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Abstract

Consider a simple, undirected graph G = (V,E), where A represents
the adjacency matrix and Q represents the Laplacian matrix of G. The
second smallest eigenvalue of Laplacian matrix of G is called the algebraic
connectivity of G. In this article, we present a Python program for studying
the Laplacian eigenvalues of a graph. Then, we determine the unique graph
of minimum algebraic connectivity in the set of all tricyclic graphs.
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1. Introduction
Let G = (V,E) be a simple graph (that is undirected and finite graph without
multiple or loops) on edge set E = {e1, ..., em} and vertex set V = {v1, ..., vn}.
The size of a graph is its number of edges m =| E(G) | and the order of a graph
is its number of vertices n =| V (G) |. For each vi ∈ V (G), the degree of vi is the
number of edges incident with vi, which is denoted by di or d(vi). Suppose that
δ and ∆ are minimum and maximum degree among all vertices, respectively. For
any e ∈ E(G), we use G − e to denote the graph G which one edge is removed.
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Spectral graph theory [1–3] investigates properties of graphs using the spectrum
of related matrices. Adjacency matrix and Laplacian matrix, widely studied, are
frequently used in computer science. Adjacency matrix for a graph is denoted by
A = (aij). The adjacency matrix is an n×n matrix related to the graph’s vertices.
The value of the aij is equal to the number of edges between vertex i and vertex
j. Another much studied matrix is the Laplacian matrix, defined by Q = D − A,
where D is the n× n diagonal matrix whose ith diagonal entry is Di,i = deg(vi).
The matrix D is called the degree matrix of G (see [4–6]).
Furthermore note that Q = CTC, where C is the matrix whose rows are indexed
by the edges of G and columns are indexed by its vertices, in which each row cor-
responding to the edge e = {u, v}, (u < v), has a (1) in the column corresponding
to u, a (−1) in that corresponding to v and 0 in every other place. Thus, Q is a
symmetric and positive semi-definite matrix. The eigenvalues of a real symmetric
matrix Mn×n are real numbers. The eigenvalues (or spectrum) of A and Q which
are real eigenvalues, are called A-spectrum and Q-spectrum respectively. These
eigenvalues will be shown by

λn(G) 6 ... 6 λ2(G) 6 λ1(G), (1)

and
0 = µn(G) 6 ... 6 µ2(G) 6 µ1(G) = µ, (2)

respectively.

Fiedler [7] showed that the second smallest Laplacian eigenvalue G discon-
nectes if and only if µn−1(G) equals 0. Thus, µn−1(G) is commonly referred to
as the algebraic connectivity of G and is denoted by α(G). Recently, the alge-
braic connectivity has received significantly regard, see [8] for survey. It turned
out many applications in computer science, theoretical chemistry, combinatorial
optimization, etc (see [7–11]).

A k-cyclic connected graph is a graph with K = m − n + 1 as its cyclomatic
number, where m and n, as previously mentioned, are the numbers of edges and
vertices of G, respectively. If K = 0 then G is called a tree. In cases where K
equals 1, 2, or 3, G is called a unicyclic, bicyclic, or tricyclic graph, respectively. In
this paper, the set of all bicyclic and tricyclic graphs are denoted by Bn and Tn,
respectively. Jianxi Li in [12] have sorted algebraic connectivity of bicyclic graphs.
Here, firstly we write a Python program for studying Laplacian eigenvalues of a
graph. Then we determine the unique graph in the set of all tricyclic graphs which
has minimum algebraic connectivity. To see the standard notations, you can refer
to [4, 13–18].

2. Results
For investigating the eigenvalues of Laplacian graphs, we consider the data set of
graphs with 2 to 10 vertices. The number of connected and disconnected graphs
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Table 1: The number of connected and disconnected graphs with 2 to 10 vertices.

order graph number of connected graphs number of disconnected graphs
2 2 1
3 4 2
4 11 6
5 34 21
6 156 112
7 1044 853
8 12346 11117
9 274668 261080
10 12005168 11716571

are shown in Table 1. We use these data set in Python programming language
and are checked the eigenvalues of Laplacian graphs. Also, in the following, we
show programs that we have implemented in the Python programming language
for these data set of graphs.

