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Abstract
This paper introduces a novel approach to enhance the performance of

the stochastic gradient descent (SGD) algorithm by incorporating a modified
decay step size based on 1√

t
. The proposed step size integrates a logarith-

mic term, leading to the selection of smaller values in the final iterations.
Our analysis establishes a convergence rate of O( lnT√

T
) for smooth non-convex

functions without the Polyak-Łojasiewicz condition. To evaluate the effec-
tiveness of our approach, we conducted numerical experiments on image
classification tasks using the Fashion-MNIST and CIFAR10 datasets, and
the results demonstrate significant improvements in accuracy, with enhance-
ments of 0.5% and 1.4% observed, respectively, compared to the traditional
1√
t
step size. The source code can be found at

https://github.com/Shamaeem/LNSQRTStepSize.
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1. Introduction
Stochastic gradient descent (SGD) has a rich historical background, originating
from the influential work by Robbins and Monro [1]. In the realm of modern
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machine learning, SGD has emerged as a fundamental optimization algorithm for
training deep neural networks (DNNs), which have achieved remarkable perfor-
mance across diverse domains such as image classification [2, 3], object detection
[4], and machine translation [5].

The selection of an appropriate step size, often referred to as the learning
rate, plays a pivotal role in the convergence behavior of SGD. If the step size
value is too large, it can prevent SGD iterations from reaching the optimal point,
leading to instability and divergence. On the other hand, excessively small step size
values can result in slow convergence and hinder the algorithm’s ability to escape
suboptimal local minima [6]. To tackle these challenges, researchers have proposed
various schemes to determine the step size dynamically during the optimization
process.

One notable approach is the Armijo line search method, initially introduced by
Vaswani et al. [7], provide theoretical guarantees for strong-convex, convex, and
non-convex objective functions. Another strategy, proposed by Gower et al. [8],
combines a constant learning rate with a decreasing learning rate schedule. Their
algorithm starts with a fixed learning rate and transitions to a decreasing schedule
after a specified number of iterations, often determined by the problem’s condition
number. While this technique ensures convergence for strongly convex functions, it
necessitates prior knowledge of the condition number and is not directly applicable
to non-convex problems.

Decay step size is a commonly employed strategy in SGD to improve the con-
vergence of optimization algorithms [9, 10]. By gradually reducing the step size
over iterations, decay step size methods facilitate finer adjustments in parameter
updates, leading to improved convergence behavior and enhanced optimization
performance [11, 12]. Among the various decay step sizes used in SGD, the 1√

t

step size has been widely used due to its ease of implementation and the significant
advantage of not requiring derivative information. For instance, this step size has
been recognized for its excellent performance in binary classification, making it an
effective choice [12]. Additionally, it exhibits favorable efficiency in the context of
deep neural networks.

During the training of deep neural networks, the use of this step size encounters
a fundamental challenge. While the step size value decreases appropriately in the
early iterations, it remains excessively large in the final iterations. This leads to
the algorithm’s inability to converge to the optimal point. As a result, the SGD
algorithm with 1√

t
step size fails to achieve the desired accuracy for deep neural

networks. To address this limitation, we propose an enhanced version of the 1√
t

step size that incorporates the ln t function into its definition. By introducing this
modification, our goal is to improve the accuracy and loss function compared to
the original 1√

t
step size commonly used in SGD.

Smith [13] introduced the efficient method of setting the step size, known as the
cyclical learning rate. Utilizing cyclical learning rates for training neural networks
can yield substantial enhancements in accuracy, eliminating the need for manual
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tuning and often requiring fewer iterations for convergence [13]. Building on this
concept, Loshchilov and Hutter presented a warm restart technique for SGD in
[10]. This approach eliminates the necessity of computing gradient information for
adjusting the step size in each iteration. Warm restarts operate by initializing the
learning rate to a specific value η0 at each restart, scheduling its subsequent de-
crease [10]. Additionally, studies have revealed that warm-restarted SGD exhibits
significantly improved efficiency, taking notably less time compared to traditional
learning rate adjustment strategies [14]. Over recent years, a variety of step sizes
accompanied by warm restarts have been proposed [6, 15]. Extending the notion
of cosine step size, Vrbančič introduced three distinct step sizes accompanied by
warm restarts [14].

