1, [e1, ε2] = ε2, [e1, ε3] = −2ε3,
[e1, ε4] = 2ε4, [ε1, ε4] = −ε2, [ε2, ε3] = −ε1,
[ε3, ε4] = −e1,

and the invariant metric with regard to the basis {ω2, · · · , ω4} is

g = 2ω1ω2 + 2λω3ω4, (16)

where λ is a real non-zero scalar. With regard to {ε1, · · · , ε4}, non-zero covariant
derivatives are

∇ε1ε1 = 1
λε3, ∇ε1ε4 = −ε2, ∇ε2ε2 = 1

λε2, ∇ε2ε3 = −ε1, (17)

and we get the curvature tensor such that its non-zero components are

R(ε1, ε2)ε1 = 1
λε1, R(ε1, ε2)ε2 = − 1

λε2, R(ε1, ε2)ε3 = − 1
λε3,

R(ε1, ε2)ε4 = 1
λε4, R(ε1, ε4)ε2 = 1

λε4, R(ε1, ε4)ε3 = −ε1,
R(ε2, ε3)ε1 = 1

λε3, R(ε2, ε3)ε4 = −ε2, R(ε3, ε4)ε1 = −ε1,
R(ε3, ε4)ε2 = ε2, R(ε3, ε4)ε3 = −2ε3, R(ε3, ε4)ε4 = 2ε4.

(18)

Then, the Ricci tensor will directly be computed as

% = −6ω3ω4, (19)

and it follows that (M, g) is never Einstein. The scalar curvature is then τ = − 6
λ .

We note here that GS-spaces of types B and D exhibit either conformally sym-
metric properties (meaning that Weyl tensor is parallel) or they possess almost
para-Kähler and opposite para-Kähler structures naturally (refer to [19] for de-
tails). In the former case, the metric is a Walker metric with zero scalar curvature
and self-dual properties.

Following arguments above, we have the following remark.
Remark 1. The only GS-space of dimension four which is Einstein is the case B
with ε = −1.
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4. Critical metrics for GS-spaces
In this section, we will determine the critical metrics for the functionals S and Ht
that are inferred from GS-spaces. The results for the critical metrics with respect
to the functional S are resumed in the following proposition.

Proposition 4.1. If (M = G/H, g) is a GS-space of dimension four belonging to
one of the classes A-D up to an isometry, then the invariant metric g is critical
for the functional S if and only if it belongs to the class B.

Proof. Remind that metrics that are either Einstein or have vanishing scalar cur-
vature are considered critical for the functional S. Based on the computation from
the previous section, none of the GS-spaces are Einstein, and the scalar curvature
vanishes identically only in case B.

As stated in Section 2, the only GS-spaces of dimension four that can be
critical for all QC-functionals are the conformally Einstein spaces of type B as
proven in [13]. In all other cases, the scalar curvature is non-zero, and therefore,
the corresponding metrics are critical at most for a single quadratic curvature
functional.

Now, we consider different classes of GS-spaces to analyze critical metrics for
the functional Ht by case-by-case study.
Type A (Riemannian mode). In this case, according to the Equation (4), the

invariant metric considering the dual basis {ω1, · · · , ω4} is

g = (ω1)2 + (ω2)2 +
2

ζ

(
(ω3)2 + (ω4)2

)
,

where ζ > 0 is a real scalar. Following the Equation (7), the Ricci tensor is

% = −6
(
(ω3)2 + (ω4)2

)
,

and then τ = −6ζ. In this case, ‖%‖2 = 18ζ2 and the Laplacian of the Ricci tensor
is calculated as:

∆% = −6ζ2
(
(ω1)2 + (ω2)2

)
+ 12ζ

(
(ω3)2 + (ω4)2

)
.

Then, the Ricci contraction of the curvature tensor is deduced as:

R[%] = 3ζ2
(
(ω1)2 + (ω2)2

)
+ 12ζ

(
(ω3)2 + (ω4)2

)
.