Program 1.

1 . import numpy as np
2 . import networkx as nx
3 .
4 . order = int ( input ( " input ␣ the ␣ order ␣ from␣2␣ to ␣ 10 : ␣" ) )
5 .
6 . with open( f " . / graphs / text /graph{ order }c . txt " , " r " ) as
graph_f i l e :

7 . l i n e s = graph_f i l e . r e a d l i n e s ( )
8 . for i in range (1 , len ( l i n e s ) , order + 2 ) :
9 . name = l i n e s [ i ] . s t r i p ( "\n" )
10 . matrix = [
11 . [ int ( f ) for f in m. s t r i p ( "\n" ) . s p l i t ( ) ]
12 . for m in l i n e s [ i + 1 : i + order + 1 ]
13 . ]
14 . print (name)
15 . array = np . array ( matrix )
16 .
17 . G = nx . convert_matrix . from_numpy_array ( array )
18 .
19 . L = nx . l i n a l g . l ap l a c i anmat r i x . lap lac ian_matr ix (G)
20 .
21 . print ( array )
22 . print ( )
23 . print (L .A)
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24 . print ( )
25 . print (np . l i n a l g . e igh (L .A) [ 0 ] )
26 . print ( "−" ∗ 40)

The output of Program 1 is the Laplacian matrix of all graphs with the entered
order along with their eigenvalues.

Program 2.

1 . from c o l l e c t i o n s import OrderedDict
2 . import numpy as np
3 . import networkx as nx
4 .
5 . order = int ( input ( " input ␣ the ␣ order ␣ from␣2␣ to ␣ 10 : ␣" ) )
6 .
7 . e i g v a l s = dict ( )
8 .
9 . with open( f " . / graphs / text /graph{ order }c . txt " , " r " ) as
graph_f i l e :

10 . l i n e s = graph_f i l e . r e a d l i n e s ( )
11 . for i in range (1 , len ( l i n e s ) , order + 2 ) :
12 . name = l i n e s [ i ] . s t r i p ( "\n" )
13 . number = int (name . s p l i t ( " , " ) [ 0 ] . s t r i p ( "Graph␣" ) )
14 . matrix = [
15 . [ int ( f ) for f in m. s t r i p ( "\n" ) . s p l i t ( ) ]
16 . for m in l i n e s [ i + 1 : i + order + 1 ]
17 . ]
18 . array = np . array ( matrix )
19 . G = nx . convert_matrix . from_numpy_array ( array )
20 . L = nx . l i n a l g . l ap l a c i anmat r i x . lap lac ian_matr ix (G)
21 . e va l s = np . l i n a l g . e igh (L .A) [ 0 ]
22 . for eval in eva l s :
23 . eval = f loat ( f "{ eva l : . 4 f }" )
24 . i f eval not in e i g v a l s :
25 . e i g v a l s [ eval ] = [ ( number , order ) ]
26 . else :
27 . i f (number , order ) not in e i g v a l s [ eval ] :
28 . e i g v a l s [ eval ] . append ( ( number , order ) )
29 .
30 . print ( )
31 . o rdered_e igva l s = OrderedDict ( sorted ( e i g v a l s . i tems ( ) ) )
32 . for e igva lue , no_l i s t in ordered_e igva l s . i tems ( ) :
33 . i f 7 .5 < e i gva l u e < 8 :
34 . print ( f "Eigenvalue : ␣{ e i gva l u e } : " )
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35 . for graph in no_l i s t :
36 . print ( f "Graph␣{graph [ 0 ] } , ␣Order␣{graph [ 1 ] } " )
37 . else :
38 . continue
39 . print ( "−" ∗ 40)

The output of Program 2 is the number of all Laplacian graphs whose eigenval-
ues are in the specified range with the entered order. For example, in Tables 2
and 3, the results from Programs 1 and 2 demonstrate graphs of order 6. These
graphs have Laplacian and sinless Laplacian eigenvalues ranging from 0 to 0.8.

