
Mathematics Interdisciplinary Research 9 (2) (2024) 215− 236

Original Scientific Paper

Solving Graph Coloring Problem Using Graph

Adjacency Matrix Algorithm

Hanifa Mosawi, Mostafa Tavakoli?and Khatere Ghorbani-Moghadam

Abstract

Graph coloring is the assignment of one color to each vertex of a graph
so that two adjacent vertices are not of the same color. The graph coloring
problem (GCP) is a matter of combinatorial optimization, and the goal of
GCP is determining the chromatic number χ(G). Since GCP is an NP-hard
problem, then in this paper, we propose a new approximated algorithm for
finding the coloring number (it is an approximation of chromatic number) by
using a graph adjacency matrix to colorize or separate a graph. To prove the
correctness of the proposed algorithm, we implement it in MATLAB soft-
ware, and for analysis in terms of solution and execution time, we compare
our algorithm with some of the best existing algorithms that are already
implemented in MATLAB software, and we present the results in tables of
various graphs. Several available algorithms used the largest degree selection
strategy, while our proposed algorithm uses the graph adjacency matrix to
select the vertex that has the smallest degree for coloring. We provide some
examples to compare the performance of our algorithm to other available
methods. We make use of the Dolan-Moré performance profiles to assess the
performance of the numerical algorithms, and demonstrate the efficiency of
our proposed approach in comparison with some existing methods.

Keywords: Chromatic number, Coloring number, Graph coloring algorithms,
Graph adjacency matrix, Degree of vertex.

2020 Mathematics Subject Classification: 05C15, 05C85, 05C90.

How to cite this article
H. Mosawi, M. Tavakoli and Kh. Ghorbani-Moghadam, Solving graph
coloring problem using graph adjacency matrix algorithm, Math. Interdisc.
Res. 9 (2) (2024) 215-236.

?Corresponding author (E-mail: m_tavakoli@um.ac.ir)
Academic Editor: Gholam Hossein Fath-Tabar
Received 25 July 2023, Accepted 13 December 2023
DOI: 10.22052/MIR.2023.253223.1428

c© 2024 University of Kashan

This work is licensed under the Creative Commons Attribution 4.0 International License.

216 H. Mosawi et al. / Solving Graph Coloring Problem Using Graph...

1. Introduction
The graph coloring problem is a combinatorial optimization problem that has most
studied in computer science and mathematics. Two types of vertex and edge col-
oring are defined for graph coloring. Both of them aim to color the entire graph
without contradiction [1]. Therefore, adjacent vertices and edges should be colored
with different colors. For a graph G and a set C = {1, 2, . . . , k}, f : V (G) → C
is a coloring for G with k colors if f(u) 6= f(v) for each pair u and v of V (G).
The k-coloring problem is the problem of finding the minimum number of colors,
k, needed for coloring of a graph, see [2]. The chromatic number χ(G) is equal to
min{k | f : V (G)→ {1, . . . , k} is a coloring of G}, see [3, 4] for more details.
Garey and Johnson [5] proved that the k-coloring problem belongs to NP-complete
class, and determining the chromatic number χ(G) is an NP-hard problem; for this
reason many approximation algorithms have been proposed. The graph coloring
problem has many applications in various fields such as solving biological prob-
lems, communication and the internet and also, graph coloring algorithms are
used for plenty of real-world problems [1] including map coloring [6], timetable
and schedule issues [7, 8], registration allocation issues [9, 10], sudoku issue [5],
and frequency allocation issues [11]. For solving GCP, the number of innovative
and meta-heuristic algorithms were expanded to obtain better answers. Innova-
tive algorithms were usually used for less vertex problems but for complete graphs
meta-heuristic algorithms can find better answers [12]. Tabu search algorithm
[13], Refrigeration simulation algorithm [14], Genetic algorithm [8], Ant colony
algorithm [15], Cuckoo algorithm [12] are some of the meta-heuristic algorithms
for graph coloring. When the vertices of a graph were colored with greedy algo-
rithms, it makes the best choice at each execution step, and for this reason these
algorithms were called greedy algorithms. Greedy algorithms usually provided suf-
ficient and effective results [12]. As examples of these algorithms we have first fit
algorithm (FF) [16], welsh and powell (WP) [2], incidence degree ordering (IDO)
[16], The largest degree ordering algorithm (LDO) [16], recursive largest first algo-
rithm (RLF) [17] and degree of saturation algorithm (DSATUR) [18]. All of these
algorithms are greedy for vertex coloring and have been tested on standard graphs
provided by DIMACS [19]. Lima et al. [20] gave polynomial-time algorithms for
rainbow vertex coloring on permutation graphs, powers of trees and split strongly
chordal graphs.

Here, we propose a new algorithm that uses graph adjacency matrix to select
the vertex that has the smallest degree, for finding the chromatic number or ap-
proximation of chromatic number. The rest of the article is arranged as follows:
In Section 2, we provide some necessary definitions related to graph coloring. Our
proposed algorithm for finding the graph coloring number is described in Section
3. In Section 4, the numerical results are given and it is compared with some
existing methods. In Section 5, we apply algorithm (GCA) in coloring the faces
of C80 to C240 as an application of our algorithm. We provide the conclusion in
Section 6.

Mathematics Interdisciplinary Research 9 (2) (2024) 215− 236 217

2. Preliminaries
A pair of vertices in a graph are called adjacent if they are linked by an edge. A
vertex u is a neighbor of a vertex v if there exists an edge {u, v}. The neighborhood
of a vertex v, N(v), is the set of all vertices that are adjacent to it. The problem of
graph coloring is to assign a color to each vertex of the graph so that two adjacent
vertices are not of the same color. A suitable k-coloration of vertices in a graph
G = (V,E) is a function of C : V (G)→ {1, 2, . . . , k} such that C(x) 6= C(y) holds
for each (x, y) ∈ E. The number that corresponds to the vertex x is called the
color x and the vertices with the same color indicate a color class that each color
class is an independent set. The chromatic number χ(G) is a suitable coloring with
the smallest number of colors used for all the vertices of the graph G. Since finding
the chromatic number is an NP-hard problem, so an approximation of it has been
computed and is called coloring number. As the number of vertices increases, the
complexity of the problem also increases because it becomes difficult to color the
graph with the fewest possible colors, so we need special methods to color the
graphs with the fewest different colors. The graph adjacency matrix is given in
the following relation based on the conditions that there is an edge between the
two vertices.

A(i, j) =

{
1, if there is an edge between the two vertices vi and vj ,
0, otherwise.

A is adjacency matrix to a graph G. The vertices of the graph G are displayed in
a set of V = {1, 2, . . . , n}.