Finally, by a direct substitution in the Equation (3) we have

Ht =− (9ζ2 + 18tζ2)
(
(ω1)2 + (ω2)2

)
+ (18ζ + 36tζ)

(
(ω3)2 + (ω4)2

)
. (20)

Type A (pseudo-Riemannian mode). In this case according to the Equa-

tion (8), the invariant metric regarding the dual basis {ω1, · · · , ω4} is
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g = (ω1)2 + (ω2)2 − 2
(
(ω3)2 + (ω4)2

)
.

Following Equation (11), the Ricci tensor is

% = −6η2
(
(ω3)2 + (ω4)2

)
,

and then τ = 6η2. Now, by direct calculations ‖%‖2 = 18η4 and the Laplacian of
the Ricci tensor is deduced as:

∆% = −6η4
(
(ω1)2 + (ω2)2 + 2(ω3)2 + 2(ω4)2

)
,

and the Ricci contraction of the curvature tensor is

R[%] = 3η4
(
(ω1)2 + (ω2)2 − 4(ω3)2 − 4(ω4)

)
.

Then, by proper substitution in Equation (3) we have

Ht =− (9η4 + 18tη4)
(
(ω1)2 + (ω2)2 + 2(ω3)2 + 2(ω4)2

)
. (21)

Type B. In this case, by using Equation (12), the invariant metric with respect

to the basis {ω1, · · · , ω4} is

g = −2
(
ω1ω3 + ω2ω4

)
+ 2λ

(
(ω3)2 + (ω4)2

)
,

where λ is a real constant. According to the Equation (15), the Ricci tensor
becomes

% = −4
(
(ω3)2 + (ω4)2

)
,

and τ = 0. Now, by direct calculations ‖%‖2 = 0 and the Laplacian of the Ricci
tensor vanishes identically. Therefore R[%] = 0 and so Ht = 0 in this case.
Type D. In this case, by applying the Equation (16), the invariant metric consid-

ering the basis {ω1, · · · , ω4} is g = 2ω1ω2 + 2λω3ω4. Applying Equation (19), the
Ricci tensor is

% = −6ω3ω4, τ = − 6

λ
.

Now, by direct calculations ‖%‖2 = 18
λ2 and the Laplacian of the Ricci tensor is

deduced as
∆% = −12

λ2
(
ω1ω2 − ω3ω4

)
.

Then, we calculate the tensor field R[%] as:

R[%] =
6

λ2
(
ω1ω2 + 2ω3ω4

)
,

and then
Ht = −18(1 + 2t)

λ2
(
ω1ω2 − ω3ω4

)
. (22)

To sum up, one can deliver the following result from the above arguments.
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Theorem 4.2. Let (M = G/H, g) be a four dimension GS-space which belongs to
one of the classes A-D up to an isometry. In this case, the invariant metric g is
critical for the functional Ht if and only if one of the following cases occurs

• g belongs to the class B for any real value of t.

• g belongs to class A or D for t = − 1
2 .

Proof. It is clear that while invariant metrics in the class B are critical for the
functional Ht at any value of t, invariant metrics in classes A (both Riemannian
and pseudo-Riemannian) and D are crucial for Ht when t satisfies Ht = 0. Based
on Equations (21), (20), and (22), it is evident that t equals − 1

2 because η and ζ
are not equal to zero. This ends the proof.

5. Conclusions
We explored critical metrics for certain functionals based on QC-variables. Our
study focused on GS-spaces, specifically, we showed that metrics in the class B
are the only critical metrics for the function S. Also, metrics of type B are always
critical for the functional Ht, regardless of the value of t. However, metrics in
classes A (both in Riemannian and pseudo-Riemannian types) and D, are only
critical for the functional Ht whenever t = − 1

2 .
We remind here that the Riemannian type A of four-dimensional GS-space are

homothetic to the left-invariant metric on a semi-direct extension of the Heisenberg
group determined by

[e1, e2] = e3, [e1, e4] =
1

2
e1, [e2, e4] = −e2, [e3, e4] = −1

2
e3,

where {ei}4i=1 is an orthonormal basis. It is also showed in [20] that these metrics
are Ht-critical for t = − 1

2 .
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