Program 3.

1 . import numpy as np
2 . import networkx as nx
3 .
4 . number , order = [ int (n) for n in input ( " ente r ␣number␣and
␣ order ␣ f o r ␣graph : ␣" ) . s p l i t ( ) ]
5 .
6 .
7 . with open( f " . / graphs / text /graph{ order }c . txt " , " r " ) as
graph_f i l e :

8 . l i n e s = graph_f i l e . r e a d l i n e s ( )
9 . index = ( ( order + 2) ∗ ( number − 1) ) + 1
10 . name = l i n e s [ index ]
11 . print (name)
12 . matrix = [
13 . [ int ( f ) for f in m. s t r i p ( "\n" ) . s p l i t ( ) ]
14 . for m in l i n e s [ index + 1 : index + order + 1 ]
15 . ]
16 . array = np . array ( matrix )
17 . G = nx . convert_matrix . from_numpy_array ( array )
18 . L = nx . l i n a l g . l ap l a c i anmat r i x . lap lac ian_matr ix (G)
19 . print ( array )
20 . print ( )
21 . print (L .A)
22 . print ( )
23 . e va l s = [ f loat ( f "{ eva l : . 4 f }" ) for eval in
np . l i n a l g . e igh (L .A) [ 0 ] ]
24 . print ( e va l s )
25 . print ( )
26 . print ( "−" ∗ 40)

The output of Program 3 is the Laplacian graph matrix with the entered number
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Table 2: The results of Program 1 display the graphs of order 6, with Laplacian
eigenvalues ranging from 0 to 0.8.

input the order from 2 to 10: 6 (0< Laplacian eigenvalues<0.8)
Eigenvalue: 0.2679: Graph 19, Order 6
Eigenvalue: 0.3249: Graph 5, Order 6

Graph 21, Order 6
Eigenvalue: 0.382: Graph 15, Order 6
Eigenvalue: 0.4131: Graph 20, Order 6
Eigenvalue: 0.4384: Graph 4, Order 6

Graph 18, Order 6
Graph 23, Order 6
Graph 76, Order 6
Graph 77, Order 6

Eigenvalue: 0.4859: Graph 2, Order 6
Graph 16, Order 6
Graph 24, Order 6
Graph 78, Order 6

Eigenvalue: 0.5858: Graph 9, Order 6
Graph 50, Order 6

Eigenvalue: 0.6314: Graph 6, Order 6
Graph 22, Order 6

Eigenvalue: 0.6571: Graph 31, Order 6
Eigenvalue: 0.6972: Graph 15, Order 6

Graph 29, Order 6
Graph 30, Order 6
Graph 32, Order 6
Graph 51, Order 6

Eigenvalue: 0.7216: Graph 46, Order 6
Eigenvalue: 0.7312: Graph 52, Order 6
Eigenvalue: 0.7639: Graph 7, Order 6

Graph 10, Order 6
Graph 25, Order 6
Graph 27, Order 6
Graph 35, Order 6
Graph 41, Order 6
Graph 59, Order 6
Graph 65, Order 6
Graph 79, Order 6
Graph 84, Order 6
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input the order from 2 to 10: 6 (0<sinless Laplacian eigenvalues<0.8)
Eigenvalue: 0.1338: Graph 21, Order 6
Eigenvalue: 0.1578: Graph 18, Order 6
Eigenvalue: 0.2015: Graph 16, Order 6
Eigenvalue: 0.2204: Graph 20, Order 6
Eigenvalue: 0.2215: Graph 25, Order 6

Graph 77, Order 6
Eigenvalue: 0.2434: Graph 29, Order 6
Eigenvalue: 0.2497: Graph 46, Order 6
Eigenvalue: 0.2534: Graph 3, Order 6
Eigenvalue: 0.2602: Graph 24, Order 6
Eigenvalue: 0.2679: Graph 19, Order 6
Eigenvalue: 0.2823: Graph 78, Order 6
Eigenvalue: 0.2907: Graph 38, Order 6
Eigenvalue: 0.301: Graph 6, Order 6
Eigenvalue: 0.3077: Graph 33, Order 6
Eigenvalue: 0.3089: Graph 27, Order 6

