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Abstract

This paper addresses the problem of optimizing the reconstruction of
links in a network in the aftermath of natural disasters or human errors,
such as landslides, floods, storms, earthquakes, bombing, war, etc. We aim
to determine the optimal sequence for reconstructing the destroyed links
within a specific time horizon, while simultaneously locating (k) portable
emergency service centers (where (k > 2)) throughout the entire network. In
this paper, the problem is considered in a tree structure. A greedy algorithm
and a heuristic method, namely, maximum radius, are proposed to solve the
problem. We evaluate the performance of the proposed algorithms using
randomly generated data. The experimental results confirm the effectiveness
of the proposed methods.

Keywords: Facility location problem, k-Center problem, Portable k-center
problem.

2020 Mathematics Subject Classification: 90C27, 90B18.

How to cite this article
S. Nazari and A. Dolati, Simultaneous location of k portable emergency
service centers and reconstruction of a damaged network, Math. Interdisc.
Res. 9 (3) (2024) 289-314.

?Corresponding author (E-mail: dolati@shahed.ac.ir)
Academic Editor: Gholam Hossein Fath-Tabar
Received 15 October 2023, Accepted 27 February 2024
DOI: 10.22052/MIR.2024.253656.1443

c© 2024 University of Kashan

This work is licensed under the Creative Commons Attribution 4.0 International License.

https://orcid.org/0009-0008-5661-3320
https://orcid.org/0000-0001-9617-5187


290 S. Nazari et al. / Simultaneous Location of k Portable Emergency...

1. Introduction

Location theory is a practical and well-known subject in the combinatorial op-
timization literature. It is concerned with determining the optimal locations of
facilities in a given network or space, based on a specified objective function.
Classical location theory comprises two primary problems: the median facility lo-
cation problem and the center facility location problem. The 1-median problem
aims to identify the point in the network that minimizes the sum of the weighted
distances from all vertices to it. On the other hand, the 1-center problem aims
to determine the point in the network where the maximum weighted distance of
other vertices to it is minimized. These problems are also known as min-sum and
min-max, respectively. These concepts were first introduced by Hakimi [1].

In location theory, the k-median and k-center problems arise when there are
multiple facilities to locate. Kariv and Hakimi [2] showed that the k-median prob-
lem on a general network is NP-hard and presented an algorithm with a time
complexity of O(n2k2) to find the k-median of a tree (for k > 1). Goldman [3]
offered a linear time algorithm for the 1-median problem. Daskin and Maass [4]
described a linear time algorithm for the 1-median problem on trees and collected
results from various literature that have used metaheuristic algorithms to solve
the k-median problem. Recently, Duran-Mateluna et al. [5] investigated a Ben-
ders decomposition approach for the k-median problem, which also applies for the
uncapacitated facility location problem. Wang et al. [6] introduced the first rein-
forcement learning-based method to solve the uncapacitated k-median problem.

Megiddo [7] proposed a linear time algorithm to solve the 1-center problem
on weighted trees. Kariv and Hakimi [8] proved the NP-hardness of the k-center
problem on general graphs and presented polynomial time algorithms to obtain
the 1-center problem. They also presented an algorithm with a time complexity
of O(n2 log n) to find the absolute and vertex k-center on trees. Megiddo and
Tamir [9] proposed an algorithm with a time complexity of O(n log3 n) for finding
the absolute k-center on a tree. Jeger and Kariv [10] gave an algorithm with a
time complexity of O(kn log n) to solve this problem. Banik et al. [11] have made
advances in the k-center problem and have developed improved algorithms with
running times of O(n log n+k log2 n log(n/k)) and O(n log n+k2 log2(n/k)). After
three decades, Wang and Zhang [12] solved an open problem raised by Megiddo
and Tamir [9]. They presented an algorithm with a time complexity of O(n log n)
to find the absolute k-center on trees. Wang et al. [13] defined a variation of
the k-center problem, which has been applied in emergency rescue stations in the
high-speed railway network.

Locating temporary service centers is a subject that has been studied by re-
searchers. This type of problem is especially relevant during natural disasters and
emergency situations, which may damage the network and require disaster man-
agement to take action. Supporting the victims and properly reconstructing the
network are the main goals of disaster management. Setting up portable tem-
porary treatment sites, such as temporary outpatient clinics, field hospitals, and
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temporary shelter sites, is an effective policy for helping disaster victims. Accel-
erating the access of citizens affected by natural disasters to medical centers is a
crucial issue that can be addressed by these temporary service centers. Several
studies have addressed the problem of locating temporary service centers. For ex-
ample, Kılcı et al. [14] considered the problem of locating temporary shelter sites
after an incident in Turkey and suggested a mixed integer linear programming
mathematical model for locating shelter sites. Cavdur et al. [15] studied a two-
stage stochastic program for the problem of temporary disaster response facility
allocation. They considered an earthquake case study in Turkey. Huiyong et al.
[16] modeled hierarchical earthquake shelter planning in an urban area as a two-
stage mathematical programming model and performed a case study in Shanghai
city. Celik [17] and Trivedi [18] used the decision-making trial and evaluation
laboratory method to locate temporary locations in disasters. Drakaki et al. [19]
considered the refugee settlement site planning problem with an intelligent multi-
agent system modeling method. This method examined refugee accommodation
sites in Greece. Oksuz and Satoglu [20] located temporary medical centers after
natural disasters. They developed a two-stage stochastic programming model for
this problem and examined this model for the real case of the Kartal District of
Istanbul city for an earthquake that happened. Karatas and Yakıcı [21] studied
a multiobjective facility location problem for choosing a set of temporary emer-
gency service centers for a regional natural gas distribution company in Turkey
after natural disasters.

