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Abstract

In this article, we employ a novel and unique method to analyze the
Eulerian nature of the power graphs Pi(D) for 3 6 i 6 6. Then, we will
mention some applications of Eulerian power graphs in computer networks.
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1. Introduction
The literature on Eulerian power graphs commenced with the introduction of the
concept of power graphs in [1]. Six different categories of power graphs associated
with a directed graph were initially presented in the article, by using the set theory.
Then it was shown that these new power graph definitions are pairwise distinct
by a few examples. The relationship between the Eulerian property of the base
graph and the power graphs P1(D) and P2(D) was also explored by the authors,
(see Subsections 3.1 and 3.2). Also, the relationship between being Eulerian or
not being Eulerian P1(D) with P2(D) is given by Theorem 4.1 in Section 4. While
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Theorem 3.28 in Subsection 3.3 of the same article provided a theorem regarding
the Eulerian nature of power graphs Pi(D) for 3 6 i 6 6 with an example. The
main objective of this paper is to investigate the Eulerianness of power graphs
Pi(D) for 3 6 i 6 6 in a distinct and more direct manner, with a particular focus
on Section 3. In this article, we first, shall briefly review the being Eulerian of the
power graphs P1(D) and P2(D) method. In such a way that P1(D) is Eulerian
if power graph P1(D) consists of only one connected component. Furthermore, it
is established that there exists just one directed Euler tour in the power graph
P1(D). Specifically, if graph D is Eulerian, then an Euler tour exists in the power
graph P1(D). Conversely, if the graph D is not Eulerian, then it is evident that
the power graph P1(D) is also not Eulerian [1].
Being Eulerian P2(D) under several important theorems have been investigated.
In the case of an Eulerian graph D with n ≥ 3 vertices, if D is a simple cycle graph
without loops or with exactly n loops, then the power graph P2(D) is Eulerian.
However, if the simple cycle graph D has l loops, where 1 ≤ l ≤ n − 1, then
the power graph P2(D) is not Eulerian. (For a graph D with n = 2 vertices and
any number of loops, P2(D) is Eulerian). Additionally, if the graph D is Eulerian
and cyclic (but not a simple cycle graph) with n ≥ 4 vertices, then the power
graph P2(D) is not Eulerian, as proven in Theorem 3.20. Examples 3.21 and 3.22
demonstrate that if the adjacency matrix in the Eulerian graph D is symmetric,
then the power graph P2(D) is Eulerian, which is proven as Theorem 3.23. It is also
noted that if D is a non-Eulerian graph, then P2(D) is not Eulerian, except in one
specific case. Another scenario where the power graph P2(D) is Eulerian is when
E = Iv. Ultimately, it is concluded that if the power graph P1(D) is Eulerian,
then the power graph P2(D) is Eulerian as well. If P2(D) is not Eulerian, then
P1(D) is definitely non-Eulerian [1].
The focus of this article remains on directed graphs, as indicated in the article on
directed power graphs. The concept of power graphs is reviewed, starting with a
graph D = (V,E) where φ 6= E ⊆ V × V . The set of edges E and the definitions
of Ei’s for 1 ≤ i ≤ 6 are provided, facilitating the introduction of the six power
graphs Pi(D) for 1 ≤ i ≤ 6, which are defined as Pi(D) = (Vi, Ei). It should be
noted that Vi 6= φ and Vi ⊆ V for 1 6 i 6 6. The definitions of Ei’s are presented
in the following definition.

Definition 1.1. Denoted in [1], states that when considering subsets A and B of
V , the definition of each Ei is as follows:

AE1B if ∀a ∈ A,∀b ∈ B ; aEb,

AE2B if ∃a ∈ A,∃b ∈ B ; aEb,

AE3B if ∃b ∈ B, ∀a ∈ A ; aEb,

AE4B if ∀a ∈ A,∃b ∈ B ; aEb,

AE5B if ∃a ∈ A,∀b ∈ B ; aEb,

AE6B if ∀b ∈ B, ∃a ∈ A ; aEb.
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The subsequent connections are established among the elements of Ei:

E1 ⊆ E3 ⊆ E4 ⊆ E2,

E1 ⊆ E5 ⊆ E6 ⊆ E2.

Prior to delving into the article, it is recommended to familiarize oneself with
the following definitions to enhance comprehension of the content.
A directed graph, a directed trail, a directed Euler trail, a directed Euler tour [2],
an Eulerian digraph, outdegree od(v) of v (or d+(v)) and indegree id(v) of v (or
d−(v))[3], a connected digraph [4], Euler’s theorem [3].