3. Proposed method for finding the coloring number
Suppose G = (V,E) is a simple and undirected graph with |V | = n. This proposed
algorithm performs operations on the adjacency matrix of the graph G which we
call A with the dimension n× n and the set of vertices V = {1, 2, . . . , n} in order
to achieve a proper separation of the graph vertices. Unlike the usual algorithms
compared to it, this algorithm uses the vertex with the smallest degree for coloring
every time, and when the coloring is finished with one color, at the end of each
iteration of the algorithm, if the matrix A is not zero, the set V is updated to start
recoloring the graph with the next color for the uncolored vertices, and until the
vertices of the graph are finished, this operation is repeated. To obtain xk sets,
we use the ordered set x = {1, · · · , n}. The value of k is zero at the beginning,
and it increases by one at each stage when the coloring of the graph is finished
with one color. The set xk is colored with the k-th color, and the largest k in xk
is the number of different colors, which is used to color the graph. First, with an
example, we describe how to use the graph adjacency matrix to color the graph,
and then we describe the algorithm (GCA).
Consider the graph G = (5, 7) depicted in Figure 1 with V = {1, · · · , 5} and

218 H. Mosawi et al. / Solving Graph Coloring Problem Using Graph...

x = {1, · · · , 5}. The matrix A is the adjacency matrix of the graph G = (5, 7).

Figure 1: Graph G = (5, 7).

Then it has 5 rows and 5 columns. The first row of A corresponds to the vertex
(1) and the second row corresponds to the vertex (2) and so on. In the first row
of A, if vertex (1) is adjacent to another vertex, A(1, j) = 1, otherwise A(1, j) = 0
and also A(1, 1) = 0 and the next rows are constructed in the same way and the
symmetric matrix A is obtained.

A =


0 1 0 1 0
1 0 1 1 0
0 1 0 1 1
1 1 1 0 1
0 0 1 1 0

 , V = {1, 2, 3, 4, 5}.

Now, using the matrix A, we color the graph G = (5, 7). We obtain the total rows
of the matrix A: sum(A

′
) = {2, 3, 3, 4, 2} (the matrix A

′
is the transproduct of the

matrix A and sum(A
′
) is the column sum of the matrix A

′
). min(sum(A

′
)) = 2

and the sum of the first row is 2, so, i = 1. j = {2, 4} is the neighbors of i. We
obtain t and V (i). t = i ∪ j = {1, 2, 4} and V (i) = 1. Now, in the order of the
numbers that are in t, from the largest to the smallest, we remove the row and
column of the matrix A and from the ordered set V , and the new matrix A and
new V are obtained.

A =

[
0 1
1 0

]
, V = {3, 5}.

Since sum(sum(A
′
))

′
> 0, we repeat the above operation again and sum(A

′
) =

{1, 1} is obtained and min(sum(A
′
)) = 1 is in the first row, so i = 1. The

neighbor of i is j = {2}. We obtain t = i ∪ j = {1, 2} and V (i) = 3. Now, we
remove the rows and columns of the matrix A and from the ordered set V , in the
order of the numbers in t, from the largest to the smallest. The new A and V will
be empty.

A =
[]
, V = {}.

Now, since sum(sum(A
′
))

′
= 0, coloring with one color is finished and V = ∅.

But if V 6= ∅, it would be placed in the set of r = V (i) ∪ V = {1, 3}. At first,
k = 0 and we put k = k + 1. xk = x1 = x(r) = {x(1), x(3)} = {1, 3} is obtained.
We remove x(r) from x and x = {2, 4, 5} remains. We construct the new matrix

Mathematics Interdisciplinary Research 9 (2) (2024) 215− 236 219

A with neighbors of (i)s that are not colored, by the method of constructing the
induced subgraph matrix G[V \ r]. In this process, according to the numbers in
the set r are removed from the largest to the smallest, the rows and columns of the
matrix A and the matrix A is updated and V has the same number of members
as the rows of the matrix A and is updated.

A =

0 1 0
1 0 1
0 1 0

 , V = {1, 2, 3}.

Figure 2 shows the induction subgraph of G[V \ r].

Figure 2: Graph G = (3, 2).

Since V 6= ∅, then we repeat all the above operations. While sum(sum(A
′
))

′
> 0,

we find the vertices of i and color them with the color k = k + 1. The ordered
set sum(A

′
) = {1, 2, 1} and min(sum(A

′
)) = 1. It corresponds to the first row.

So, i = 1 and adjacent to it, j = 2. Therefore, t = {1, 2} and V (i) = 1. Now, we
remove the rows and columns of the matrix A and from the ordered set V in the
order of the numbers in t, from the largest to the smallest. A new matrix of A
and V is obtained.

A =
[
0
]
, V = {3}.

The matrix A has one member and so sum(sum(A
′
))

′
= 0. Therefore the oper-

ation is not performed, the remaining members of V are single vertices and are
placed in the set r = V (i) ∪ V = {1, 3}. Now, we put k = k + 1, xk = x2 =
x(r) = {x(1), x(3)} = {2, 5} and remove x(r) from x and x = {4} is obtained. We
construct the new matrix A with the neighbors of (i)s that are not colored, by the
method that the induction subgraph matrix G[V \ r]. In this way, according to
the numbers in the set r, from the largest to the smallest, the rows and columns
of the matrix A are removed and the matrix A is updated and V has the same
number of members as the rows of the matrix A and is updated.

A =
[
0
]
, V = {1}.

Figure 3 shows the induced subgraph G[V \ r] with only one vertex.
Since sum(sum(A

′
))

′
= 0, the operation is not performed and we have only one

vertex, and it is colored with the next color. In this case, we put k = k + 1 and
put the remaining members of x in xk, xk = x3 = {x} = {4} and the algorithm
ends and xk sets are obtained as below.

x1 = {1, 3}, x2 = {2, 5}, x3 = {4}.

220 H. Mosawi et al. / Solving Graph Coloring Problem Using Graph...

Figure 3: Graph G = (1, 0).

Now, we summarize our proposed method as Algorithm Algorithm 1.

Algorithm 1 Graph Coloring Algorithm (GCA)

Input A is the adjacency matrix of the graph G.
Step-1 Let k = 0, n = A.rows, V = {1, · · · , n}, x = {1, · · · , n}.
Step-2 while V 6= φ do:

2-1 while sum(sum(A′))′ > 0 do:

2-1-1 Find i which is the smallest row and is chosen randomly and the sum
of it, is not zero.

2-1-2 Let w = the neighbors of (i).
2-1-3 Let t = ∪(i, w) and order t.
2-1-4 Remove rows and columns containing t from the largest to the small-

est from A and V .

2-2 Let k = k + 1, r = (i)s ∪ V and sort r. So, take the corresponding
numbers of r from the largest to the smallest index of x and put them in
xk. (xk = x(r) and remove x(r) from x.)

2-3 Let c = the neighbors of (i)s.

2-4 if |c| == 1, then k = k + 1 and xk = x and the algorithm terminates.