In this paper, we focus on the problem of locating temporary service centers,
which is a novel-defined problem in the context of incremental network design.
Incremental network design often involves constructing network elements over dif-
ferent periods of time. Readers interested in this topic can refer to Sharp [22]
and Hartline [23] for a comprehensive understanding of incremental network de-
sign and related issues. Several authors have studied combinatorial optimization
problems from a network design perspective. For example, Hartline and Sharp
[24] presented incremental forms of some combinatorial maximization problems
such as knapsack, bipartite matching, and maximum flow problems. Federico et
al. [25], [26] investigated the incremental knapsack problem and achieved approx-
imate results. Bienstock et al. [27] studied a variant of the incremental knapsack
problem and gave a constant factor approximation algorithm and a polynomial
time approximation scheme. Recently, the incremental knapsack problem has
been studied by Faenza et al. [28] and Aouad and Segev [29]. Engel et al. [30]
presented a greedy algorithm for solving the incremental minimum spanning tree.
The incremental version of the shortest path problem was shown to be NP-hard in
Baxter et al. [31], who derived a 4-approximation algorithm. Kalinowski et al. [32]
offered two mixed integer programming formulations for the incremental version
of the maximum flow problem and presented some heuristic methods to solve this
problem. They also analyzed the performance of the proposed MIP formulations
and heuristics. Plaxton [33] was the first author, who considered the metric un-
capacitated k-median and facility location problems in the context of incremental
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network design and presented an approximation algorithm. Du et al. [34] studied
the incremental k-center problem and presented a polynomial time algorithm with
a competitive ratio 3

√
3

2 for a version of the problem where centers are located on
the boundary of a convex polygon. The incremental connected facility location
problem was first proposed in the work of Arulselvan et al. [35], who presented a
mixed integer programming approach.

In this paper, we investigate the problem of reconstructing links in a network
that has been damaged due to natural disasters or human errors such as landslides,
floods, storms, earthquakes, bombing, war, etc. After a disaster, service centers
can be destroyed or inaccessible, which necessitates the establishment of temporary
and portable service centers in suitable locations while broken links are repaired
over time, optimally. The order in which the damaged links are reconstructed is
crucial in ensuring fair and efficient service provision to the affected population.
The long-term reconstruction of damaged networks after natural disasters has been
studied in transportation networks. Gokalp et al. [36] examined road networks
after disasters that destroyed links, which required recovery over a time horizon,
and developed a heuristic.

The present study addresses a problem in which the locations of service centers
are temporary, and the number of centers is predetermined. The objective is to
select the appropriate order for the reconstruction of broken links in each time
period while providing optimal service centers to individuals. The aim of the
study is to minimize the costs incurred by individuals, which can include the time
spent accessing the service centers. To tackle this problem, we utilize the topology
tree as the underlying network structure, which becomes an unconnected network,
or forest, after a disaster. A greedy algorithm and a heuristic method are proposed
to optimally repair the tree structure, and their efficiency is compared by using
numerical experiments. The results demonstrate the effectiveness of the proposed
methods in solving the problem.

The rest of this paper is organized as follows. In Section 2, we provide pre-
liminary information related to the problem. In Section 3, we formulate our new
problem. In Section 4, we present a greedy algorithm and a heuristic method. We
consider a case in which the costs of reallocating facilities is taken into accoun, and
this is discussed in Section 5. In Section 6, we present a computational experiment.
Finally, Section 7 reports our conclusions.

2. Perilimanaries

Consider a connected undirected graph G = (V,E), where V and E are the sets
of vertices and edges, respectively. Each vertex v ∈ V has a positive weight w(v),
and a positive length l(e) is associated with every edge e ∈ E. The shortest path
distance between vertices x and y is denoted by d(x, y). Let U ⊆ V be a set of
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vertices. The distance between this set and v ∈ V is defined as follows:

d(v, U) = min
u∈U
{d(v, u)}. (1)

Suppose that

r(U) = max
v∈V
{w(v) d(v, U)}. (2)

U∗ is a vertex k-center of G if

r(U∗) = min{r(U), U ⊆ V, |U | = k}. (3)

r(U∗) or simply rk is called the k-radius of G. If U and consequently U∗ contain
some points on the edges of G, then U∗ is called an absolute k-center, and the
corresponding radius is called an absolute k-radius [8]. An example of a 2-center
of a weighted tree is illustrated in Figure 1, where the 2-radius is 40.

Figure 1: 2-center of a tree T .