2. Historical comments
Authors have frequently defined the power graph of a group G in various articles,
where the corresponding power graph of a group G is constructed by considering
the elements of G as vertices. In this graph, two distinct vertices are considered
adjacent if one of them is a power of the other. Several articles have explored the
Eulerian properties of these power graphs (refer to [5–8]). In a survey conducted
by Jemal et al. in [9], they compiled all the results on power graphs of groups and
semigroups, providing definitions for both directed and undirected power graphs.
In Section 5 of their article, they also examined the Eulerian conditions of these
power graphs. Additionally, in 2016, Bhuniya and Sudip introduced the power
graph of a finite group G with a normal subgroup H [10].

3. Eulerian analysis of Pi(D)’s for 3 6 i 6 6

We begin this section with a brief example of the "Eulerian conditions" of power
graphs (Pi(D)’s for 3 6 i 6 6) and then we examine the corresponding theorems
types of power graphs. Being Eulerian Pi(D)’s for 3 6 i 6 6 differently from being
Eulerian Pi(D)’s for i = 1, 2 are reviewed in directed power graphs article.

3.1 Eulerian analysis of P3(D) and P4(D)

Let D = (V,E) be a directed graph and assume that A,B ⊆ V , AE3B and also
AE4B. To illustrate Euler’s theorem for power graph P3(D), let us provide an
example.

Example 3.1. Consider the set V = {a, b, c} of graph D. Suppose that we have
E = V × V \(a, a). We see a part of the power graph P3(D) in Figure 1. Let
us consider the vertex {a}. The definition of E3, clearly shows that, there is an
output edge from vertex {a} to all of the vertices containing b or c or both of
them. Also, there is an input edge from vertices {b} and {c} and {b, c} to vertex
{a}, which implies that P3(D) contains at least a directed Euler tour does not.
Therefore, P3(D) is non-Eulerian. By checking the degree of input and output of
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vertex {a}, it can be seen that the degree of output is equal to 7 and the degree
of input is 4. So it is not an Eulerian graph P3(D).

Figure 1: Display of input and output edges of vertex {a} in non-Eulerian power
graph P3(D).

If aEa, then according to E3, all vertices containing an element a ∈ V are
connected to the vertex {a}, satisfying the condition for Euler’s theorem in power
graph P3(D). We note that Figure 2 is a part of power graph P3(D) .

In the following theorem, we determine the conditions for graph D, that the power
graph P3(D) will be Eulerian.

Theorem 3.2. The power graph P3(D) is Eulerian if and only if the relation E
contains all ordered pairs that are constructed with respect to the members of the
set V , (E = V × V ).

Proof. If E = V × V , then P3(D) = (2V \ {φ})× (2V \ {φ}) and obviously P3(D)
is Eulerian.
We assume that P3(D) is an Eulerian power graph. To prove E = V × V , it is
sufficient to show that d−(v) = n ; ∀v ∈ V or (d+(v) = n ; ∀v ∈ V ).
Consider v ∈ V constant. B ⊆ V is a minimal dependent set of vertices V if :
Note that if we have {v}E3B, then there exists an element b ∈ B such that
{v}E3{b}. So, minimal dependent set of {v} has just one element. Now suppose
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Figure 2: Display of input and output edges of vertex {a} in Eulerian power graph
P3(D).

Figure 3: Minimal dependent set of {v}
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minimal dependent set of {v} are {v1},{v2},...,{vk}. Note that k = d−(v).
By definition P3(D), for any B ⊆ V that {v}E3B, satisfies B∩{v1, v2, ..., vk} 6= φ.
For every B ⊆ V that {v}E3B, B can be decomposed into two disjoint subsets
of B1 and B2 (B = B1 ∪ B2), and we have φ 6= B1 ⊆ {v1, ..., vk} and B2 ⊆
V \{v1, ..., vk}. Clearly, the number of these sets are 2n−k× (2k−1). Therefore, in
a power graph P3(D) we have d−P3(D)({v}) = 2n−k(2k − 1). Now we consider the
set A such that AE3{v}. Note that if A1E3{v} and A2E3{v}, then A1∪A2E3{v}.
Also if AE3{v}, then we have aEv for every a ∈ A. By puting A = ∪CE3{v}C, it
results that A is only maximal element with a condition AE3{v}. If the number
of A is equal to l, then l = d+(v). On the other hand, for every C such that
CE3{v}, thus C ⊆ A. So, the number of nonempty subsets A is equal to with
d+P3(D)({v}) = 2l − 1. Since P3(D) is Eulerian, it proves that:

d−({v}) = d+({v}),
2n−k(2k − 1) = 2l − 1.

