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Abstract

This article investigates and studies the dynamics of infectious disease
transmission using a fractional mathematical model based on Caputo frac-
tional derivatives. Consequently, the population studied has been divided
into four categories: susceptible, exposed, infected, and recovered. The ba-
sic reproduction rate, existence, and uniqueness of disease-free as well as in-
fected steady-state equilibrium points of the mathematical model have been
investigated in this study. The local and global stability of both equilibrium
points has been investigated and proven by Lyapunov functions. Vaccina-
tion and drug therapy are two controllers that may be used to control the
spread of diseases in society, and the conditions for the optimal use of these
two controllers have been prescribed by the principle of Pontryagin’s maxi-
mum. The stated theoretical results have been investigated using numerical
simulation. The numerical simulation of the fractional optimal control prob-
lem indicates that vaccination of the susceptible subjects in the community
reduces horizontal transmission while applying drug control to the infected
subjects reduces vertical transmission. Furthermore, the simultaneous use
of both controllers is much more effective and leads to a rapid increase in
the cured population and it prevents the disease from spreading and turning
into an epidemic in the community.
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1. Introduction

Diseases have always played an important role in human history. Infectious dis-
eases have had a significant impact on population growth, progress in wars, and
the economy of countries (such as the plague in the 14th century or the COVID-19
virus in the current century). Despite the existence of extensive preventive and
therapeutic measures, including improvements in public health, antibiotics, and
vaccination, infectious diseases are still the leading cause of death from diseases
in societies. Infectious pathogens (which include bacteria, fungi, protozoa, worms,
viruses) are sometimes so adapted to new conditions and even mutated that they
cause the reappearance and emergence of new infections (such as hepatitis C,
hepatitis E, and AIDS). Hence, the dynamics of infectious disease transmission,
the spread of these diseases, and the methods of controlling them have received
attention in recent years.

The spread and progress of the disease in a society may lead to a division
among people of that society into different groups depending on their status in the
ability to transmit the disease to others. Susceptible individuals are those who do
not have a disease but can get sick. Those who are exposed to the disease or in the
incubation period are the ones who act like the host of the disease but are not yet
able to transmit it. The infected individuals are those who have a disease and can
transmit it to healthy ones. Also, the recovered ones are those who have recovered
from the disease. Usually, these population groups are represented by symbols
S, E, I, and R, respectively. There are several mathematical models for disease
dynamics, depending on the number and type of compartments. For example,
SIS, SIR, SIRS, and SEIR models, which represent stages of the disease for
each individual in a population [1–3].

Accordingly, more realistic mathematical models for studying disease outbreaks
are an important tool to investigate this issue. Mathematical models of disease
outbreaks, which are usually called epidemic models, are often expressed in terms
of ordinary differential equations, and partial differential equations. But due to
the ability of fractional calculus to model and describe the dynamics of real-world
processes with special features, many mathematicians have tried to model real pro-
cesses using fractional calculus. Hence, some researchers have extended classical
epidemic models to fractional-order epidemic systems.[4–11].

In most of the researches, mortality from the disease is not considered, but
in this proposed model, death due to disease and natural death are considered
separately. Also, in the proposed model, there are coefficients for controls that
check the effect of controls, which in most of the researches these coefficients are
not seen.

Considering the above-stated explanation, this article suggested and reviewed a
fractional-order mathematical model using the Caputo fractional derivative of or-
der α, for the dynamics of infectious disease transmission with two control mecha-
nisms, vaccination and drug therapy, to investigate the spread of infectious diseases
and the method for optimally control it in society. In this model, infectious dis-
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Figure 1: Schematic diagram of the model (1).

ease can be transmitted through two ways including direct contact with an infected
person (horizontal transmission) and transfer from parent to child (transmission
of infection from mother to fetus during prenatal, intra or postnatal period) (ver-
tical transmission). The present study examines optimal strategies for optimally
controlling the spread of the disease in society using optimal control theory. Also,
the optimal conditions of the fractional control of the spread of infectious diseases
in society have been stated using the principle of Pontryagin’s maximum. Also,
the simultaneous use of both controllers is much more effective and leads to a
rapid increase in the cured population and prevents the disease from spreading
and becoming an epidemic in the community.