Kariv and Hakimi [8] proved that the k-center problem on general graphs is an
NP-hard problem. However, they presented some polynomial time algorithms for
trees. Specifically, they introduced an O(n2 log n) time algorithm for the k-center
problem on weighted trees, using a linear time-dominated set subroutine.
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3. Problem formulation

Consider a tree T0 = (V,E) of order n with vertex set V and edge set E. We
define an urban region associated with every vertex and the edges in E denote the
links between these regions. Each vertex v ∈ V has a positive weight w(v), and
a positive length l(e) is associated with each edge e = vsvr ∈ E. Suppose that
some links in this network are destroyed, either due to human errors or a natural
disaster, resulting in a damaged network that has now turned into a forest. Our
goal is to determine an appropriate order for repairing broken links over a period
of time while portable temporary service centers are located to serve people in
different components of this forest. Therefore, E is partitioned into two sets: the
set of existing edges E′ and the set of potential edges Ed

t , which are the destroyed
links at time t that need to be repaired. The existing edges E′ and the vertices
V in this damaged network form a forest G = (V,E′) that includes components
Ti = (Vi, Ei) for i = 1, 2, ..., k, where Vi and Ei are the vertex set and edge set,
respectively. Ed

t at time t is represented as follows:

Ed
t = {e = vivj | e ∈ E, vi ∈ Vi, vj ∈ Vj , 1 ≤ i 6= j ≤ k}, t ∈ {1, 2, · · · , T}.

(4)

Clearly, |Ed
1 | = k−1. Assume that one damaged link is reconstructed in each time

period. Therefore, |Ed
t | = |Ed

t−1|−1. Henceforth, we shall refer to two components
as potentially adjacent if there exists a potential edge between them. Suppose that
k (k > 2) portable temporary service centers will remain in the network until the
end of the network reconstruction, the locations of these centers can be changed
during the reconstruction process. The disaster management team aims to locate
k temporary emergency service centers in G such that every component has one
center before the damaged links are reconstructed. We introduce a time horizon
T such that T = k− 1. The goal is to transform G into a tree by adding potential
edges in it over the time horizon T while ensuring that people are served fairly
with emergency and mobile temporary service centers over T . One potential edge
should be added to the network in each time period, and the length of the time
horizon ensures that all potential edges will be added to the network. The goal
of the problem is to minimize an aggregate value referred to as the total k-radius
over the time horizon by selecting the appropriate arrangement to add potential
edges. We refer to this problem as Incremental Reconstruction on Trees (IRT ).

Let Gt denotes the unconnected network at time t, where t < T . Clearly,
GT is a connected tree. We make the assumption that before reconstructing the
network, each component of Gt contains 1-center, and upon the reconstruction of
a link, the number of centers in the new connected component is equal to the sum
of the centers of its constituent components. For i = 1, 2, · · · , k− t+ 1, we denote
the ith component and its number of portable centers at time t by T t

i and qit,
respectively. V (T t

i ) corresponds to the vertices of T t
i at time t. It is important to

note that Gt has k − t + 1 components. Without affecting the overall argument,



Mathematics Interdisciplinary Research 9 (3) (2024) 289− 314 295

we index the components from 1 to k − t+ 1 in each time period, as the indexing
of components does not affect the solution of the problem.

The total k-center is calculated as follows:

Rk = r̄1k + · · ·+ r̄Tk , (5)

where r̄tk is the major covering radius during time period t and we define it as
follows:

r̄tk =

k−t+1∑
i=1

rti , (6)

in which rti for i = 1, 2, ..., k − t + 1 is the qit-radius of the ith component at
time t. The major covering radius in the last period of time equals the k-radius
of T0. When a potential edge is selected in each period of time, a new connected
component is created and indexed as follows. Suppose that e ∈ Ed

t is selected at
time t and it connects T t

i and T t
j such that i < j. We index the new connected

component as T t+1
i , and we rename the components indexed T t

s for s = j + 1, j +
2, · · · , k − t+ 1 as T t+1

s−1 .
As previously mentioned, the order in which potential edges are added to the

network is of great importance. In particular, the number of possible orders can
be very large. Specifically, if the given forest has k components, then (k − 1)!
orders must be considered in order to find the optimal one. To illustrate this
point, consider the damaged network depicted in Figure 2 which resulted from
a disaster, with vertex and edge weights assigned. In this network, there are
four potential edges, namely e1, e2, e3, and e4, and five connected components.
There are (5-1)!=24 possible orders, in which the potential edges can be added
to the network with different total 5-radius values. The order (e1, e4, e3, e2) with
a total 5-radius value of 26960 is optimal. All feasible solutions to this problem
are presented in Table 1, while Table 2 illustrates the sequence of centers in all
periods of time for the optimal solution. Furthermore, Figure 3 shows how to
index components of the forest in Figure 2, during periods of time for the optimal
solution.

In the following section, we will show that the IRT problem is solvable using
a greedy algorithm and present a heuristic to solve it.

4. Algorithms
The first methodology utilized, employs a greedy algorithm that is presented in
the following.

4.1 A greedy algorithm
In our proposed greedy algorithm, at time period t, a potential edge is selected
that the sum of qit+1-radii of the components T t+1

i is minimized. By employing
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Figure 2: A damaged network G.

Table 1: All possible permutations of the problem for the damaged network in
Figure 2. The optimal solution is highlighted in bold.