Building upon the insights from previous research, we present a novel approach
in this work that utilizes a novel step size combined with the warm restarts tech-
nique for SGD. The key contributions of this paper can be summarized as follows:

• The new step size exhibits a distinct behavior compared to the 1√
t
step

size. By incorporating both 1√
t
and ln t, the step length gradually decreases

in the final iterations, leading to convergence towards the optimal point.
The impact of this modification will be demonstrated through the numerical
results.

• We demonstrate the convergence rate of O( lnT√
T

) for smooth non-convex func-
tions, without requiring the Polyak-Łojasiewicz (PL) condition.

• We evaluate the performance of the new step size through extensive experi-
ments on two popular image classification datasets, that is, Fashion-MNIST
and CIFAR10. The results indicate significant improvements in accuracy,
with enhancements of 0.5% and 1.4% observed, respectively, when compared
to the traditional 1√

t
step size. In addition, we conduct SGD experiments

on binary classification tasks using five diverse datasets: a1a, a2a, mush-
rooms, rcv1, and w1a. The results demonstrate that the new proposed step
size consistently outperforms other step sizes in terms of accuracy and loss
function.

The paper is organized as follows: Section 2 introduces the new step size, pro-
viding an overview of its formulation and properties. In Section 3, we analyze
the convergence rates of the proposed step size on smooth non-convex functions,
demonstrating its impressive O( lnT√

T
) convergence rate. Section 4 presents and dis-

cusses the numerical results obtained using the new decay step size, highlighting
its effectiveness in improving optimization performance. Finally, Section 5 con-
cludes the paper by summarizing the findings and drawing insightful conclusions
from our study.

In this paper, we use the following notational conventions: The Euclidean norm
of a vector is denoted by ‖.‖. The non-negative orthant and positive orthant of Rd
are denoted by Rd+ and Rd++, respectively. We also use the notation f(t) = O(g(t))
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to indicate that there exists a positive constant ω such that f(t) ≤ ωg(t) for all
t ∈ R++.

2. New step size
In this section, we briefly introduce the main optimization problem and state some
assumptions. Afterward, we will present the new step size and algorithm.
We consider the following optimization problem:

min
x∈Rd

f(x) = min
x∈Rd

1

n

n∑
i=1

fi(x), (1)

where fi : Rd → R is the loss function for the i-th training sample over the variable
x ∈ Rd and n denotes the number of samples. This minimization problem plays
a key role in machine learning. Several iterative approaches for solving Equation
(1) are known [16], and SGD is particularly popular when the dimensionality, n,
is extremely large [1, 17]. SGD uses a random training sample ik ∈ {1, 2, ..., n} to
update x using the rule:

xk+1 = xk − ηk∇fik(xk), (2)

in which ηk is the step size used in iteration k and ∇fik(x) is the (average) gradient
of the loss function(s) [7].

2.1. Assumptions
Let f : Rd → R be the objective function, and consider the SGD algorithm. We
make the following assumptions [11]:

• A1: The function f : Rd → R is L-smooth, which implies that for all x and
y in the domain of f , we have:

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2, (3)

where, ∇f(x) denotes the gradient of f at point x, and L is a positive
constant representing the Lipschitz constant of f .

• A2: For any iteration t ∈ {1, 2, . . . , T} of the SGD algorithm, we assume
that the expected square norm of the difference between the stochastic gra-
dient gt and the true gradient ∇f(xt) at the current iterate xt is bounded
as follows:

Et
[
‖gt −∇f(xt)‖2

]
≤ σ2, (4)

where σ2 is a positive constant.
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Figure 1: The comparison between the 1√
t
step size and the modified step size

incorporating ln t function.

2.2. The new step size
In this paper, we address a limitation associated with the 1√

t
step size, where its

value fails to decrease adequately during the final iterations. This characteristic
poses a challenge in reaching the optimal point in some problems. To overcome
this limitation, we propose a modified step size approach that combines the 1√

t

function with the logarithmic function, ln t, in an effort to effectively reduce the
step size.

The motivation behind incorporating the ln t function lies in its gradual growth
pattern, which enables a more controlled reduction in the step size when compared
to the original 1√

t
step size. By introducing the ln t function into the formulation,

we aim to achieve a more refined and optimized step size throughout the optimiza-
tion process. In this regard, we define the new step size as:

ηt =
η0√
t+ ln t

, η0 ∈ (0, 1], t = 1, 2, ..., T. (5)

Figure 1 illustrates the behavior of two step sizes: the original 1√
t
step size and

the newly proposed step size. The graph visually demonstrates how the new step
size consistently selects smaller values, particularly during the final iterations of
the SGD algorithm.