2-5 if |c| > 1, then B = adjacency matrix of induced subgraph G[c]. The
matrix B is constructed in such a way that the algorithm removes the
rows and columns of the matrix A according to the ordered set r, from
the largest to the smallest, and the matrix B is created.

2-6 if sum(sum(B′))′ = 0, then k = k + 1 and xk = x and the algorithm
terminates, otherwise A = B and V = 1, · · · , length(c), then go to
Step 2.

Output: Return xk(it is sets of separation and k is number of sets.)

Mathematics Interdisciplinary Research 9 (2) (2024) 215− 236 221

The details of the steps associated with Algorithm 1 are described below.

(1) Initialization: First, the value of k is equal to zero, n is the number of rows
of matrix A, the set of V = {1, · · · , n}, which is the vertices of the graph
and also the ordered set x = {1, · · · , n} are determined

(2) In this step, the following commands are performed until the set V is not
empty:
Until A > 0 and to detect it, the algorithm obtains the transpose of the
matrix A, denoted here by A′ and sum(A′) is the vector obtained from the
sum of each row of A and also sum(sum(A′))′ is a number that shows the
sum of a row and if sum(sum(A′))′ > 0 was, the algorithm executes the
following commands.
First it finds the smallest non-zero row i, and then the neighbors of i are put
in the set w and places the sets i and w in t and sorts t. Then it deletes rows
and columns of A and V from large to small as shown in the set t. If the
matrix A is not zero, the loop commands are executed. When the matrix A
becomes zero, it means that there are not vertices or the graph is empty and
some vertices may remain from V , which are the only vertices. To obtain
the set colored by k, use the ordered set x = {1, · · · , n}. It can be done in
such a way that the set of is and only vertices is placed in r and sorted, and
the members of this set are the index of vertices with color k are colored
and the corresponding numbers of each index is removed from the x set from
large to small as shown in the set r and placed in xk. Then, it places the
neighbors of is in c and checks the following conditions:
If the set c has only one member, the algorithm puts k = k+1 and puts the
set x in xk, that is, the set x has one member. It is colored with the color
k and the algorithm terminates. If the size of the set c is greater than one,
it obtains the adjacency matrix of the induced subgraph G[c]. In this way,
it removes the set r sorted from large to small from the matrix A and the
matrix B is obtained.
Next, the algorithm checks the matrix B. To determine if the matrix B is
zero or not, the algorithm obtains the transpose of the matrix B, denoted
here by B′ and sum(B′) is the vector obtained from the sum of each row of
B and also sum(sum(B′))′ is a number that shows the sum of a row and
if sum(sum(B′))′ = 0 was in this case, the matrix B is zero, then it puts
k = k + 1 and xk = x, then the algorithm terminates because the matrix B
becomes zero in the last iteration of the algorithm. Otherwise, A = B and
V has the same number of members as c, that is, V = {1, · · · , length(c)}
and the algorithm goes to the beginning of step 2. The algorithm is repeated
until the set V is not empty, and the set of xk is produced as the output of
the algorithm in each iteration.
Our algorithm is repeated as many times as the obtained coloring number
minus one, because at the end of the last iteration, a empty graph is created

222 H. Mosawi et al. / Solving Graph Coloring Problem Using Graph...

and the color k is assigned to its vertices.

2.1 Illustrative example
In this section, by using an example, we want to explain how we can find the
coloring number by using the algorithm GCA.

Let G = (9, 13) be a simple graph with nine vertices and thirteen edges (see
Figure 4). At the beginning, k = 0, 9 = A.rows, V = 1, · · · , 9, x = 1, · · · , 9. A
is the adjacency matrix of the graph G = (9, 13) and the number of rows of A is
equal to 9. According to Algorithm 1, since V 6= ∅, the algorithm goes to 2-1.

Figure 4: G=(9, 13).

While |E(G)| = 0, the loop commands are executed. The vertex i = 1 is specified
as the smallest vertex and its neighbors. Then, i and its neighbors w = {5, 2} are
removed from the graph or adjacency matrix (see Figure 5). Since the graph is not

Figure 5: The first iteration of the algorithm, the first iteration of the loop and
step 2-1-2.

empty, the loop commands are repeated again. Then the vertex i = 9 is selected
as the smallest non-zero vertex (see Figure 6). Thus, i and its neighbor w = {8}
are removed from the graph or adjacency matrix, and the graph of Figure 7 is
obtained. Since A > 0, it means that the graph is not empty or only vertices, the
loop commands are executed again, and i = 4 is chosen as the smallest vertex,

Mathematics Interdisciplinary Research 9 (2) (2024) 215− 236 223

Figure 6: The first iteration of the algorithm, the first iteration of the loop and
step 2-1-4, then the second iteration of the loop and step 2-1-2.

Figure 7: The first iteration of the algorithm, the second iteration of the loop and
step 2-1-4, and then the third iteration of the loop and step 2-1-2.

and then i and w = {6} are removed from the graph or adjacency matrix. The
graph in Figure 8 is obtained, which is an empty graph. Therefore, in this case,
A = 0, so the loop ends, and the algorithm goes to step 2-2. According to step

Figure 8: The first iteration of the algorithm, because A = 0, then step 2-2 is
executed.

2-2: k = k+ 1 and because k = 0 is assumed, then xk = x1 and union (i) and the
only vertices are put in r and this set is sorted and removed from the set x from
large to small, as shown in r and puts it in x1 and x1 = {1, 3, 4, 7, 9} is obtained
and the set x = {2, 5, 6, 8} remains.

According to step 2-3, put the set of neighbors of i in c so c = {2, 5, 6, 8}. By
using step 2-4, since |c| > 1, the step 2-5 is implemented and the induced subgraph
G by c, the graph of the form Figure 9, or the adjacency matrix B is created. To
construct the matrix B of the ordered set r from large to small, we delete the rows
and columns of the matrix B as shown in r and the matrix B is updated.

According to step 2-6: since B > 0, A = B and V = 1 : length(c) or V =
{1, 2, 3, 4}, and again the algorithm is repeated from step-2. Since V 6= ∅, the
algorithm goes to 2-1. As one can see in Figure 9, i = 1 is selected as the smallest
nonzero vertex, and it is removed from the graph or adjacency matrix with its

224 H. Mosawi et al. / Solving Graph Coloring Problem Using Graph...

neighbor w = {2}. The graph in Figure 10 is obtained, which is an empty graph

Figure 9: The first iteration of the algorithm and step 2-5 and the creation of
the induced subgraph G[c] and going to the second iteration of the algorithm and
performing steps 2-1-1 and 2-1-2.

and A = 0, so the loop ends again, then step 2-2 is implemented. Therefore,

Figure 10: The second iteration of the algorithm and step 2-1-4.

k = k+1 and the union (i) and the only vertices are put in r and this set is sorted
and removed from the set x from large to small, as shown in r and puts it in x2
and x2 = {2, 6, 8} is obtained and the set x = {5} remains.