State Order R5 State Order R5

1 (e1, e2, e3, e4) 32540 13 (e3, e1, e2, e4) 36793
2 (e1, e2, e4, e3) 30011 14 (e3, e1, e4, e2) 33875
3 (e1, e3, e2, e4) 32407 15 (e3, e2, e1, e4) 42048
4 (e1, e3, e4, e2) 29489 16 (e3, e2, e4, e1) 44233
5 (e1, e4, e2, e3) 27349 17 (e3, e4, e1, e2) 35732
6 (e1, e4, e3, e2) 26960 18 (e3, e4, e2, e1) 40835
7 (e2, e1, e3, e4) 37795 19 (e4, e1, e2, e3) 29206
8 (e2, e1, e4, e3) 35266 20 (e4, e1, e3, e2) 28817
9 (e2, e3, e1, e4) 42917 21 (e4, e2, e1, e3) 34053
10 (e2, e3, e4, e1) 45102 22 (e4, e2, e3, e1) 38767
11 (e2, e4, e1, e3) 37451 23 (e4, e3, e1, e2) 33203
12 (e2, e4, e3, e1) 42165 24 (e4, e3, e2, e1) 38306

this methodology, we aim to minimize the major covering radius within each time
period. In the steps of this algorithm, qit-radii of components T t

i are stored to
avoid repetitive computations in next periods of time. The details of this method
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Table 2: The places of facilities in all periods of time for the optimal solution of
the damaged network in Figure 2.

Period The locations of the facilities
1 {9,10,11,13,14}
2 {4,9,10,11,13}
3 {2,4,10,11,13}
4 {2,4,5,11,13}
5 {4,5,7,9,13}

(a) Components in t = 1 (b) Components in t = 2

(c) Components in t = 3 (d) Components in t = 4

Figure 3: Representation indexing of components of damaged network shown in
Figure 2 in periods t = 1 to t = 4.

have been presented in Algorithm 1.
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Algorithm 1 The greedy algorithm
Input: A forest G with k components T 1

i = (V (T 1
i ), Ei) is given. r1i is the

qi1-radius of each T 1
i (qi1 = 1 and i = 1, 2, ..., k). Ed

1 (|Ed
1 | = k − 1) and E′

are the set of potential edges and exisiting edges of G, respectively. Inf1 =
{Ti

(
V (T 1

i ), qi1
)
, i = 1, 2, ..., k} and Inf2 = {Ti

(
V (T 1

i ), qi1, r
1
i

)
, i = 1, 2, ..., k}

are the information about components and their radii. Rk = 0, Ord = {} .
for t ∈ {1, 2, ..., k − 1}

for e = vivj ∈ Ed
t , (i < j)

If Ti
(
(V (T t

i ) ∪ V (T t
j )), qit + qjt

)
∈ Inf1,

Choose Ti
(
(V (T t

i ) ∪ V (T t
j )), qit + qjt, β

)
from Inf2,

rtm = β.
else

α = qit + qjt.
Compute α - rdius of the connected tree T t

i with vertices V (T t
i )∪V (T t

j ).
Inf1 = Inf1 ∪ {Ti

(
(V (T t

i ) ∪ V (T t
j )), α

)
}.

Inf2 = Inf2 ∪ {Ti
(
(V (T t

i ) ∪ V (T t
j )), α, α− radius

)
}.

rtm = The computed α-radius.

rtk(e) =

(∑k−t+1
s=1
s6=i,j

rts

)
+ rtm.

T t
i (e) = The connected tree with vertices V (T t

i ) ∪ V (T t
j ).

qit(e) = qit + qjt.
r(e) = rtm.

rtk(e′) = mine∈Ed
t
{rtk(e)}, e′ = vivj , i < j.

E′ = E′ ∪ {e′}.
Ed

t+1 = Ed
t − {e′}.

rt+1
i = r(e′).
rt+1
s = rts, s 6= i, j.
for s ∈ {1, 2, ..., i− 1, i+ 1, ..., j − 1}

T t+1
s = T t

s .
V (T t+1

s ) = V (T t
s).

for s ∈ {j, j + 1, ..., k − t+ 1}
T t+1
s = T t

s−1.
V (T t+1

s ) = V (T t
s−1).

T t+1
i = T t

i (e′).
V (T t+1

i ) = V (T t
i (e′)).

for s ∈ {1, 2, ..., k − t+ 1} & s 6= i, j
qst+1 = qst.

qit+1 = qit(e
′).

Rk = Rk + rtk(e′).
Ord = Ord ∪ {e′}.

Output: Ord and Rk.

In the following, we solve the problem by using this greedy method for the
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damaged network illustrated in Figure 2. The procedure involves entering potential
edges into the network using this method over a period of time from t = 1 to t = 4.
Tables 3 to 6 present the process of edge selection during this time period, with
bolded rows indicating the selected edges. The total 5-radius value is 26960, as
illustrated in Table 1.

Table 3: Greedy method process for the damaged network shown in Figure 2 at
time t = 1.

Edge qi2-radii Major radius The locations of the facilities

e1

r11 = 1421

r̄15 = 10799 {4,9,10,11,13}r12 = 3950
r13 = 4876
r15 = 552

e2

r11 = 1421

r̄15 = 16054 {8, 9, 10, 13, 14}r12 = 3950
r13 = 6075
r14 = 4608

e3

r11 = 3950

r̄15 = 15185 {5, 9, 11, 13, 14}r13 = 6075
r14 = 4608
r15 = 552

e4

r11 = 1421

r̄15 = 12656 {2, 10, 11, 13, 14}r12 = 4608
r13 = 6075
r15 = 552

Table 4: Greedy method process for the damaged network shown in Figure 2 at
time t = 2.