2.3. Algorithm
In this paper, we employ the warm restart Algorithm 1 with the same number
of epochs in the inner loop, i.e., T . Algorithm 1 is initiated with the provided
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initial step size η0, the number of inner iterations T , the number of outer epochs
l, and the initial point x0. The algorithm consists of the outer and the inner loop.
In each inner loop, the SGD with the new step size is executed and the point
is updated. It is important to note that Algorithm 1 was introduced in [11]. It
becomes evident that when l = 1, Algorithm 1 transforms into the SGD algorithm.

Algorithm 1 SGD with warm restarts based on the new step size.
Input: Initial step size η0, initial point x0, the number of outer and inner iterations,
i.e., l and T .
for i = 1, ..., l do

for t = 1, ..., T do
Run SGD with the new step size η0√

t+ln t

end
end

3. Convergence

In this section, we demonstrate that Algorithm 1 using the newly proposed step size
achieves a convergence rate of O( lnT√

T
) for smooth non-convex functions without

the PL condition. Note that, the PL condition initially proposed by Polyak [18]
and Łojasiewicz [19], stands as a fundamental cornerstone in demonstrating linear
convergence rates for non-convex functions [11]. To establish the convergence
results, we initially demonstrate an O( lnT√

T
) convergence rate for a single outer

iteration of Algorithm 1, which corresponds to the SGD algorithm. Subsequently,
we extend the proof to encompass l outer iterations. In this regard, we first
introduce two preliminary lemmas [9, 11].

Lemma 3.1. For the new step size given by (5), we have:

T∑
t=1

ηt ≥ η0(
√
T − 1).

Proof. To prove this lemma, we utilize the fact that ln t <
√
t for all t ∈ [1, T ].

Thus, we have:

T∑
t=1

ηt = η0

T∑
t=1

1√
t+ ln t

≥ η0
T∑
t=1

1

2
√
t

= η0

∫ T

1

1

2
√
t
dt = η0(

√
T − 1), (6)

where the first inequality is derived from ln t ≤
√
t for all t ≥ 1.
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Lemma 3.2. For the new step size given by (5), we have:

T∑
t=1

η2t ≤ η20 lnT.

Proof. To prove this lemma, we use the fact that ln t ≥ 0 and
√
t + ln t ≥

√
t for

all t ≥ 1. Hence, we have:

T∑
t=1

η2t = η20

T∑
t=1

1

(
√
t+ ln t)2

≤ η20
T∑
t=1

1

t
= η20 lnT, (7)

where the first inequality is obtained from the fact that ln t ≥ 0 for all t ≥ 1.

These preliminary lemmas provide important insights and bounds that will be
used to establish the convergence results for the modified step size in subsequent
sections.

Lemma 3.3 (Lemma 7.1 in [9]). Assuming that f is an L-smooth function and
Assumption (A2) is satisfied, if ηt ≤ 1

cL , then SGD guarantees:

ηt
2
E[‖∇f(xt)‖2] ≤ E[f(xt)]− E[f(xt+1)] +

Lη2t σ
2

2
. (8)

The following theorem provides O( lnT√
T

) rate of convergence for smooth non-
convex functions without PL condition.

Theorem 3.4. Under Assumptions A1 and A2, and for c > 1, a single outer
iteration of Algorithm 1, which corresponds to the SGD algorithm with the new
proposed step sizes using η0 = 1

cL guarantees the following inequality:

E[‖∇f(x̄T )‖2] ≤ lnT√
T − 1

[
2Lc (f(x1)− f∗)

lnT
+
σ2

Lc

]
,

where x̄T is a random iterate drawn from the sequence {xt}Tt=1 with probability
P[x̄T = xt] = ηt∑T

t=1 ηt
.

Proof. Using the definition of x̄T and Lemma 3.3, we have:

E[‖∇f(x̄T )‖2] =
ηtE[‖∇f(xt)‖2]∑T

t=1 ηt
≤

2
∑T
t=1 [E[f(xt)]− E[f(xt+1)]]∑T

t=1 ηt
+
Lσ2

∑T
t=1 η

2
t∑T

t=1 ηt

≤ 2 (f(x1)− f∗)∑T
t=1 ηt

+
Lσ2

∑T
t=1 η

2
t∑T

t=1 ηt

≤ 2 (f(x1)− f∗)
η0(
√
T − 1)

+
Lσ2η0 lnT

(
√
T − 1)

=
2cL

(
√
T − 1)

(f(x1)− f∗) +
σ2 lnT

Lc(
√
T − 1)

, (9)
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where the third inequality is obtained by using Lemmas 3.1 and 3.2. The expression
(9) can be rewritten as follows:

E[‖∇f(x̄T )‖2] ≤ lnT√
T − 1

[
2Lc (f(x1)− f∗)

lnT
+
σ2

Lc

]
. (10)

Remark 1. Theorem 3.4 implies that:

E[‖∇f(x̄T )‖2] ≤ O
(

lnT√
T

)
.