Graph 42, Order 6
Graph 65, Order 6

Eigenvalue: 0.3249: Graph 5, Order 6
Eigenvalue: 0.3542: Graph 50, Order 6
Eigenvalue: 0.3619: Graph 36, Order 6
Eigenvalue: 0.3636: Graph 48, Order 6
Eigenvalue: 0.382: Graph 15, Order 6

Graph 29, Order 6
Graph 30, Order 6
Graph 32, Order 6
Graph 51, Order 6

Eigenvalue: 0.3918: Graph 54, Order 6
Eigenvalue: 0.3961: Graph 8, Order 6

Graph 41, Order 6
Graph 44, Order 6

Eigenvalue: 0.4113: Graph 96, Order 6
Eigenvalue: 0.4284: Graph 60, Order 6
Eigenvalue: 0.4298: Graph 68, Order 6
Eigenvalue: 0.4384: Graph 4, Order 6

Graph 23, Order 6
Eigenvalue: 0.4558: Graph 22, Order 6
Eigenvalue: 0.4628: Graph 67, Order 6
Eigenvalue: 0.4629: Graph 20, Order 6
Eigenvalue: 0.4703: Graph 52, Order 6
Eigenvalue: 0.4711: Graph 51, Order 6
Eigenvalue: 0.4746: Graph 10, Order 6
Eigenvalue: 0.4812: Graph 12, Order 6

Graph 28, Order 6
Graph 73, Order 6
Graph 84, Order 6

Eigenvalue: 0.4859: Graph 2, Order 6
Eigenvalue: 0.4889: Graph 6, Order 6
Eigenvalue: 0.5359: Graph 14, Order 6
Eigenvalue: 0.5443: Graph 40, Order 6
Eigenvalue: 0.5463: Graph 63, Order 6
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Table 3: The results of Program 2 display the graphs of order 6, with sinless
Laplacian eigenvalues ranging from 0 to 0.8.

Eigenvalue: 0.5858: Graph 9, Order 6
Graph 10, Order 6
Graph 35, Order 6
Graph 38, Order 6
Graph 39, Order 6
Graph 50, Order 6
Graph 81, Order 6
Graph 95, Order 6

Eigenvalue: 0.6208: Graph 62, Order 6
Eigenvalue: 0.6224: Graph 89, Order 6
Eigenvalue: 0.6277: Graph 17, Order 6
Eigenvalue: 0.646: Graph 34, Order 6
Eigenvalue: 0.6571: Graph 31, Order 6
Eigenvalue: 0.6594: Graph 37, Order 6
Eigenvalue: 0.6721: Graph 16, Order 6
Eigenvalue: 0.6728: Graph 32, Order 6

Graph 49, Order 6
Eigenvalue: 0.6791: Graph 35, Order 6
Eigenvalue: 0.6856: Graph 57, Order 6
Eigenvalue: 0.6972: Graph 15, Order 6
Eigenvalue: 0.7029: Graph 61, Order 6

Graph 71, Order 6
Eigenvalue: 0.7066: Graph 64, Order 6
Eigenvalue: 0.7251: Graph 90, Order 6
Eigenvalue: 0.7411: Graph 97, Order 6
Eigenvalue: 0.7639: Graph 7, Order 6

Graph 30, Order 6
Graph 59, Order 6

Eigenvalue: 0.7772: Graph 33, Order 6
Eigenvalue: 0.7828: Graph 60, Order 6
Eigenvalue: 0.7933: Graph 92, Order 6
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and order along with its eigenvalues. Firstly enter number and order for graph, it
displays adjacency matrix, Laplacian matrix and eigenvalues of Laplacian matrix.
For example, for Graph 265 and order 9, using Program 3, we obtain

0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 1
0 0 1 1 1 0 0 0 1
1 1 1 1 1 1 1 1 0