The algorithm goes to 2-3, and c = {2} is obtained, and then the algorithm
goes to 2-4. Since |c| = 1, then k = k + 1 and the set x is put in x3. Then,
x3 = {5}, see Figure 11 and the implementation of algorithm is terminated. This

Figure 11: The second iteration of the algorithm and step 2-4.

algorithm divides the graph into x1, x2, x3, or it is colored with k = {1, 2, 3} colors.
Every vertex that is selected for a color is removed with its neighbors, so other

vertices that get the same color cannot be adjacent to each other, so the algorithm
works correctly.
According to these observations, we believe that the algorithm can obtain a good
approximation of the optimal solution. We define f , which actually shows the
number of neighbors of vertices i in each row of matrix A [21]. Their color must

Mathematics Interdisciplinary Research 9 (2) (2024) 215− 236 225

be different from the vertex i, which is defined as follows:

f =
∑

(i,j)∈E

A(i, j).

Suppose that C(i) is the vertex color of i. The following function shows the f
probability complement to all colors:

1− f(xi)
N∑
j=1

f(xj)

,

where, f(xi) =
∑

(i,j)A(i, j) means the vertices adjacent to xi that are not of the
same color as xi, and

∑
j f(xj) means the sum of all rows. The reason we take

f(xi) the smallest is to increase the probability of the remaining colors for vertices
other than xi.

Suppose that, we have a sufficient number of colors. If the vertex with the
smallest non-zero degree is selected, the probability of remaining colors increases
for vertices other than xi.

4. Numerical results
Here, we present some numerical results obtained by applying MATLAB 9.3, and
all experiments were run on a PC with CPU Intel Core (TM) i7-7700K CPU
at 4.20GHz, 32G bytes of SDRAM memory, and Windows 10 operating system.
In [22], the algorithms FF, LDO, WP, IDO, DSATUR, and RLF were tested on
benchmark graphs provided by DIMACS [12]. Algorithm 1, has been tested on
the same benchmark graphs and is attached to the last two columns of tables [22].
In Tables 1 to 6, the first column, entitled Graph, shows the name of the bench-
mark graphs, the column entitled V, shows the number of vertices, the column
entitled E, shows the number of edges, the column entitled Den, displays the den-
sity of edges obtained from the relation Den = 2E/V (V − 1), and χ(G) or best
is a chromatic number or the best number ever known, the column entitled RLF,
shows the name of algorithm and in this column the column R shows the number
of different colors obtained by this algorithm, and T displays the implementation
time (seconds). And the rest of the columns show the name of the algorithm and
its results in the same way. Our proposed method is like this, that first we run the
same algorithm in the mode of selecting the smallest vertex in terms of degree in a
non-random mode, and in this mode, an approximation of the chromatic number
or k is obtained, which we call the initial solution. Then, we test the GCA algo-
rithm 15 times for each example. If the smallest solution obtained in these tests
was smaller than the initial solution, this solution is selected; otherwise, the same
initial solution as the example solution is selected. We display the best solution

226 H. Mosawi et al. / Solving Graph Coloring Problem Using Graph...

for each example in the R column and also the average execution times of the best
solution in every 15 test times in the T column. The ”GCA” algorithm can be re-
peated automatically until the desired value is generated. Coloring algorithms are
presented and the performance of these algorithms on standard graphs (presented
in [19]) is compared. In the last row of each table, the sum of the data of the R
columns is given, by comparing the total data of each Best/χ(G) column, we can
know the algorithm that got a better answer.

In Table 1, if we compare our results with other methods on Table 1, we observe
that our proposed algorithm improved the implementation time in comparison with
DSATUR and IDO on twelve instances (mycies15, mycies16, mycies17, miles1000,
miles1500, miles500, miles750, anna, david, huck, jean, games120). In Table 1,
concerning the coloring numbers obtained by FF, on the five instances (miles1500,
miles500, miles750, anna, david), our proposed algorithm has improved the result,
but in comparison with other algorithms the coloring numbers of our proposed
method are remained identical.

Table 1: The results and computation times for Mycielski and SGB graphs.

Graph V E Den. Best/χ(G) RLF DSATUR WP LDO IDO FF GCA
R T R T R T R T R T R T R T

mycie13 11 20 0.33 4 4 0.0004 4 0.0023 4 0.0001 4 0.0002 4 0.0009 4 0.0001 4 0.0022
mycie14 23 71 0.27 5 5 0.0009 5 0.0077 5 0.0002 5 0.0005 5 0.0028 5 0.0003 5 0.0039
mycie15 47 236 0.21 6 6 0.0024 6 0.0255 6 0.0003 6 0.0010 7 0.0085 6 0.0006 6 0.0069
mycie16 95 755 0.17 7 7 0.0075 7 0.0876 7 0.0004 7 0.0024 7 0.0309 7 0.0016 7 0.0134
mycie17 191 2360 0.13 8 8 0.0293 8 0.3254 8 0.0006 8 0.0068 8 0.1366 8 0.0054 8 0.0301
miles1000 128 3216 0.39 42 42 0.1065 42 1.2942 43 0.0016 43 0.0123 43 0.7013 44 0.0121 44 0.1136
miles1500 128 5198 0.63 73 73 0.3158 73 2.6877 73 0.0024 73 0.0219 73 1.6033 76 0.0220 73 0.1968
miles500 128 1170 0.14 20 20 0.0250 20 0.3249 20 0.0010 20 0.0055 20 0.1360 22 0.2249 21 0.0530
miles750 128 2113 0.26 31 31 0.0522 31 0.7112 32 0.0013 32 0.0083 31 0.3443 34 0.0081 32 0.0852
anna 138 493 0.05 11 11 0.0135 11 0.1231 11 0.0006 11 0.0037 11 0.0457 12 0.0026 11 0.0232
david 87 406 0.11 11 11 0.0076 11 0.1026 11 0.0005 11 0.0025 11 0.0346 12 0.0017 11 0.0203
huck 74 301 0.11 11 11 0.0062 11 0.0745 11 0.0005 11 0.0021 11 0.0244 11 0.0014 11 0.0179
jean 80 254 0.08 10 10 0.0060 10 0.0616 10 0.0004 10 0.0020 10 0.0198 10 0.0013 10 0.0162

games120 20 638 0.09 9 9 0.0180 9 0.1537 9 0.0006 9 0.0039 9 0.0577 9 0.0032 9 0.0325
Sum of R - - - 248 248 - 248 - 250 - 250 - 249 - 260 - 252 -

In Table 2, when comparing our computation times on Queen graphs with other
existing method, we observe that the implementation time of our proposed algo-
rithm is better than DSATUR and IDO algorithms. Also, our obtained coloring
numbers are best in comparision with WP, LDO, IDO and FF, and in compari-
sion with DSATUR our results are better on eight graphs (queen 5-5, queen 6-6,
queen 8-8, queen 9-9, queen 10-10, queen 11-11, queen 12-12 and queen 14-14),
we obtain the same values for the rest of instances. Our obtained coloring number
is better than RLF on one graph (queen 7-7), we obtain the same values for the
rest of instances.