This relationship is established when 2n−k = 1. So n = k and then d−(v) = k = n.
As the same way d+(v) = k = n and the proof is complete.

Now, let us refer to Example 3.27 in [1] to observe an Eulerian power graph
P4(D).

Theorem 3.3. The power graph P4(D) is Eulerian if and only if the relation E
contains all ordered pairs that are constructed with respect to the members of the
set V , (E = V × V ).

Proof. The proof is done by a similar method of Theorem 3.2.

Example 3.4. Cyclopropenone (C3H6) is a molecule of exceptional stability. In
this molecule, intramolecular forces such as covalent bonds hold atoms together in
molecules and atomic ions. We see the structure of this ring molecule in the basic
graph in Figure 4, where in every carbon is labeled with C1, C2 and C3. It is clear
that the Eulerian condition holds for power graphs P3(D) and P4(D).

Figure 4: Basic graph of Cyclopropenone molecule.

Now we can see power graph Pi(D) for i = 3 or i = 4 in Figure 5.
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Figure 5: Eulerian power graph Pi(D) for i = 3 or i = 4.

3.2 Eulerian analysis of P5(D) and P6(D)

In this section, we present definitions that by using these definitions and previous
discussions, we can easily obtain the results that P5(D) and P6(D) are Eulerian.

Definition 3.5. Defines the reverse or transpose of a directed graph D as another
directed graph with the same set of vertices, where all edges are reversed compared
to their orientation in D.

V (DR) = V (D)(= V ),

E(DR) = {(u, v) ∈ V × V : (v, u) ∈ E(D)}.

Example 3.6. Pay attention to the graphs below.

Lemma 3.7. If D be a directed graph, then we have:

1. P5(D) = P3(D)R,

2. P6(D) = P4(D)R,

3. (P1(D))R = P1(D)R,

4. (P2(D))R = P2(D)R.

Proof. It is obviously according to the definition of power graphs.
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Figure 6: Figure (i) is the graph D and Figure (ii) is the transpose graph of the
given graph.

Theorem 3.8. If D is a directed graph, then D is Eulerian if and only if DR is
Eulerian.

Proof. According to the definition of the reverse of the graph and Eulerianity of
the graph, the result is obtained immediately.

Theorem 3.9. The power graph P5(D) is Eulerian if and only if the relation E
contains all ordered pairs that are constructed with respect to the members of the
set V, (E = V × V ).

Proof. According to Lemma 3.7 (Part 1), Theorem 3.8, and Theorem 3.2, the proof
is obvious.

Theorem 3.10. The power graph P6(D) is Eulerian if and only if the relation E
contains all ordered pairs that are constructed with respect to the members of the
set V, (E = V × V ).

Proof. According to Lemma 3.7 (Part 2), Theorem 3.8, and Definition 3.5, the
proof is obvious.

Corollary 3.11. States that Pi(D) is Eulerian if and only if Pj(D) is Eulerian
(for 3 6 i, j 6 6).

Example 3.12. In this example, we consider a chemical graph, which represents
a type of intermolecular force that can be seen in water, methanol, propanol, and
cyclopropane molecules. There are positive and negative poles which are charac-
terized by dipole-dipole interactions. We consider water, methanol, propanol, and
cyclopropane molecules as the vertices of the basic graph and intermolecular forces
as the edges of the graph. We can observe a power graph corresponding to the
intermolecular forces for i = 5 or i = 6 (also for i = 3, 4) in Figure 8. It is worth
noting that in Figure 8, due to the large number of edges, the Eulerian condition
is provided for one of the vertices of Pi(D) to facilitate better understanding of
Eulerian power graphs. However, the results hold for other vertices as well.
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Figure 7: Intermolecular forces that arise as a result of the interaction between
positively and negatively charged particles.

Figure 8: Drawing Eulerian power graph Pi(D), for i = 3, 4, 5, 6 on the vertex
of {a} only.
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Give another example to show that power graphs, (Pi(D); for i = 3, 4, 5, 6)
are Eulerian if E = V × V . Based on the theorems presented in Section 3, we can
derive conclusive results regarding the relationship between the base graph being
Eulerian and the Eulerian properties of power graphs [1].