Edge qi3-radii Major radius The locations of the facilities

e2

r21 = 1421
r̄25 = 9511 {4, 7, 9, 10, 13}r22 = 3950

r23 = 4140

e3

r21 = 3950
r̄25 = 9378 {4, 5, 9, 11, 13}r23 = 4876

r24 = 552

e4

r21 = 1421
r̄25 = 6849 {2,4,10,11,13}r22 = 4876

r24 = 552

The presented problem involves a given forest with k components, which yields
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Table 5: Greedy method process for the damaged network shown in Figure 2 at
time t = 3.

Edge qi4-radii Major radius The locations of the facilities

e2
r31 = 1421

r̄35 = 5561 {4, 7, 9, 10, 13}
r32 = 4140

e3
r31 = 4620

r̄35 = 5172 {2,4,5,11,13}
r33 = 552

Table 6: Greedy method process for the damaged network shown in Figure 2 at
time t = 4.

Edge qi5-radius Major radius The locations of the facilities
e2 r41 = 4140 r̄45 = 4140 {4,5,7,9,13}

(k − 1)! feasible solutions. Solving large size problems by this method is time
consuming. Therefore, we present a heuristic method, namely maximum radius
method, to solve this problem for larger sizes. Before explicating this approach,
we will state a proposition in the following.

Recall that in the IRT problem, the total radius is calculated by summing up
the major covering radii over a specified time horizon. Each major covering radius
in a given time period is obtained by updating the major covering radius from the
previous time period using the formula provided in the following proposition.

Proposition 4.1. If we choose e = vivj ∈ Ed
t at time t to establish a connection

between T t
i and T t

j (where i < j), the major covering radius at time t+ 1 is

r̄t+1
k = r̄tk − (rti + rtj) + rt+1

i . (7)

4.2 The maximum radius method

Now, we present a proposed heuristic, referred to as the maximum radius method.
By considering Equation (7), the key idea for selecting a damaged link to repair at
time t, is to choose the one connects two components T t

i and T t
j with the maximum

value of rti +rtj . This approach aims to minimize the major covering radius in each
time period to the greatest extent possible. For each t, we define:

M = argmaxi,j{rti + rtj | The potential edge between T t
i and T t

j is selected,

1 ≤ i < j ≤ k − t+ 1}.
(8)

If M in (8) is unique, for example M = rta + rtb, then we choose the potential edge
that connects T t

a and T t
b at time t.
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Now consider a period in which M in (8) is not unique. We define:

W = max

 ∑
vs∈V (T t

a)∪V (T t
b )

w(vs), M = rta + rtb

 . (9)

If there exists only one pair of potentially adjacent components in which the sum
of their vertex weights is equal to W , they will be connected at this period. Oth-
erwise, among such potentially adjacent components whose sum of vertex weights
equals W , two potentially adjacent components are randomly selected to be con-
nected. By doing so, the components of the supposed forest are connected, and
a tree is eventually formed. The order in which the components are connected
determines the order of reconstruction of the damaged links in the network. This
procedure is represented in Algorithm 2. To provide further clarification of the
procedure described above, we refer to the damaged network depicted in Figure 2.
The steps for using the maximum radius method is summarized in Table 7. No-
tably, in this particular instance, the heuristic approach yields the exact solution.

Table 7: The numerical result of selecting potential edges of the damaged network
shown in Figure 2 by the maximum radius method.

t qit-radii The major covering radius M The selected edge

1

r11=1421

r15=16606 r13 + r14 = 10683 e1

r12=3950
r13=6075
r14=4608
r15=552

2

r21=1421

r25=10799 r22 + r23 = 8826 e4
r22=3950
r23=4876
r24=552

3
r31=1421

r35=6849 r31 + r32 = 192 e3r32=4876
r33=552

4 r41=4620
r45=5172 r41 + r42 = 5172 e2r42=552
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Algorithm 2 The maximum radius algorithm
Input: A forest G with k components T 1

i = (V (T 1
i ), Ei) is given. r1i is the qi1-

radius of each T 1
i (qi1 = 1 and i = 1, 2, ..., k). Ed

1 (|Ed
1 | = k − 1) and E′ are the

set of potential edges and exisiting edges of G, respectively. Rk = 0, Ord = {}.
for t ∈ {1, 2, ..., k − 1}

Set = {}
for e = vivj ∈ Ed

t , (i < j)
Set = Set ∪ {rti + rtj}.

Max1 = max (Set).
M1 = {(i, j) | rti + rtj = Max1, e = vivj ∈ Ed

t }.
if |M1| 6= 1

W = {}.
for (a, b) ∈M1

W (a, b) =
∑

vs∈V (T t
a)∪V (T t

b )

w(vs).

W = W ∪ {W (a, b)}.
Max2 = max (W ).
M2 = {(i, j) ∈W |W (i, j) = Max2}.
if |M2| = 1

Choose the unique element (a, b) of M2.
e′ = vavb.

else
Choose an element (a, b) of M2 randomly.
e′ = vavb.

else
Choose the unique element (a, b) of M1.
e′ = vavb.

E′ = E′ ∪ {e′}.
Ed

t+1 = Ed
t − {e′}.

rt+1
a = (qat + qbt)-radius the new connected component which is named by
T t
a(e′).

rtk(e′) =

(∑k−t+1
s=1
s6=a,b

rts

)
+ rt+1

a .

rt+1
i = rti , i 6= a, b.
for s ∈ {1, 2, ...a− 1, a+ 1, ..., b− 1}

T t+1
s = T t

s .
V (T t+1

s ) = V (T t
s).

for s ∈ {b+ 1, b+ 2, ..., k − t+ 1}
T t+1
s = T t

s−1.
V (T t+1

s ) = V (T t
s−1).