The remainder of the paper is structured as follows. In Section 2, we present
the fractional SEIR mathematical model for infectious disease transmission. In
Section 3, the existence, as well as uniqueness, of the equilibrium points and their
local and global asymptotic stability of the equilibrium points are studied. In
Section 4, the optimal control problem will be defined and studied. In Section 5,
we will show the numerical results with a numerical example. Finally, in Section
6 the paper is closed with some conclusions.

2. Fractional-order mode formulation
In this section, we present a fractional-order SEIR model in the sense of Caputo.
The total host population, N(t) is divided into four classes namely Suspected
(S(t)), Exposed (E(t)), Infected (I(t)), and Recovered (R(t)).

CDα0+S(t) = Λ− ρS(t)I(t)− (µ+mu)S(t),
CDα0+E(t) = ρS(t)I(t)− (φ+ µ)E(t),
CDα0+I(t) = φE(t)− (µ+ λ+ β + nv)I(t),
CDα0+R(t) = muS(t) + (β + nv)I(t)− µR(t),

(1)

S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0.

A flow chart of this compartmental model is shown in Figure 1. In these equations,
all the parameters are nonnegative. Since R(t) does not appear in the first three
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Table 1: The parameters of the model and their descriptions.
Symbol Description Values range Reference
µ Rate of death population 0.002 [12]
Λ Recruitment rate 0.0121 [12]
ρ Transmission coefficient 0.125 [13]
φ Rate moving from E to I 0.02 [14]
β Rate moving from I to R without antiviral drug 0.025 [13]
λ Rate of death population by infectious disease 0.0008 [13]
u Vaccination rate 0 ≤ u ≤ 1 -
v Antiviral drug rates 0 ≤ v ≤ 1 -
m Vaccine efficacy 0.81 [15]
n Efficacy of the drug 0.71 [15]

equations of system (1), without loss of generality we discuss the following system:
CDα0+S(t) = Λ− ρS(t)I(t)− (µ+mu)S(t),
CDα0+E(t) = ρS(t)I(t)− (φ+ µ)E(t),
CDα0+I(t) = φE(t)− (µ+ λ+ β + nv)I(t),

(2)

S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0.

At any time t, we have R(t) = N(t)− S(t)− E(t)− I(t). In the next section, we
investigate the existence and stability conditions of both equilibriums of system
(2), by constructing appropriate Lyapunov functionals.

3. Stability of equilibria
To investigate the existence, uniqueness and non-negativity of the solution and
stability of the equilibrium points of system (2), we consider the following theorem:

Theorem 3.1. System (2) has a unique solution. Furthermore, all components
of the solution are non-negative.

Proof. The existence and uniqueness of the solution follows from Theorem 2.1 and
3.1 of [16], respectively. To show the nonnegativity of the solution, from second
equation of system (2), we obtain:

CDα0+E(t) = ρS(t)I(t)− (φ+ µ)E(t) ≥ −(φ+ µ)E(t).

Therefore,

E(t) ≥ Eα,α+1(−(φ+ µ)tα)E(0) ≥ 0. (3)

From the third equation of system (2), we obtain:
CDα0+I(t) = φE(t)− (µ+ λ+ β + nv)I(t) ≥ −(µ+ λ+ β + nv)I(t).
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Then

I(t) ≥ Eα,α+1(−(µ+ λ+ β + nv)tα)I(0) ≥ 0. (4)

According to system (2), (3) and (4) we get easily:

CDα0+S(t)|S=0 =Λ ≥ 0,
CDα0+E(t)|E=0 =ρS(t)I(t) ≥ 0,
CDα0+I(t)|I=0 =φE(t) ≥ 0.

From (S(0), E(0), I(0)) ∈ R3
+ and Lemma 2.2 of [17], we received the required

result i.e. S(t), E(t), I(t) ≥ 0 for any t ≥ 0. Then the solution of system (2), will
lie in R3

+.
Now, we show that the solution of system (2) is bounded. Define a function

M(t) = S(t) + E(t) + I(t).

Then

CDα0+M(t) =C Dα0+S(t) +C Dα0+E(t) +C Dα0+I(t).