In Table 3, versus to the results presented in DSATUR, on nineteen tested
instances (1-Fullins-4, 1-Fullins-5, 1-Insertios-4, 1-Insertions-5, 1-Insertions-6,
2-Fullins-3, 2-Fullins-4, 2-Fullins-5, 2-Insertion-4, 2-Insertion-5, 3-Fullins-3, 3-

Mathematics Interdisciplinary Research 9 (2) (2024) 215− 236 227

Table 2: The results and computation times for Queen graphs.

Graph V E Den. Best/χ(G) RLF DSATUR WP LDO IDO FF GCA
R T R T R T R T R T R T R T

queen 5-5 25 160 0.51 5 5 0.0012 5 0.0332 7 0.0003 7 0.0006 7 0.0109 8 0.0005 5 0.0052
queen 6-6 36 290 0.45 7 8 0.0028 9 0.0634 9 0.0003 9 0.0010 10 0.0218 11 0.0008 8 0.0095
queen 7-7 49 476 0.40 7 9 0.0045 11 0.1090 12 0.0005 12 0.0016 12 0.0461 10 0.0013 7 0.0153
queen 8-12 96 1368 0.30 12 13 0.0202 14 0.3851 15 0.0007 15 0.0045 15 0.1779 15 0.0041 14 0.0410
queen 8-8 64 728 0.36 9 11 0.0081 12 0.1783 13 0.0005 13 0.0024 15 0.0923 13 0.0020 11 0.0222
queen 9-9 81 1056 0.32 10 12 0.0154 13 0.2853 15 0.0007 15 0.0036 15 0.1312 16 0.0030 12 0.0291
queen 10-10 100 2940 0.59 11 13 0.0215 14 0.4351 17 0.0009 17 0.0052 17 0.1876 16 0.0044 13 0.0388
queen 11-11 121 3960 0.54 11 14 0.0345 15 0.6300 17 0.0009 17 0.0072 18 0.2964 17 0.0063 14 0.0521
queen 12-12 144 5192 0.50 13 15 0.0550 16 0.9163 19 0.0010 19 0.0100 20 0.4604 20 0.0092 15 0.0681
queen 13-13 169 6656 0.47 13 16 0.0800 17 1.3226 23 0.0013 23 0.0134 22 0.6869 21 0.0125 17 0.0863
queen 14-14 196 8372 0.44 16 17 0.1227 19 1.8404 25 0.0015 25 0.0170 24 1.0488 23 0.0169 18 0.1136
Sum of R - - - 114 133 - 145 - 172 - 172 - 169 - 170 - 134 -

Fullins-4, 3-Insertion-3, 3-Insertion-4, 4-Fullins-3, 4-Fullins-4, 4-Insertions-3, 4-
Insertions-4, 5-Fullins-3), and IDO algorithm on sixteen tested instances (1-
Fullins-4, 1-Fullins-5, 1-Insertios-4, 1-Insertions-5, 1-Insertions-6, 2-Fullins-3,
2-Fullins-4, 2-Fullins-5, 2-Insertion-4, 2-Insertion-5, 3-Fullins-3, 3-Fullins-4, 3-
Insertion-3, 3-Insertion-4, 4-Fullins-3, 5-Fullins-3), we improved the computation
times.

Table 3: The results and computation times for CAR graphs.

Graph V E Den. Best/χ(G) RLF DSATUR WP LDO IDO FF GCA
R T R T R T R T R T R T R T

1-Fullins-4 93 593 0.14 5 5 0.0069 5 0.0869 5 0.0003 5 0.0021 6 0.0298 11 0.0016 5 0.0113
1-Fullins-5 282 3247 0.08 6 6 0.0612 6 0.5026 6 0.0007 6 0.0104 7 0.2167 14 0.0098 6 0.0507
1-Insertios-4 67 232 0.10 5 5 0.0058 5 0,0258 5 0.0002 5 0.0013 5 0.0090 5 0.0008 5 0.0086
1-Insertions-5 202 1227 0.06 6 6 0.0314 6 0.1527 6 0.0005 6 0.0055 6 0.0569 6 0.0038 6 0.0307
1-Insertions-6 607 6337 0.03 7 7 0.3575 7 1.2288 7 0.0023 7 0.0344 7 0.6011 7 0.0308 7 0.5414
2-Fullins-3 52 201 0.15 5 5 0.0027 5 0.0237 5 0.0002 5 0.0010 5 0.0076 10 0.0008 5 0.0072
2-Fullins-4 212 1621 0.07 6 6 0.0329 6 0.2116 6 0.0006 6 0.0060 6 0.0796 14 0.0052 6 0.0295
2-Fullins-5 852 12201 0.03 7 7 0.8307 7 3.2494 7 0.0044 7 0.0703 7 1.8256 18 0.0763 7 1.4973
2-Insertion-4 149 541 0.05 5 5 0.0188 5 0.0621 5 0.0004 5 0.0036 5 0.0230 5 0.0021 5 0.0191
2-Insertion-5 597 3936 0.02 6 6 0.3721 6 0.6322 6 0.0023 6 0.0276 6 0.2985 6 0.0211 6 0.5105
3-Fullins-3 80 346 0.11 6 6 0.0060 6 0.380 6 0.0003 6 0.0017 6 0.0134 12 0.0012 6 0.0106
3-Fullins-4 405 3524 0.04 7 7 0.1476 7 0.5354 7 0.0012 7 0.0157 8 0.2370 17 0.0150 7 0.1365
3-Fullins-5 2030 33751 0.02 8 8 10.3646 8 18.3988 8 0.0254 8 0.3786 9 11.5821 22 0.4600 8 22.2276
3-Insertion-3 56 110 0.07 4 4 0.0033 4 0.0125 4 0.0002 4 0.0010 4 0.0047 4 0.0006 4 0.0063
3Insertion-4 281 1046 0.03 5 5 0.0731 5 0.1288 5 0.0007 5 0.0073 5 0.0498 5 0.0048 5 0.0497
3-Insertion-5 1406 9695 0.01 6 6 3.6966 6 2.3609 6 0.0128 6 0.1101 7 1.2766 6 0.0996 6 7.1841
4-Fullins-3 114 541 0.08 7 7 0.0107 7 0.0610 7 0.0004 7 0.0026 7 0.0216 14 0.0020 7 0.0147
4-Fullins-4 690 6650 0.03 8 8 0.5299 8 1.2976 8 0.0031 8 0.0386 8 0.6677 20 0.0387 8 0.7614
4-Fullins-5 4146 77305 0,01 9 9 89.5661 9 85.9533 9 0.1131 9 1.6550 9 55.6602 26 2.0289 9 198.1971