T t+1
a = T t

a(e′).
V (T t+1

a ) = V (T t
a(e′)).

qat+1 = qat + qbt.
qst+1 = qst, s 6= a, b.
Rk = Rk + rtk(e′).
Ord = Ord ∪ {e′}.

Output: Ord and Rk.
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5. Determining the changed location of temporary
emergency centers

As the network is beeing expanded, some facilities should be relocated for making
the system more efficient. However, the relocation of temporary service centers
incurs costs. For instance, changing the location of ambulances involves costs such
as fuel and time consumption. Similarly, relocating temporary fueling centers
incurs costs of re-establishing and installing these places. Thus we address a new
type of problem, where the costs of re-establishing service centers are taken into
consideration in addition to service costs.

Suppose that At−1 = {vt−11 , vt−12 , ..., vt−1s } represents a set of locations in two
components at time t−1, where the potential edge between them has been selected
at time t, according to our methods. Let At = {vt1, vt2, ..., vts} be the set of changed
locations in the new connected component at time t. Each relocation of a facility
for moving from a location vt−1i to a location vtj incurs a cost, say cij . Obviously, if
vt−1i = vtj , then cij = 0. The relocation cost between vertices is given in a matrix
referred to as C. We define binary variable xtij at time t as follows:

xtij =

{
1, If the facility v t−1

i is relocated at v t
j at time t , vt−1i 6= vtj ,

0, o.w.

In order to determine the changed locations of facilities with minimum cost, for
each t ∈ {2, 3, ..., T},

min
∑

i:vt−1
i ∈At−1

∑
j:vt

j∈At

cijx
t
ij , (10)

s.t
∑

i:vt−1
i ∈At−1

xtij = 1, ∀ j : vtj ∈ At, (11)

∑
j:vt

j∈At

xtij = 1, ∀ i : vt−1i ∈ At−1, (12)

xtij ∈ {0, 1}, ∀i and ∀j. (13)

The objective function (10) is to minimize the total cost incurred in the assignment
of vertices from set At−1 at time t−1 to vertices in set At at time t. The constraint
(11) indicates that each vertex vtj ∈ At at time t is assined to just one vertex vt−1i .
Similarly, the constraint (12) shows that every vertex vt−1i ∈ At−1 is assined to
just one vertex at time t. The decision variables xtij are binary, taking values in
{0, 1}, indicating whether vertex vt−1i is assigned to vertex vtj or not.

Clearly, after adding each potential edge, we may relocate some facilities.
Therefore, for this purpose, we consider the above assignment model, immediately
after adding each potential edge.
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6. Computational experiments
To evaluate the performance of the proposed methods, numerical results are pre-
sented in two sub-sections: for graphs with small, and large sizes. In our study,
the size of the graph is dependent on the number of potential edges it has. As
the number of potential edges in a graph increases, the computational time also
increases. For small-sized graphs, two proposed algorithms have been compared
to an exact method based on two criteria: the value of the objective function, and
the algorithm’s execution time. In this section, the exact method we have used
involves bruteforce enumerating all feasible solutions, and presenting the best one
as the optimal solution. Subsequently, for large-sized, the heuristic method is
compared to the greedy method, and its performance is examined based on the
value of the objective function and the execution time of the algorithm. As the
IRT problem is a new addition to the literature, we faced limitations in testing
the model with real-world data or utilizing previous references as benchmarks.
To overcome this, we generate distinct random forests with vertices and poten-
tial edges using Python. Our model was implemented using Python 3.10 on a
system consisting of Intel(R), Core(TM) i7-3770 CPU running at 3.40 GHz with
8.00 GB RAM under the windows 10 operating system (64-bit). To verify this ex-
periment, we test our model on some randomly generated samples in 50 iterations.

6.1 Instances with small size
In this sub-section, to evaluate the performance of the methods based on the objec-
tive function value, we calculate the deviation percentage between the objective
function values of the mentioned methods and the exact method on instance I
using the following equation. Here, OI

Meth and OI
Ex refer to the objective func-

tion values for the instance I generated by the mentioned methods and the exact
method, respectively.

∆I
Meth =

(OI
Meth −OI

Ex)

OI
Ex

× 100%. (14)

We used three features to evaluate the performance of the mentioned methods,
which are explained below.

• %OPTMeth: The percentage of instances for which a method attains the
exact solution, i.e., ∆I

Meth = 0.

• ∆Meth: The average of deviation percentage values i.e., 1
50

∑50
I=1 ∆I

Meth.

• max ∆Meth: The maximum of deviation percentage values i.e., maxI ∆I
Meth.

To check the performance of methods in terms of the execution time, we employ
Equation (15), which denotes the acceleration rate of the mentioned methods
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relative to the exact method. Here, TEx and TMeth denote the CPU time required
by the exact method and the mentioned methods, respectively.

λMeth =
TEx

TMeth
. (15)

We shall employ the notations GR and MR instead of the symbol Meth, for
representing the greedy and maximum radius methods, respectively.