This result demonstrates that a single outer iteration of Algorithm 1, which cor-
responds to the SGD based on the new modified step size enjoys an O( lnT√

T
) rate

of convergence for smooth non-convex functions without the PL condition. Re-
markably, this rate of convergence matches that of the traditional 1√

t
step size

[9].
Utilizing the outcomes derived from Theorem 3.4, we can now calculate the

convergence rate for the warm restart SGD algorithm.

Corollary 3.5. (SGD with warm restarts): Under Assumptions A1 and A2, for
a given value of T and η0 = 1

cL , Algorithm 1 guarantees the following convergence:

E|∇f(x̄T )|2 ≤ lnT√
T − 1

(
2lcL

lnT
(f(x̃1)− f∗) +

σ2l

Lc

)
,

where f(x̃1) = maxi f(x1i) for i = 1, 2, ..., l.

Proof. Theorem 3.4 is true for all i = 1, 2, ..., l. Therefore, we have:

min
i

(E‖∇f(x̄T )‖2) ≤
l∑
i=1

E‖∇f(x̄Ti
)‖2

≤
l∑
i=1

(
2cL√
T − 1

(f(x1i)− f∗) +
σ2 lnT

Lc(
√
T − 1)

)
≤ lmax

i

(
2cL√
T − 1

(f(x1i)− f∗) +
σ2 lnT

Lc(
√
T − 1)

)
=

2lcL√
T − 1

(f(x̃1)− f∗) +
σ2l lnT

Lc(
√
T − 1)

=
lnT√
T − 1

(
2lcL

lnT
(f(x̃1)− f∗) +

σ2l

Lc

)
,

in which f(x̃1) = maxi{f(x1i)}.



Mathematics Interdisciplinary Research 9 (3) (2024) 237− 253 245

4. Numerical results

In this section, we performed two sets of experiments to assess the effectiveness of
our proposed scheme. The first series of experiments involved classifying images
on two different datasets: Fashion-MNIST and CIFAR10. These datasets are com-
monly used in computer vision research for image classification tasks. The second
series of experiments focused on the binary classification of patterns, using five
different datasets: a1a, a2a, mushrooms, rcv1, and w1a. These datasets cover a
diverse range of patterns and are commonly used in machine learning research for
binary classification tasks. To assess the performance of our proposed approach,
we compared it with state-of-the-art methods through experimental studies. By
conducting these comparisons, we gain insights into the effectiveness of our ap-
proach and how it stacks up against existing techniques. Now, let’s dive deeper
into the mentioned methods, datasets, and the learning model applied for the
classification task.

4.1. Methods

Here, we conduct a comprehensive comparison study to evaluate various step sizes.
We consider the following step sizes:

• ηt = constant,

• ηt = η0
1+α
√
t
,

• ηt = η0
1+αt ,

• ηt = η0
2

(
1 + cos tπT

)
,

• ηt = η0

(
1

1+α(
√
t+ln t)

)
.

We have various step size update strategies with the following names: SGD with
constant step size, step size with O( 1√

t
) decay, step size with O( 1

t ) decay, cosine
step size update, and the new step decay method. The parameter t represents
the iteration number of the inner loop, and each outer iteration involves multiple
iterations for training on mini-batches.

Additionally, we compare the results of the newly proposed step decay method
with Adam [20], SGD+Armijo method [7], PyTorch’s ReduceLROnPlateau sched-
uler5 (abbreviated as ReduceLROnPlateau), and stagewise step size. In this com-
parison, we refer to the points where the step size decreases in the stagewise step
decay method as milestones. It’s worth noting that since Nesterov momentum is
used in all SGD variants, the stagewise step decay method essentially covers the
performance of multistage accelerated algorithms (e.g., [21]).
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4.2. Multi-class classification using deep networks