Adding all equations of system (2):

CDα0+M(t) ≤ Λ− µM(t).

Applying the Laplace transform in the previous inequality, we get:

sαL(M)− sα−1M(0) ≤ Λs−1 − µL(M).

Then

M(t) ≤ ΛtαEα,α+1(−µtα) + Eα,1(−µtα)M(0),

where Eα,β(z) is the Mittag-Leffler function. Let K = max{Λ,M(0)}, so

M(t) ≤ K
[
µtαEα,α+1(−µtα) + Eα,1(−µtα)

]
= K

1

Γ(1)
= K.

Then, the solution of system (2) is bounded.

Therefore, we conclude that the feasible region of system (2) is given by

Ω =
{

(S,E, I) ∈ R3 | S > 0, E ≥ 0, I ≥ 0 and S + E + I ≤ K
}
.

Theorem 3.2. The model (2) has at most two equilibrium points:

a. A disease free equilibrium Ef = (S0, E0, I0) = ( Λ
µ+mu , 0, 0);
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b. A infected steady-state equilibrium: Ee = (S∗, E∗, I∗), where

S∗ =
(µ+ λ+ β + nv)(φ+ µ)

ρφ
,

E∗ =
ρφΛ− (µ+ λ+ β + nv)(µ+mu)(φ+ µ)

ρφ(φ+ µ)
,

I∗ =
ρφΛ− (µ+ λ+ β + nv)(µ+mu)(φ+ µ)

ρ(φ+ µ)(µ+ λ+ β + nv)
.

In according with the concept of basic reproduction number R0 in [18], (Fig-
ure 2), we have:

F =

[
0 ρS0

φ 0

]
, V =

[
φ+ µ 0
0 µ+ λ+ β + nv

]
.

The reproduction number is given by:

R0 = ρ(FV −1),

where ρ(FV −1) denotes the spectral radius of a matrix FV −1. Then

R0 =
ρφΛ

(µ+ λ+ β + nv)(µ+mu)(µ+ φ)
.

According to system (2) and by simple calculation, we get the following result:

Theorem 3.3. The equilibrium Ef of system (2) is locally asymptotically stable
if, R0 < 1.

Proof. According to Lemma 3 of [19], determining the Jacobian matrix of the
fractional system (2), at Ef we have:

J =

 −(µ+mu) 0 − ρΛ
µ+mu

0 −(φ+ µ) ρΛ
ν+mu

0 φ −(µ+ λ+ β + nv)

 .
Thus

tr(J) = −
[
3µ+mu+ nv + φ+ λ+ β

]
< 0,

and

det(J) = −
[
(µ+mu)(φ+ µ)(µ+ λ+ β + nv)− ρφΛ

]
< 0.

The second compound [20] of the Jacobian matrix is
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Figure 2: The behavior of R0 both with control and without control.

J [2] =

 J
[2]
1,1

ρΛ
µ+mu

ρΛ
µ+mu

φ J
[2]
2,2 0

0 0 J
[2]
3,3

 ,
where

J
[2]
1,1 =− (2µ+ φ+mu),

J
[2]
2,2 =− (2µ+mu+ nv + λ+ β),

J
[2]
3,3 =− (2µ+ φ+ λ+ β + nv).

The determinant of this is

det(J [2]) =

− (2µ+ φ+ λ+ β + nv)
[
(2µ+mu+ φ)(2µ+mu+ nv + λ+ β)−

ρφΛ

µ+mu

]
< 0.

Thus, tr(J), det(J) and det(J [2]) are all negative. Therefore, by Lemma 3 of
[19], all the eigenvalues of J have a negative real part. Thus, according to Theo-
rem 4.3 of [21], the disease-free equilibrium at Ef of a model (2), will be locally
asymptotically stable if, R0 < 1.

Theorem 3.4. For system (2) the equilibrium Ee is globally asymptotically stable
if, R0 > 1.

Proof. For the equilibrium Ee we define the following Lyapunov function:

V (t) = S∗g

(
S(t)

S∗

)
+ E∗g

(
E(t)

E∗

)
+
φ+ µ

φ
I∗g

(
I(t)

I∗

)
,

where g(x) = x− 1− lnx.