We consider graphs with 3 to 6 potential edges as small-sized instances. Solving
precisely the samples with more than 6 potential edges requires an extraordinarily
long time, and these samples are considered as large-sized samples. Our exper-
iments have been conducted on three categories: unweighted type I, unweighted
type II and weighted graphs. Unweighted type I graphs are samples in which the
weight of all vertices are considered one, and the weight of edges is a positive num-
ber. However, Unweighted type II graphs are samples in which the weight of all
vertices and edges are equal to one. Here, the random samples are graphs whose
weights have been randomly, and uniformly chosen between 1 and 100. The results
related to small-sized samples have been presented in Tables 8 to 10. The pairs
within column I in all tables indicate the number of vertices, and potential edges
for each sample, respectively. δGR and δMR represent the standard deviations in
these instances.

As shown in Tables 8 to 10, the optimality percentage of the greedy method
is significantly higher compared to the maximum radius method, and in most
cases, it has achieved the exact solution in all categories. By considering ∆Meth

columns in these two methods, it has been observed that this value is lower in
the greedy method compared to the heuristic method in all instances. The greedy
method has achieved a more satisfactory performance in terms of the maximum
percentage deviation values in most instances compared to the maximum radius
method. However, in three instances, the maximum radius method yields better
outcomes. By comparing the acceleration rates column of these two methods in
Tables 8 to 10, it is evident that the maximum radius method performs the fastest
in small-sized samples. Analyzing these data reveals that these two methods have
significantly higher speeds compared to the exact method.

The average of percentage deviation values and accelerations rate for un-
weighted and weighted instances with small size over 50 iterations are depicted
in Figures 4 to 6. In all figures, GR and MR denote results of the greedy and
maximum radius methods, respectively. These figures clearly demonstrate the
superiority of the average of deviation percentage values of the greedy method
compared to the heuristic method, and the high speed of two proposed methods
is evident compared to the exact method. It is evident that as the graph size
increases, the speed of the methods significantly increases.
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(a) Average of deviation percentage values

(b) Average of accelaration rates

Figure 4: Results of small-sized unweighted (type I) instances.

6.2 Instances with large size
The high percentage of optimality and the low average deviation percentage values
in the greedy method for small-sized graphs, as well as the impracticality of exactly
solving the problem for large-sized graphs, compel us to compare the heuristic
method in terms of its performance of objective value and algorithm execution
time with the greedy method, in this sub-section. In evaluating the efficiency of
the objective function, we calculate a relative distance on instance I according to
the following formula. Here OI

MR and OI
GR refer to the objective function value of

the maximum radius method and the greedy method, on instance I, respectively.

RelIMR =
(OI

MR −OI
GR)

OI
GR

× 100%. (16)

Similar to the previous sub-section, we utilize three following features in evaluating
the efficiency of the objective function.
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(a) Average of deviation percentage values

(b) Average of accelaration rates

Figure 5: Results of small-sized unweighted (type II) instances.

• %GR/MR: The percentage of instances for which the heuristic method at-
tains the solution of greedy method, i.e., RelIMR = 0.

• RelMR: The average of relative distance values i.e., 1
50

∑50
I=1Rel

I
Meth.

• max RelMR: The maximum of relative distance values i.e., maxI Rel
I
MR.

In evaluating the efficiency of methods in terms of the execution time, we use
the same equation (15), where we compare the heuristic method with the greedy
method i.e., we compute λ′MR = TGR

TMR
, which TGR and TMR denote the CPU time

required by the greedy method and the mentioned heuristic method, respectively.
Here, we have considered graphs with potential edges of 7 to 20 as large-scale

samples. Tables 11 to 13 represent large-scale instances results.
As observed in Tables 11 to 13, the maximum radius method yields the solu-

tion of greedy method more, in unweighted type II instances related to two other
categories. The results denote that the average relative distance values in the
maximum radius method is atmost 2.2209 within these three categories. Addi-
tionally, the accelaration rates of the heuristic method increase with the size of
instances. The low relative distance and high accelaration rate of the heuristic
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(a) Average of deviation percentage values

(b) Average of accelaration rates

Figure 6: Results of small-sized weighted instances.

method relative to the greedy method underscore the efficiency of the maximum
radius method.

7. Conclusions

This study addresses the problem of determining the optimal order of reconstruc-
tion for links that have been destroyed due to human errors or natural disasters in
a tree network. To solve the problem, we propose a greedy method and a heuristic
method: the maximum radius method. To evaluate the efficiency of the proposed
methods, numerical computations have been performed on randomly generated
graphs. Numerical results are presented in two sub-sections for small-sized, and
large-sized instances. The results obtained from the first section allow us to com-
pare the heuristic with the greedy method. The numerical results indicate that
the greedy method is a suitable approach for solving the IRT problem. However,
as the dimension of the problem increases, the accelaration rate of the heuristic
algorithm improves compared to the greedy method, while the relative distance
between them does not show significant growth. Therefore, in large dimensions,
the proposed heuristic method is recommended for problem solving.
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Table 8: Comparison of the proposed methods with the exact method for small-
sized unweighted (type I) instances.