Fashion-MNIST is a dataset that includes a training set of 50, 000 and a test set
of 10, 000 grayscale images. Each image in this dataset has a size of 28×28 pixels.
For the classification task on this dataset, we employed a Convolutional Neural
Network (CNN) model. Let me dissect the architecture of the CNN model we used
for this task. It consists of two convolutional layers. The size of the filter used
in each convolutional layer is 5 × 5. We applied padding of 2 to ensure that the
spatial dimensions of the output feature maps match the input size. The model
also incorporates two max-pooling layers with a kernel size of 2× 2. Max-pooling
reduces the spatial dimensions and helps in capturing important features while
discarding unnecessary details. To further process the extracted features, the
model includes two fully connected layers. Each of these layers has 1024 hidden
nodes. The activation function used for the hidden nodes is the Rectified Linear
Unit (ReLU), which helps introduce non-linearity into the model and allows it to
learn complex patterns effectively.

In order to prevent overfitting, a dropout technique is applied with a probability
of 0.5 in the hidden layer of the deep model. Dropout randomly sets a fraction
of the input units to zero during training, forcing the network to learn robust
representations. To evaluate and compare the performance of different algorithms,
we utilized the cross-entropy function as the loss function.

The CIFAR10 dataset is composed of 60, 000 color images, each with a size of
32 × 32 pixels. These images are divided into 10 different classes, and each class
contains 6, 000 images. The dataset is further split into a training set of 50, 000
images and a test set of 10, 000 images. During the training process on this dataset,
a batch size of 128 is utilized. This means that each epoch of training comprises
390 iterations. To evaluate the performance of the algorithms on the CIFAR10
dataset, we employed a deep learning architecture known as the 20-layer Residual
Neural Network (ResNet). ResNet was introduced by [22] and has proven to be
highly effective in various computer vision tasks. The loss function used in this
model is the cross-entropy loss.

A grid search was conducted to determine the initial values for parameters η0
and α for Fashion-MNIST and CIFAR10, resulting in {0.05, 0.15} and {0.0253, 0.025},
respectively. For the remaining step sizes, the initial values from [11] were em-
ployed.

4.3. Binary classification with kernels

This series of experiments aims to classify the data into two classes using the Radial
Basis Function (RBF) kernel without introducing any regularization techniques.
We experiment with five standard datasets: a1a, a2a, mushrooms, rcv1 and w1a
from LIBSVM [23]. These datasets have been widely adopted in the machine
learning community [14], which allows researchers to compare the performance of
various classification algorithms on the same standardized data. To create these
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Table 1: Details for binary classification datasets.

Data set Dimension (d) Training Set
Size

Test Set Size Kernel
Bandwith

a1a 123 24765 6191 1
a2a 123 24237 6060 1
mushrooms 112 6499 1625 0.5
rcv1 47236 16194 4048 0.25
w1a 300 37818 9454 1

datasets, we exclusively utilized the training sets provided by the LIBSVM library
[23], and performed an 80 : 20 split, where 80% of the data was designated as the
training set and the remaining 20% was set aside as the test set.

The a1a dataset is a widely used benchmark dataset in the field of machine
learning and data mining. It consists of binary classification tasks where the goal
is to predict whether a person’s income exceeds 50, 000 based on various attributes
such as age, education, marital status, occupation, etc. The a2a dataset is another
well-known benchmark dataset that is used for binary classification tasks. It is
similar to the a1a dataset in that it focuses on predicting income, but it contains
additional attributes and a larger number of instances.

The mushrooms dataset is a popular dataset used in the field of classification.
It contains attributes of various mushrooms, such as cap shape, cap color, odor, gill
size, etc., and the target variable is whether the mushroom is edible or poisonous.
The rcv1 dataset, also known as Reuters Corpus Volume 1, is a large collection
of news articles from Reuters, a major news agency. It consists of over 800, 000
documents categorized into topics such as business, politics, sports, health, etc.
The rcv1 dataset is often used for tasks such as text classification, information
retrieval, and natural language processing research. The w1a is derived from the
web page dataset. It has two categories and 300 sparse binary keyword attributes.
2, 477 examples are used, among which 72 examples are positive. Table 1 illustrates
the details for each mentioned dataset.

For all the datasets mentioned, the initial values of parameters η0 and α in the
new proposed step size, used for binary classification with kernels, are set to 0.05
and 0.00001 respectively. On the other hand, the initial values from the study by
[11] were utilized for the remaining step sizes.