2 0 0 0 0 0 −1 0 −1
0 2 0 0 0 0 −1 0 −1
0 0 2 0 0 0 0 −1 −1
0 0 0 2 0 0 0 −1 −1
0 0 0 0 2 0 0 −1 −1
0 0 0 0 0 −1 0 0 −1
−1 −1 0 0 0 0 3 0 −1
0 0 −1 −1 −1 0 0 4 −1
−1 −1 −1 −1 −1 −1 −1 −1 8


[0.0, 1.0, 1.0, 2.0, 2.0, 2.0, 4.0, 5.0, 9.0]

Lemma 2.1. ([2]). Suppose G is a graph, | V (G) |= n and G � Kn (not-
isomorphic to the complete graph) and suppose G′ = G + e is a new graph taken
from G by adding a new edge e. After that the Laplacian eigenvalues of G and G′
intermix, in other words

µi(G
′) > µi(G) > µi+1(G′), (3)

for 1 6 i 6 (n− 1).

Lemma 2.2. ([19]). Let G be a connected graph of order n. Suppose v1, . . . , vs(s >
2) are non-adjacent vertices of G and N(v1) = · · · = N(vs). Let Gt be a graph

obtained from G by adding any t (0 6 t 6
s(s− 1)

2
) edges among v1, . . . , vs. If

µ(G) 6= d(v1), then
µ(G) = µ(Gt). (4)

Theorem 2.3. ([12]). Suppose

B ∈ Bn − {B1, B2, B3, B4}, (5)

where 13 6 n. Then α(B) > α(B4). Moreover,

α(B1) < α(B2) < α(B3) < α(B4), (6)

where B1, B2, B3, B4 are shown in Figure 1.



194 H. Taheri et al. / On Minimum Algebraic Connectivity of Tricyclic ...

Figure 1: Bicyclic graph Bi (16 i 6 4.)

Figure 2: Tricyclic graph T3.

Theorem 2.4. Let T ∈ Tn with n > 14 and T3 is shown in Figure 2. Then

α(T3) 6 α(T ). (7)

Proof. Let T ∈ Tn and Ck, Cl and Cw be three independent cycles in T , where
3 6 k, l, w. we can choose edge, say e, in Ci (i = k, l and w) such that T − e ∈
Bn − {B1, B2}. So by Lemma 2.1, we have

α(T ) > α(T − e). (8)

In the following, we consider two cases.

Case 1: T − e � B3

By Theorem 2.3
α(T − e) > α(B4) > α(B3). (9)

Otherwise, by Lemma 2.2 we have

α(B3) = α(T3). (10)

Thus
α(T ) > α(T3). (11)

Case 2: T − e ∼= T3 By Lemma 2.2

α(B3) = α(T3). (12)
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As a result α(T − e) = α(T3).
Thus, for every T ∈ Tn, α(T ) > α(T3) and the equality holds if and only if

T ∼= T3

Conflicts of Interest. The authors declare that they have no conflicts of interest
regarding the publication of this article.

Acknowledgments. The research of this paper is partially supported by the
University of Kashan under grant no 159021.

References
[1] F. R. K. Chung, Spectral Graph Theory, CBMS Regional Conference Series

in Mathematics, vol. 92, American Mathematical Soc., 1997

[2] D. M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs: Theory and
Applications, Johann Ambrosius Barth Verlag, Heidelberg, Leipzig, 1995.

[3] E. R. van Dam and W. H. Haemers, Which graphs are determined
by their spectrum?, Linear Algebra Appl. 373 (2003) 241 − 272,
https://doi.org/10.1016/S0024-3795(03)00483-X.

[4] W. N. Anderson Jr and T. D. Morley, Eigenvalues of the Lapla-
cian of a graph, Linear Multilinear Algebra 18 (1985) 141 − 145,
https://doi.org/10.1080/03081088508817681.

[5] M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and
its application to graph theory, Czechoslovak Math. J. 25 (1975) 619 − 633,
https://doi.org/10.21136/CMJ.1975.101357.

[6] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197-
198 (1994) 143− 176, https://doi.org/10.1016/0024-3795(94)90486-3.