I %optIGR ∆
I

GR max ∆I
GR λ

I

GR δGR %optIMR ∆
I

MR max ∆I
MR λ

I

MR δMR

(30,3) 96 0.1421 6.4945 3.6916 0.9115 50 1.4703 14.0930 4.9452 2.5714
(40,4) 78 0.8666 9.1481 14.3691 2.2816 42 2.1243 8.1198 19.6701 2.5388
(50,5) 68 1.2076 13.8068 69.0512 2.6106 26 1.7786 13.8441 105.1187 2.5113
(60,6) 84 0.4150 10.4423 239.2687 1.6218 24 2.0516 22.6331 476.1025 3.6424

Table 9: Comparison of the proposed methods with the exact method for small-
sized unweighted (type II) instances.

I %optIGR ∆
I

GR max ∆I
GR λ

I

GR δGR %optIMR ∆
I

MR max ∆I
MR λ

I

MR δMR

(30,3) 96 0.2105 5.2632 3.8180 1.0314 68 1.9433 11.7647 4.8813 2.9618
(40,4) 76 1.4987 16.0000 12.4865 3.2890 62 1.8425 9.3750 17.3602 2.6613
(50,5) 82 0.7694 13.5135 51.1064 2.2125 48 2.5772 16.2162 82.4668 3.5228
(60,6) 60 1.8344 12.7273 248.2547 2.8800 34 2.6452 13.4615 459.3150 2.9010

Table 10: Comparison of the proposed methods with the exact method for small-
sized weighted instances.

I %optIGR ∆
I

GR max ∆I
GR λ

I

GR δGR %optIMR ∆
I

MR max ∆I
MR λ

I

MR δMR

(30,3) 92 0.3356 7.5509 3.6054 1.2988 57 3.9404 37.4691 4.9995 7.0954
(40,4) 92 0.3914 11.0283 12.0818 1.7665 48 2.4444 17.0126 18.1598 3.9469
(50,5) 72 0.9103 8.8698 50.2514 2.0470 20 3.4884 20.1794 86.8427 3.9197
(60,6) 82 0.5345 8.3763 247.1256 1.5482 26 3.2698 14.8221 489.6613 4.1944
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Table 11: Comparison of the maximum radius method with the greedy method
for large-sized unweighted (type I) instances.

I %GR/MRI Rel
I

MR maxRelIMR λ
′I
MR δMR

(70,7) 22 1.3209 7.5586 2.2408 1.9541
(80,8) 16 1.6661 5.7352 2.3991 1.6985
(90,9) 8 1.1110 11.6113 2.5580 2.7555
(100,10) 8 0.5988 3.6060 2.8786 1.9874
(110,11) 4 0.8865 5.5463 2.6762 2.1295
(120,12) 8 1.4374 8.9489 3.4181 2.4594
(130,13) 2 1.2795 8.5296 3.2689 2.4539
(140,14) 4 0.3174 5.9053 3.3609 2.1592
(150,15) 2 0.6598 6.4892 3.7447 1.6030
(160,16) 0 0.8127 6.0663 3.7448 1.7602
(170,17) 6 1.2688 17.6140 4.3048 3.0523
(180,18) 2 1.0460 9.4050 4.2288 2.2480
(190,19) 4 0.9894 5.6503 4.0540 1.9194
(200,20) 0 0.8317 7.7139 4.6576 2.2181

Table 12: Comparison of the maximum radius method with the greedy method
for large-sized unweighted (type II) instances.

I %GR/MRI Rel
I

MR maxRelIMR λ
′I
MR δMR

(70,7) 22 1.5407 21.0526 2.0920 4.5317
(80,8) 22 0.4500 5.1020 2.3374 2.5332
(90,9) 26 0.5784 12.6126 2.4625 3.2577
(100,10) 16 1.4219 15.0000 2.6460 4.4931
(110,11) 18 0.9772 9.6970 2.8997 3.0103
(120,12) 14 0.7547 10.1694 3.0026 3.0369
(130,13) 14 0.9576 9.6939 3.2859 4.0111
(140,14) 12 0.7767 13.2401 3.4119 3.7896
(150,15) 10 0.4163 8.3650 3.8129 2.8675
(160,16) 10 1.7548 11.3879 4.0393 3.0802
(170,17) 14 1.0217 17.0659 4.3260 3.3828
(180,18) 4 1.3024 9.2857 4.2315 2.8043
(190,19) 6 0.6693 6.9061 4.4531 2.4329
(200,20) 4 0.2749 12.9545 4.0118 3.1028
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Table 13: Comparison of the maximum radius method with the greedy method
for large-sized weighted instances.

I %GR/MRI Rel
I

MR maxRelIMR λ
′I
MR δMR

(70,7) 4 2.2131 10.3244 2.1539 3.0187
(80,8) 20 1.4623 6.5767 2.3444 2.0855
(90,9) 6 1.8755 9.3386 2.4907 3.0683
(100,10) 2 1.7232 8.6549 2.6772 3.0577
(110,11) 2 1.5841 11.4609 2.8771 3.0528
(120,12) 4 2.2209 15.4808 3.1936 3.4153
(130,13) 2 2.1650 16.0001 3.3268 3.7928
(140,14) 2 1.5451 10.1637 3.5771 2.8568
(150,15) 2 1.2839 13.4785 3.6001 3.0460
(160,16) 0 1.8810 7.4444 3.9192 3.0361
(170,17) 0 1.6026 6.8355 4.0377 2.3810
(180,18) 0 1.9111 12.0054 4.4080 3.0075
(190,19) 0 1.7972 8.5497 4.6101 2.2824
(200,20) 0 1.1290 8.9509 4.3943 2.4456
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