4. Applications of Eulerian power graphs
Here we examine some applications of power graphs in computer networks [11, 12].
Network topology refers to the arrangement of a network, consisting of nodes and
connecting lines, facilitating communication between senders and receivers. Net-
work topology defines the physical and logical structure of the network and like
a map, it shows how network nodes are connected and how data flows between
nodes. Definitely, with the help of such a map, you can see how information
moves in the network. The various network topologies are Mesh Topology, Star
Topology, Bus Topology, Ring Topology, Tree Topology, Hybrid Topology, and
Line Topology. In computer networks, network topology is divided into two cat-
egories, Physical topology and Logical topology. Physical topology is like a map
that shows the physical structure of connections between network nodes (wired or
wireless), but it does not deal with how network traffic flows between nodes, how
to address, how to transfer data from one device to another in the network and it
only mentions the physical structure of the network. Logical topology shows how
data is transferred between network nodes and it specifies how and through what
paths data is sent from one node to another.
There are several physical topologies for connecting network equipment to each
other. We see some common examples of these connections.
In a mesh topology, each device is interconnected with other devices through ded-
icated channels.
All-to-all communication is a method in computer communication where every
sender transmits messages to all receivers within a group. This can be achieved
through broadcasting or multicasting, in contrast to point-to-point communica-
tion where each sender communicates with a single receiver. In general, broadcast
communication is a one-to-all communication. In fact, suppose we want to send an
information packet from one point to several destinations so that all elements of the
network receive this message and on the other hand, the information packet should
pass through each path only once (to avoid traffic in the network). Broadcasting
is a general communication method involving simultaneous message delivery to all
recipients. It is a resource-intensive process that may require multiple messages
and the engagement of numerous network devices. Broadcasting can be performed
as all scatter, where each sender individually sends distinct messages to each re-
ceiver, or as all broadcast, where the same message is broadcasted to all recipients.

Example 4.1. We consider the internet system of a university. Suppose all parts
of the university form a computer network. We also know that all these parts have
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Figure 9: Network topologies.

Figure 10: Broadcast (one to all).
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access to each other through a private internet. We want to check these connections
and how to transfer information in the university network in power graphs so that
we consider each part of the university as one of the vertices of the power graph and
the elements of the set vertices as the information and data that are transferred
between the parts of the university. Let’s assume that a circular from the university
president’s department is sent to all parts of the university so that all parts receive
it (data broadcasting technique) and those parts send your answer to the university
president. In the same way, each part of the university sends its information
and messages to all parts of the university (Fully Mesh topology connection in
Figure 9), we consider that each part also shares information internally with other
employees.
For every Eulerian graph D where the edge set can be E = V × V, there exist the
Eulerian power graphs Pi(D) for 1 ≤ i ≤ 6.
For example, if we consider the Eulerian power graph P4(D), it is clear that for
every data like a from the university president’s part (as a set A) to Graduate (as
a set B), there is a data like b to be sent from the Graduate part to the university
president’s part as a response. The main condition to avoid traffic in the network
is to be an Eulerian power graph.

Ping, the command-line utility available on various operating systems with
network connectivity, serves as a tool to test the reachability of a networked device.
By sending a request to a specific device, the ping command expects a response
from the target computer. The term "Ping" originates from sonar terminology,
where a ping refers to an audible sound wave made to detect objects. If the sound
wave encounters an object, it reflects back or echoes back to the source. Analyzing
sound wave direction and time can provide information on the object’s location
and distance. Similarly, the ping command sends an echo request and awaits an
echo reply from the target system. Essentially, Ping measures the round-trip time
for messages sent from the originating host to a destination computer and echoed
back to the source. It draws an analogy to sending pulses of sound and listening
for echoes to detect objects underwater.
We consider power graph Pi(D) for 3 6 i 6 6 with any number of vertices. It
is clear that from each vertex as set A (beginning vertex), several information
packets can be sent to other vertices as set B (final vertex) and receive the reply.
Also, due to the Eulerian of these power graphs, it is clear that the problem of slow
speed or internet interruption in these graphs is zero and the quality of connection
and availability of information is done in the best possible way.

5. Conclusion
This article aims to highlight the various applications of Eulerian power graphs,
specifically targeting young readers. Additionally, power graphs have proven to
be useful in numerous fascinating scenarios across various scientific disciplines.
In bioinformatics, Euler graphs are used for DNA sequencing by hybridization
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[13, 14]. In many articles, they investigated the role of Eulerian graphs in the
process of determining the sequence of DNA by hybridization [15, 16]. In the four-
teenth chapter of the book of cellular-molecular bioinformatics, the introduction of
biological systems and types of biological networks and their analysis using graph
theory has been discussed [17]. Our new approach is to investigate the functional
aspects of the biological system in power graphs. In the continuation of our work,
we are going to investigate the role of Eulerian power graphs in determining DNA
sequence. The interested readers are invited to refer to us and available sources for
more information. We also define and analyze a new category of graphs that can
have important applications in social sciences, computer sciences and economic
sciences .
Conflicts of Interest. The authors declare that they have no conflicts of interest
regarding the publication of this article.
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