[7] M. Fiedler, Algebraic connectivity of graphs, Czechoslov. Math. J. 23 (1973)
298− 305, https://doi.org/10.21136/CMJ.1973.101168.

[8] N. M. M. de Abreu, Old and new results on algebraic con-
nectivity of graphs, Linear Algebra Appl. 423 (2007) 53 − 73,
https://doi.org/10.1016/j.laa.2006.08.017.

[9] R. Nasiri, H. R. Ellahi, A. Gholami and G. H. Fath-Tabar, The irregularity
and total irregularity of Eulerian graphs, Iranian J. Math. Chem. 9 (2018)
101− 111, https://doi.org/10.22052/IJMC.2018.44232.1153.

[10] D. Vukičević and Z. Yarahmadi, One-alpha descriptor, Iranian J. Math.
Chem. 9 (2018) 179−186, https://doi.org/ 10.22052/IJMC.2018.118091.1342.



196 H. Taheri et al. / On Minimum Algebraic Connectivity of Tricyclic ...

[11] D. Cvetković, M. Doob, I. Gutman and A. Torgašev, Recent Results in the
Theory of Graph Spectra, Ann. Discrete Math. 36, North-Holland, Amster-
dam, 1988.

[12] J. Li, J. M. Guo and W. C. Shiu, The orderings of bicyclic graphs and con-
nected graphs by algebraic connectivity, Electron. J. Combin. 17 (2010)
Research Paper 162, https://doi.org/10.37236/434.

[13] A. Z. Abdian, A. R. Ashrafi, L. W. Beineke, M. R. Oboudi and G. H. Fath-
Tabar, Monster graphs are determined by their Laplacian spectra, Rev. Un.
Mat. Argentina 63 (2022) 413− 424, https://doi.org/10.33044/revuma.1769.

[14] M. Arabzadeh, G. H. Fath–Tabar, H. Rasoli and A. Tehranian, Estrada and
L-estrada indices of a graph and their relationship with the number of span-
ning trees, MATCH Commun. Math. Comput. Chem. 90 (2023) 787 − 798,
https://doi.org/10.46793/match.90-3.787A.

[15] G. K. Gök, Kirchhoff index and Kirchhoff energy, Iranian J. Math. Chem. 13
(2022) 175− 185, https://doi.org/10.22052/IJMC.2022.246278.1619.

[16] T. Vetrik, Degree-based function index of graphs with given connectivity,
Iranian J. Math. Chem. 14 (2023) 183 − 194, https://doi.org/ 10.22052/I-
JMC.2023.252646.1699.

[17] M. Taheri-Dehkordi and G. H. Fath-Tabar, On the number
of perfect star packing and perfect pseudo matching in some
fullerene graphs, Iranian J. Math. Chem. 14 (2023) 7 − 18,
https://doi.org/10.22052/IJMC.2022.248451.1669.

[18] M. Arabzadeh, G. H. Fath-Tabar, H. Rasouli and A. Tehranian, On the dif-
ference between Laplacian and signless Laplacian coefficients of a graph and
its applications on the fullerene graphs, Iranian J. Math. Chem. 15 (2024)
39− 50, https://doi.org/10.22052/IJMC.2024.254123.1808.

[19] J. -Y. Shao, J. -M. Guo and H. -Y. Shan, The ordering of trees and connected
graphs by their algebraic connectivity, Linear Algebra Appl. 428 (2008) 1421−
1438, https://doi.org/10.1016/j.laa.2007.08.031.

Hassan Taheri
Faculty of Mathematical Science,
Department of Pure Mathematics,
University of Kashan,
Kashan 87317-51167, I. R. Iran
e-mail: taherihassan65@gmail.com



Mathematics Interdisciplinary Research 9 (2) (2024) 185− 197 197

Gholam Hossein Fath-Tabar
Faculty of Mathematical Science,
Department of Pure Mathematics,
University of Kashan,
Kashan 87317-51167, I. R. Iran
e-mail: fathtabar@kashanu.ac.ir