4-Insertions-3 79 156 0.05 4 4 0.0065 4 0.0180 4 0.0002 4 0.0015 4 0.0068 4 0.0009 4 0.0086
4-Insertions-4 475 1795 0.02 5 5 0.2527 5 0.2467 5 0.0015 5 0.0188 5 0.1009 5 0.0103 5 0.2407
5-Fullins-3 154 792 0.07 8 8 0.0220 8 0.0922 8 0.0005 8 0.0036 8 0.0332 16 0.0029 8 0.0201
5-Fullins-4 1085 11395 0.02 9 9 1.8848 9 2.9627 9 0.0080 9 0.0874 9 1.6530 23 0.0923 9 3.0829
Sum of R - - - 144 144 - 144 - 144 - 144 - 149 - 270 - 144 -

In Table 4, compared to the DSTUR and IDO methods tested on six graphs
(DSJC125-1, DSJC125-5, DSJC125-9, DSJC250-1, DSJC250-5, DSJR500-1) we
provide best computation time. Also, we observe that the coloring number of
our proposed algorithm on the six tested instances (DSJC125-1, DSJC125-5,
DSJC125-9, DSJC250-1, DSJC250-5, DSJR500-1) are better than FF, and on
the five tested instances are better than IDO algorithm and on one tested graph

228 H. Mosawi et al. / Solving Graph Coloring Problem Using Graph...

(DSJC125-5, DSJC125-9, DSJC250-1, DSJC250-5) remained identical. Also, our
results is better than LDO and WP on the three tested graphs (DSJC125-5,
DSJC125-9, DSJC250-5), and our result in comparison with DSATUR is bet-
ter on two graphs (DSJC125-1, DSJC125-5).

Table 4: The results and computation times for Random and Flat graphs.

Graph V E Den. Best/χ(G) RLF DSATUR WP LDO IDO FF GCA
R T R T R T R T R T R T R T

DSJC125-1 125 736 0.09 5 6 0.0135 6 0.0846 7 0.0005 7 0.0032 7 0.0320 8 0.0024 7 0.0263
DSJC125-5 125 3891 0.50 17 21 0.0468 22 0.6111 23 0.0011 23 0.0079 25 0.2966 26 0.0074 21 0.0783
DSJC125-9 125 6961 0.89 44 49 0.1811 51 1.4215 53 0.0019 53 0.0162 54 0.7575 56 0.0154 51 0.1701
DSJC250-1 250 3218 0.10 8 10 0.0665 10 0.4791 11 0.0011 11 0.0142 12 0.2086 13 0.0097 11 0.0852
DSJC250-5 250 15668 0.50 28 35 0.4661 37 4.9399 41 0.0025 41 0.0371 40 3.0145 43 0.0394 35 0.2451
DSJR500-1 500 3555 0.03 12 12 0.2863 13 0.5829 13 0.0023 13 0.0237 13 0.2609 15 0.0199 14 0.4393
Sum of R - - - 114 133 - 139 - 148 - 148 - 151 - 161 - 139 -

In Table 5, if we compare our computation times of DSATUR, IDO and RLF
on fourteen tested instances (fpso12-i1, fpso12-i2, fpso12-i3, mulsol-i1, mulsol-i2,
mulsol-i3, mulsol-i4, mulsol-i5, inithx-i1, inithx-i2, inithx-i3, zeroin-i1, zeroin-i2,
zeroin-i3), we have improved fourteen results for graphs and we obtain the same
values of coloring numbers for fourteen instances.

Table 5: The results and computation times for Register Allocation graphs.

Graph V E Den. Best/χ(G) RLF DSATUR WP LDO IDO FF GCA
R T R T R T R T R T R T R T

fpso12-i1 496 11654 0.09 65 65 0.9869 65 3.1791 65 0.0044 65 0.0646 65 1.8096 65 0.0552 65 0.3890
fpso12-i2 451 8691 0.09 30 30 0.5217 30 1.9960 30 0.0024 30 0.0442 30 1.1139 30 0.0409 30 0.2479
fpso12-i3 425 8688 0.10 30 30 0.5184 30 1.9752 30 0.0022 30 0.0427 30 1.0739 30 0.0407 30 0.2096
mulsol-i1 197 3925 0.20 49 49 0.1299 49 0.6347 49 0.0021 49 0.0153 49 0.2924 49 0.0137 49 0.1182
mulsol-i2 188 3885 0,22 31 31 0.1171 31 0.6423 31 0.0015 31 0.0145 31 0.2899 31 0.0133 31 0.0773
mulsol-i3 184 3916 0.23 31 31 0.1164 31 0.6189 31 0.0015 31 0.0143 31 0.2805 31 0.0134 31 0.0772
mulsol-i4 185 3946 0.23 31 31 0.1243 31 0.6328 31 0.0015 31 0.0145 31 0.2994 31 0.0130 31 0.0777
mulsol-i5 186 3973 0.23 31 31 0.1253 31 0.6286 31 0.0015 31 0.0145 31 0.2900 31 0.0128 31 0.0761
inithx-i1 864 18707 0.05 54 54 2.7427 54 6.7614 54 0.0066 54 0.1337 54 4.2802 54 0.1266 54 1.5789
inithx-i2 645 13979 0.07 31 31 1.4014 31 4.2319 31 0.0037 31 0.0839 31 2.5214 31 0.0800 31 0.6985
inithx-i3 621 13969 0.07 31 31 1.3034 31 4.1724 31 0.0035 31 0.0819 31 2.5577 31 0.0780 31 0.6160
zeroin-i1 211 4100 0.18 49 49 0.1427 49 0.6636 49 0.0020 49 0.0157 49 0.3188 49 0.0139 49 0.1197
zeroin-i2 211 3541 0.16 30 30 0.1062 30 0.5390 30 0.0015 30 0.0136 30 0.2504 30 0.0124 30 0.0753
zeroin-i3 206 3540 0.17 30 30 0.1150 30 0.5439 30 0.0014 30 0.0134 30 0.2530 30 0.0123 30 0.0681
Sum of R - - - 523 523 - 523 - 523 - 523 - 523 - 523 - 523 -

In Table 6, our algorithm provides better computation time than DSATUR and
IDO on six graphs (namely le450-15b, le450-25a, le450-25b, le450-25c, le450-5c,
le450-5d). If we compare the obtained coloring number of our proposed method
with FF, we observe that on four tested instances (le450-15b, le450-5c, le450-25c,
le450-5d) and our obtained coloring number on two instances (le450-5c, le450-5d)
is better than coloring number of IDO, LDO, WP and DSATUR.
We used the performance profiles given by the Dolan-Moré diagrams (see details in
[23]). The performance profile provides, for each value of w, the proportion ρ(w) of

Mathematics Interdisciplinary Research 9 (2) (2024) 215− 236 229

Table 6: The results and computation times for Leighton graphs.