4.4. Results and discussion
Based on Figure 2 and Table 2, the newly suggested step size demonstrates im-
pressive results. In the Fashion-MNIST dataset, it achieves a training loss that
is nearly zero, comparable to the performance of well-established methods like
SGD+Armijo. Furthermore, it outperforms all other methods in terms of test
accuracy. In the CIFAR10 dataset, SGD with the new step size outperforms the



248 M. Soheil Shamaee et al. / Modified Step Size for Enhanced Stochastic...

Figure 2: Comparison of new proposed step size and five other step sizes on
Fashion-MNIST and CIFAR10 datasets.

previously studied method with a step size of O( 1√
t
), which is considered the best

based on both training loss and test accuracy as illustrated in Figure 2. Table 3
also emphasises the superiority of the SGD with new step size over the 1√

t
step

decay in both Fashion-MNIST and CIFAR10 datasets.
Based on the observations made in Figures 3 and 4, it can be seen that the

implementation of SGD with a new step decay consistently achieves the highest
performance in a1a, a2a, mushrooms, rcv1, and w1a datasets. This is evident in
terms of both the training loss and test accuracy in all mentioned datasets. Addi-
tionally, this method demonstrates a faster convergence to a satisfactory solution
compared to the alternative approaches. Table 4 illustrates that the introduced
step size resulted in a reduction of the loss functions by 0.01, 0.02, 0.03, 0.003, and
0.02 for the a1a, a2a, mushrooms, rcv1, and w1a datasets, respectively, in com-
parison to the 1√

t
step size. Additionally, the new step size enhances the accuracy

of the a1a dataset by 0.7% when contrasted with the 1√
t
step size.

5. Conclusion

This paper introduced a novel approach to enhance the stochastic gradient descent
(SGD) algorithm by modifying the decay step size based on 1√

t
. We established a

convergence rate of O( lnT√
T

) for smooth non-convex functions without the Polyak-
Łojasiewicz condition. The numerical experiments conducted on image classifi-
cation tasks using the Fashion-MNIST, and CIFAR10 datasets demonstrated the
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Figure 3: Comparison of new proposed step size and seven other step sizes on a1a,
a2a, and mushrooms datasets.

Figure 4: Comparison of new proposed step size and seven other step sizes on rcv1
and w1a datasets.
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Table 2: The average final training loss and test accuracy on the Fashion-MNIST
dataset, along with the 95% confidence intervals obtained from 5 runs starting
from different random seeds.

Methods Training loss Test accuracy
Constant Step Size 0.0007± 0.0003 0.9299± 0.0016
O( 1√

t
) Step Size 0.0011± 0.0003 0.9261± 0.0007

Adam 0.0131± 0.0017 0.9166± 0.0019
SGD+Armijo 6.73E-05 ± 0.00 0.9277± 0.0012
Cosine step size 0.0004± 1.1E − 05 0.9284± 0.0005
New Step Size 0.002± 0.00 0.931± 0.00

Table 3: Performance comparison of 1√
t
and new step size on Fashion-MNIST and

CIFAR10 datasets.

Step sizes 1√
t

1√
t

1√
t+ln t

1√
t+ln t

Data set Training loss Test accuracy Training loss Test accuracy
FashionMNIST 0.00± 0.00 0.926± 0.00 0.00± 0.00 0.93± 0.00

CIFAR10 0.12± 0.02 0.87± 0.00 0.08± 0.01 0.89± 0.00

effectiveness of the proposed approach, with accuracy improvements of 0.5%, and
1.4%, respectively, over the traditional 1√

t
step size. Furthermore, in the case of

binary datasets, the introduced step size exhibited improvements in the loss func-
tion by 0.01, 0.02, 0.03, 0.003, and 0.02 for the a1a, a2a, mushrooms, rcv1, and
w1a datasets, respectively, when compared to the 1√

t
step size.

As a result of this paper, the combination of the 1√
t
step size with the ln t

function has led to an enhancement in the efficiency of the 1√
t
step size. This

finding suggests a potential avenue for future research where other step sizes could

Table 4: Performance comparison of 1√
t
and new step size on datasets for binary

classification task.

Step sizes 1√
t

1√
t

1√
t+ln t

1√
t+ln t

Data set Training loss Test accuracy Training loss Test accuracy
a1a 0.44 0.822 0.43 0.829
a2a 0.39 0.82 0.37 0.82

mushrooms 0.57 0.98 0.54 0.98
rcv1 0.531 0.96 0.528 0.96
w1a 0.39 1 0.37 1
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be similarly combined with suitable functions to boost their efficiency.
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