206 R. Akbari et al. / Fractional Dynamics of Infectious Disease...

For all S(t) > 0, E(t) > 0 and I(t) > 0, V is well-defined, continuous and
positive definite. Accoding to Lemma 3.1 of [3], one gets

CDα
0+
V (t) ≤

(
1−

S∗

S(t)

)
CDα

0+
(S) +

(
1−

E∗

E(t)

)
CDα

0+
(E) +

φ+ µ

φ

(
1−

I∗

I(t)

)
CDα

0+
(I)

= −(µ+mu)
(S − S∗)2

S
− ρS∗I∗

[
g

(
S∗

S(t)

)
+ g

(
S(t)I(t)E∗

S∗I∗E(t)

)
+ g

(
E(t)I∗

E∗I(t)

)]
.

Thus if R0 > 1, it follows that CDα0+V (t) is negative definite. Therefore, the
infected steady-state Ee is globally asymptotically stable.

4. Optimal vaccination and drug therapy

The previous part examined the asymptotic stability of DFE and EE equilibrium
points under the conditions for system (1) parameters. Applying vaccination and
drug therapy to control the disease in society introduces societal costs. These
costs can be either material or moral. Vaccination costs include purchasing and
maintaining vaccines, as well as potential side effects. Drug therapy costs encom-
pass medication, hospitalization, testing, and potential treatment side effects. Our
duty is to optimize these costs. The best and most useful tool to achieve this goal
is the definition of an optimal control problem, which will create limitations for
the parameters of the problem. Hence, we define a control set as follows:

U =
{

(u(t), v(t)))| 0 ≤ u(t) ≤ umax(t) ≤ 1 , 0 ≤ v(t) ≤ vmax(t) ≤ 1 , t ∈ [0, tf ]
}
,

while the control set U is Lebesgue measurable.

J(u, v) = min
u,v∈U

Iαtf [AI(t) +
1

2
(C1u

2 + C2v
2)]dt (5)

s.t :
CDα0+S(t) = Λ− ρS(t)I(t)− (µ+mu)S(t),
CDα0+E(t) = ρS(t)I(t)− (φ+ µ)E(t),
CDα0+I(t) = φE(t)− (µ+ λ+ β + nv)I(t),

S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0.

Here, tf is the final time and A is a positive weight to keep a balance in the
size of infected population, C1, C2 describe the costs associated with vaccination
and treatment respectively. The square of the disease control parameter is taken
to remove some unwanted side effects of the disease as well as to consider the
overdoses of the control [22]. Our goal is to minimize the objective function (5),
that is, we need to seek the optimal control function (u∗(t), v∗(t)) ∈ U satisfying

J(u∗, v∗) = min
u,v∈U

J(u, v).
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The existence of an optimal control pair is guaranteed by the compactness of
the control and the states spaces, and the convexity in the problem based on
Theorem 4.1 in [23]. For optimality conditions, first, we find the Lagrangian and
Hamiltonian for the problem (5). In fact, Lagrangian and Hamiltonian are defined
by

L(I(t), u(t), v(t)) = AI(t) +
1

2
(C1u

2 + C2v
2),

and

H(S(t), E(t), I(t), u(t), v(t), λ1, λ2, λ3, t)

= L(I(t), u(t), v(t)) + λC1 Dα0+S(t)

+ λC2 Dα0+E(t) + λC3 Dα0+I(t)

= [AI(t) +
1

2
(C1u

2 + C2v
2)]

+ λ1(Λ− ρS(t)I(t)− (µ+mu)S(t))

+ λ2(ρS(t)I(t)− (φ+ µ)E(t))

+ λ3(φE(t)− (µ+ λ+ β + nv)I(t)),

where λk, k = 1, 2, 3 are the adjoint variables, which are determined by solving
the following equations:

CDα0+λ1(t) = −∂H
∂S

= λ1(ρI(t) + µ+mu)− λ2ρI(t),

CDα0+λ2(t) = −∂H
∂E

= λ2(φ+ µ)− λ3φ,

CDα0+λ3(t) = −∂H
∂I

= −A+ λ1ρS(t)− λ2ρS(t) + λ3(µ+ λ+ β + nv),

and the transversal conditions

λk(tf ) = 0 k = 1, 2, 3.