Graph V E Den. Best/χ(G) RLF DSATUR WP LDO IDO FF GCA
R T R T R T R T R T R T R T

le450-15b 450 8169 0.08 15 17 0.3071 16 1.7589 18 0.0025 18 0.0348 18 0.9585 22 0.0337 21 0.3964
le450-25a 450 8260 0.08 25 25 0.3502 25 1.7952 26 0.0029 26 0.0367 25 1.0172 28 0.0355 28 0.4299
le450-25b 450 8263 0.08 25 25 0.3583 25 1.9924 25 0.0028 25 0.0371 25 1.0341 27 0.0355 28 0.3998
le450-25c 450 17343 0.17 25 28 0.7839 29 5.9978 29 0.0034 29 0.0626 31 3.6658 37 0.0674 35 0.5392
le450-5c 450 9803 0.10 5 5 0.2226 10 2.4336 12 0.0020 12 0.0352 12 1.3233 17 0.0375 6 0.2260
le450-5d 450 9757 0.10 5 6 0.2315 12 2.4037 14 0.0025 14 0.0362 13 1.2504 18 0.0382 5 0.2180
Sum of R - - - 100 106 - 117 - 124 - 124 - 124 - 149 - 123 -

test problems where each considered algorithmic variant has a performance within
a factor of w of the best. Thus, based on the Dolan-Moré performance profile
as shown in Figures 12 to 17, we conclude that the our proposed method (GCA)
performs are better than others.

(a) The Dolan-Moré performance profile
for comparison of computation times for
Mycielski and SGB graphs.

(b) The Dolan-Moré performance profile
for comparison of coloring number for My-
cielski and SGB graphs.

Figure 12: The Dolan-Moré performance profile for Mycielski and SGB graphs.

5. Using (GCA) in coloring the faces of C80 to C240

Using Algorithm (GCA) in coloring the faces of C80 to C240 Graph coloring al-
gorithm can be used to color the face C80 to C240 in the article [24]. First, we
make the graph of each of the shapes C80 to C240 and then we color each of these
graphs with the algorithm (GCA). The method of making the graph is as follows:
1- We name pentagonal and hexagonal regions with numbers, and each number
represents a vertex of the graph, thus the vertices of the graph are obtained.
2- We add an edge from each vertex to all the vertices, which have different colors.
3- We color the resulting graph with the algorithm (GCA).
Because each of the obtained graphs from C80 to C240 is large, we construct

230 H. Mosawi et al. / Solving Graph Coloring Problem Using Graph...

(a) The Dolan-Moré performance profile
for comparison of computation times for
Queen graphs.

(b) The Dolan-Moré performance profile
for comparison of coloring number for
Queen graphs.

Figure 13: The Dolan-Moré performance profile for Queen graphs.

(a) The Dolan-Moré performance profile
for comparison of computation times for
CAR graphs.

(b) The Dolan-Moré performance profile
for comparison of coloring number for
CAR graphs.

Figure 14: The Dolan-Moré performance profile for CAR graphs.

the adjacency matrix of the graph obtained from C80 and C240 with MATLAB
software. The (GCA) algorithm receives each of them as input and produces
sets that have the same color. The adjacency matrix of the graph G = (42, 360)
resulting from C80 is constructed as follows. First, we name pentagonal and
hexagonal regions with numbers, each of these numbers represents a vertex. So,
V = {1, 2, . . . , 42}.

A(i, j) =

{
1, If there is an edge between the two vertices vi and vj ,
0, otherwise.

Figure 18 shows C80, which is numbered.

Mathematics Interdisciplinary Research 9 (2) (2024) 215− 236 231

(a) The Dolan-Moré performance profile
for comparison of computation times for
Random and Flat graphs.

(b) The Dolan-Moré performance profile
for comparison of coloring number for Ran-
dom and Flat graphs.

Figure 15: The Dolan-Moré performance profile for Random and Flat graphs.

(a) The Dolan-Moré performance profile
for comparison of computation times for
Register Allocation graphs.

(b) The Dolan-Moré performance profile
for comparison of coloring number for Reg-
ister Allocation graphs.

Figure 16: The Dolan-Moré performance profile for Register Allocation graphs.

After running the algorithm on the adjacency matrix G = (42, 360), the following
sets are obtained and show that X1 is colored with the color K = 1 and X2 is
colored with the color K = 2.
x1 = [2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 30, 32, 34, 36,
37, 38, 39, 40, 41],
x2 = [1, 7, 9, 11, 13, 15, 27, 29, 31, 33, 35, 42].
Figure 19 shows C240, which is numbered.
Also, after running the algorithm on the adjacency matrix G = (122, 4795), the

following sets are obtained and it shows that X1 with color K = 1, X2 with color
K = 2, X3 is colored with the color K = 3 and X4 is colored with the color K = 4.
x1 = [2, 3, 4, 5, 6, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50,

232 H. Mosawi et al. / Solving Graph Coloring Problem Using Graph...

(a) The Dolan-Moré performance profile
for comparison of computation times for
Leighton graphs.

(b) The Dolan-Moré performance profile
for comparison of coloring number for
Leighton graphs.

Figure 17: The Dolan-Moré performance profile for Leighton graphs.

.

Figure 18: C80.

53, 57, 61, 65, 69, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104,
105, 117, 118, 119, 120, 121],
x2 = [7, 9, 11, 13, 15, 19, 22, 25, 28, 31, 35, 39, 43, 47, 51, 52, 54, 55, 56, 58, 59, 60, 62,
63, 64, 66, 67, 68, 70, 71, 75, 79, 83, 87, 91, 94, 97, 100, 103],
x3 = [1, 33, 37, 41, 45, 49, 73, 77, 81, 85, 89, 122,],
x4 = [8, 10, 12, 14, 16, 108, 110, 112, 114, 116].

6. Conclusion

We presented a new algorithm for finding the chromatic number or approxima-
tion of chromatic number by using the adjacency matrix of a graph to colorize
or separate a graph and specify separation sets. We provided some challenging
benchmark graphs to compare the performance of our proposed algorithm to other
available methods from the DIMACS library.

The best algorithm in terms of efficiency is the RLF algorithm, and the DSATUR
algorithm ranks second in terms of the solution and it is slower than RLF in terms
of execution time. Our proposed algorithm has worked very well for the graphs

Mathematics Interdisciplinary Research 9 (2) (2024) 215− 236 233

.

Figure 19: C240.

of the queen category, and for the queen7-7 graph, the best answer or χ(G) is
obtained while the RLF algorithm could not obtain it and also in the case of the
graph le450-5d as well. In general, our proposed method is better than DSATUR
algorithm in terms of execution time, which is after RLF in terms of solution,
except for a few, it has performed better. Also, for Register Allocation graphs, the
Algorithm 1 is similar to RLF in terms of its answer, but it is better than RLF in
terms of implementation time has done. In the last row of Tables 1 to 6, we have
given the total results for each algorithm. Based on these results, we can conclude
that our proposed algorithm has worked very well and is similar to RLF. We made
use of the Dolan–Moré performance profiles to assess the performance of the nu-
merical algorithms and demonstrated the efficiency of our proposed approach in
comparison with some existing methods.

Acknowledgement

Research of the second author, Mostafa Tavakoli, supported in part by the Fer-
dowsi University of Mashhad. Research of the third author, Khatere Ghorbani-
Moghadam, supported in part by the Mosaheb Institute of Mathematics, Kharazmi
University.

Conflicts of Interest. The authors declare that they have no conflicts of interest
regarding the publication of this article.

References
[1] J. L. Gross, J. Yellen and M. Anderson, Graph Theory and its Applications,

Chapman and Hall/CRC, (2018).

[2] F. Ge, Z. Wei, Y. Tian and Z. Huang, Chaotic ant swarm for
graph coloring, IEEE international conference on intelligent comput-

234 H. Mosawi et al. / Solving Graph Coloring Problem Using Graph...

ing and intelligent systems, Xiamen, China, 2010 (2010) 512 − 516,
https://doi.org/10.1109/ICICISYS.2010.5658530.

[3] D. J. A. Welsh and M. B. Powell, An upper bound for the chromatic number
of a graph and its application to timetabling problems, Comput J. 10 (1967)
85− 86, https://doi.org/10.1093/comjnl/10.1.85.

[4] I. M. Díaz and P. Zabala, A generalization of the graph coloring problem,
Investig. Oper. 8 (1999) 167− 184.

[5] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness, W. H. Freeman (1979).

[6] B. H. Gwee, M. H. Limand and J. S. Ho, Solving four colouring map prob-
lem using genetic algorithm, Proceedings of First New Zealand International
Two-Stream Conference on Artificial Neural Networks and Expert Systems,
Dunedin, New Zealand, (1993) 332− 333.

[7] K. A. Dowsland and J. M. Thompson, Ant colony optimization for the
examination scheduling problem, J. Oper. Res. Soc. 56 (2005) 426 − 438,
https://doi.org/10.1057/palgrave.jors.2601830.

[8] N. Chmait and K. Challita, Using simulated annealing and ant-colony opti-
mization algorithms to solve the scheduling problem, Comput. Sci. Inf. Tech.
1 (2013) 208− 224, https://doi.org/10.13189/csit.2013.010307.

[9] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins and
P. W. Markstein, Register allocation via coloring, Comput. Lang. 6 (1981)
47− 57, https://doi.org/10.1016/0096-0551(81)90048-5.

[10] F. C. Chow and J. L. Hennessy, The priority based coloring approach to
register allocation, ACM Trans. Program. Lang. Syst. 12 (1990) 501 − 536,
https://doi.org/10.1145/88616.88621.

[11] W. K. Hale, Frequency assignment: theory and applications, in Proceedings of
the IEEE 68 (1980) 1497−1514. https://doi.org/10.1109/PROC.1980.11899.

[12] S. Mahmoudi and S. Lotfi, Modified cuckoo optimization algorithm (MCOA)
to solve graph coloring problem, Appl. Soft Comput. 33 (2015) 48 − 64,
https://doi.org/10.1016/j.asoc.2015.04.020.

[13] A. Hertz and D. de Werra, Using tabu search techniques for graph coloring,
Computing 39 (1987) 345− 351, https://doi.org/10.1007/BF02239976.

[14] M. Chams, A. Hertz and D. de Werra, Some experiments with simulated
annealing for coloring graphs, European J. Oper. Res. 32 (1987) 260− 266,
https://doi.org/10.1016/S0377-2217(87)80148-0.

Mathematics Interdisciplinary Research 9 (2) (2024) 215− 236 235

[15] S. Ahn, S. Lee and T. Chung, Modified ant colony system for coloring graphs,
information, communications and signal processing, 2003 and fourth pacific
rim conference on multimedia, Proceedings of the joint conference of the
fourth international conference on, 1849− 1853, (2003).

[16] H. Al-Omari and K. E. Sabri, New graph coloring algorithms, American jour-
nal of mathematics and statistics 2 (2006) 439− 441.

[17] F. T. Leighton, A graph coloring algorithm for large scheduling problems, J.
Res. Nat. Bur. Standards, 84 (1979) 489− 506.

[18] D. Brélaz, New methods to color the vertices of a graph, Comm. ACM 22
(1979) 251− 256, https://doi.org/10.1145/359094.359101.

[19] C. Dimacs, graph coloring instances, (2016) instances homepage on CMU.
[online]. Available: http:mat.gsia.cmu.edu/COLOR/instances.html.

[20] P. T. Lima, E. J. van Leeuwen and M. van der Wegen, Algorithms for the
rainbow vertex coloring problem on graph classes, Theoret. Comput. Sci. 887
(2021) 122− 142, https://doi.org/10.1016/j.tcs.2021.07.009.

[21] S. M. Douiri and S. Elbernoussi, Solving the graph coloring problem via hy-
brid genetic algorithms, J. King Saud Univ. Eng. Sci. 27 (2015) 114 − 118,
https://doi.org/10.1016/j.jksues.2013.04.001.

[22] M. Aslan and N. A. Baykan, A performance comparison of graph coloring
algorithms, Int. J. Intell. Syst. Appl. Eng. 4 (2016) 1− 7.

[23] E. D. Dolan and J. J. Moré, Benchmarking optimization software
with performance profiles, Math. Program. 91 (2002) 201 − 213,
https://doi.org/10.1007/s101070100263.

[24] K. Balasubramanian, O. Ori, F. Cataldo, A. R. Ashrafi and M. V. Putz,
Face colorings and chiral face colorings of icosahedral giant fullerenes:
C80 to C240, Fuller. Nanotub. Carbon Nanostructures 29 (2021) 1 − 12,
https://doi.org/10.1080/1536383X.2020.1794853.

Hanifa Mosawi
Department of Applied Mathematics,
Faculty of Mathematical Sciences,
Ferdowsi University of Mashhad,
P.O. Box 1159, Mashhad 91775, I. R. Iran
e-mail: hmousv@gmail.com

236 H. Mosawi et al. / Solving Graph Coloring Problem Using Graph...

Mostafa Tavakoli
Department of Applied Mathematics,
Faculty of Mathematical Sciences,
Ferdowsi University of Mashhad,
P.O. Box 1159, Mashhad 91775, I. R. Iran
e-mail: m_tavakoli@um.ac.ir

Khatere Ghorbani-Moghadam
Mosaheb Institute of Mathematics,
Kharazmi University, Tehran, I. R. Iran
k.ghorbani@khu.ac.ir

	Illustrative example