By using Pontryagin minimum principle, we can obtain the optimal conditions as
follows:

∂H

∂u
= 0,

∂H

∂v
= 0.

Then,

u∗ = min{max{0, λ1mS
∗

C1
}, umax}, v∗ = min{max{0, λ3nI

∗

C2
}, vmax}.

The above analysis can be expressed as the following theorem:
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Figure 3: The behavior of S both with control and without control.

Theorem 4.5. Let (S∗, E∗, I∗) be the optimal state solution related to the optimal
controls (u∗, v∗) for the optimal control problem (5). Then there exist adjoint
variables λk (k = 1, 2, 3) that satisfy the following adjoint system:

CDα0+λ1(t) = −∂H
∂S

= λ1(ρI(t) + µ+mu)− λ2ρI(t),

CDα0+λ2(t) = −∂H
∂E

= λ2(φ+ µ)− λ3φ,

CDα0+λ3(t) = −∂H
∂I

= −A+ λ1ρS(t)− λ2ρS(t) + λ3(µ+ λ+ β + nv).

with transversally conditions

λk(tf ) = 0, k = 1, 2, 3.

Moreover, the optimal controls (u∗, v∗) which minimizes the problem (5) over the
region U can be shown as following:

u∗ = min

{
max

{
0,
λ1mS

∗

C1

}
, umax

}
, v∗ = min

{
max

{
0,
λ3nI

∗

C2

}
, vmax

}
.

5. Numerical results and discussion
In this section, we will discuss control problem (5) numerically and the values
of defined parameters are shown in Table 1. To investigate the problem, we will
consider two different situations including with and without control. The Runge-
Kutta method of order 4 (RK4) is employed to solve the problem. The results are
as follows:

Based on Figure 3, the susceptible population will decrease if the control and
vaccination increase and as a result, the infected population will also decrease, and
with the passage of time and the continuation of vaccination, horizontal transmis-
sion will dramatically decrease .
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Figure 4: The behavior of I both with control and without control.

Figure 5: The behavior of R both with control and without control.
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According to Figure 4, the infected population will increase if it is not treated
in order to control the incidence of the disease in society, and disease will turn into
an epidemic, which will increase the vertical transmission in society. However, the
infected population will decrease if the control and drug therapy increase, and
with sustained drug therapy over time, vertical transmission will decrease and the
disease will disappear.

According to Figure 5, if we only use drug therapy to control the infected
population and vaccination is at zero, the number of recovered population will
increase in a certain period of time. If we only use the vaccination of the susceptible
population to control the disease and drug therapy is at zero, with the increase of
vaccination and the continuation of it at the social level, the number of recovered
population will increase. If we simultaneously use both vaccination and drug
therapy to control and prevent the incidence of the disease at the social level, the
speed in the increase of recovered population increase will be very high compared
to the previous two cases and this method of controlling infectious diseases at the
social level will have good results.

6. Conclusions

In this paper, we study a fractional-order mathematical model in Caputo sense
of order α ∈ (0, 1] for the transmission dynamics of infectious disease, under ad-
ministration of vaccination and treatment. By the use of the fractional differen-
tial, we extended the classical SEIR mathematical modeling of infectious disease
transmission to a system of fractional ordinary differential equations. For our
fractional-order model, stability of equilibrium points is studied. Under certain
conditions, an analysis of the local asymptotic stability at the disease-free equi-
librium is given. In this work, under certain conditions and by construct suitable
Lyapunov functionals it is proven that the infected steady-state is globally asymp-
totically stability. Then, we formulated a fractional optimal control problem and
derived the fractional optimality condition for the control infectious disease by
using Pontryagin’s maximum principle. Finally, a numerical simulation of the op-
timal control problem are conducted to demonstrate our theoretical results. The
simultaneous use of vaccination and drug therap will be a highly effective strategy
to control the disease in society. Hopefully, future research will explore the effects
of two other controllers in addition to these two controllers of vaccination and
drug therapy, such as quarantining infected people and masking everybody in the
community.

Conflicts of Interest. The authors declare that they have no conflicts of interest
regarding the publication of this article.
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