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Abstract

A finite non-abelian group G is said to be (l,m, n)-generated if it can be
generated by two elements x and y such that o(x) = l, o(y) = m and o(xy) =
n. Also, G is said to be nX-complementary generated if given an arbitrary
non-identity element x ∈ G, there exists an element y ∈ nX such that
G = 〈x, y〉. We studied the (p, q, r)-generation for the Chevalley groupG2(3),
where p, q and r are all the primes dividing the order of G2(3). In the current
paper, we classify all the non-trivial conjugacy classes of G2(3) whether they
are complementary generators or not. To achieve this, we mainly used the
structure constant method together with other results applied to establish
generation and non-generation of the group G2(3) by the (p, q, r) triples.
Some particular algorithms, as well as the (Gap) programming tool, and the
Atlas of finite groups have been exploited in our computations.
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1. Introduction

The generation of finite groups is one of the most interesting problems in Group
Theory and has a rich history. A finite group G can be generated in too many
different ways. For example the probabilistic generation, 3

2 -generation, (p, q, r)-
generations, ranks of non-trivial classes ofG, nX-complementary generation, spread
of G and many other methods. A finite group G is said to be (l,m, n)-generated if
G = 〈x, y〉 , with o(x) = l, o(y) = m and o(xy) = o(z) = n. Here [x] = lX, [y] =
mY and [z] = nZ, where [x] is the conjugacy class of lX in G containing elements
of order l. The same applies to [y] and [z]. In this case, G is also a quotient group
of the triangular group T (l,m, n) and, by definition of the triangular group, G
is also a (σ(l), σ(m), σ(n))-generated group for any σ ∈ S3. Therefore, we may
assume that l ≤ m ≤ n. In the special case, we are more interested in the (p, q, r)-
generations where p, q and r are prime numbers that divide the order of the group
G. A consequence of the (p, q, r)-generation is the nX-complementary generation.

Definition 1.1. For a non-trivial conjugacy class nX of a finite non-abelian group
G, we say that G is nX-complementary generated if there exists an element y ∈ nX
such that G = 〈x, y〉 for any x ∈ G. We say y is a complementary.

The motivation of studying this kind of generation comes from a conjecture by
Brenner-Guralnick-Wiegold [1] that every finite simple group can be generated by
an arbitrary non-trivial element together with another suitable element.

In a series of papers [2–9], the nX-complementary generations of the sporadic
simple groups Th, Co1, J1, J2, J3, HS, McL, Co3, Co2 and F22 have been
investigated.

In this paper, we intend to establish all the nX-complementary generations of
an exceptional group of Lie type, namely, the Chevalley group G2(3), where nX
is a non-trivial conjugacy class of elements of order n as in the Atlas [10]. We
follow the methods used in the papers [11–19] and [20]. Note that, in general,
if G is a (2, 2, n)-generated group then G is a dihedral group and therefore, G
is not simple. Also by [21], if G is a non-abelian (l,m, n)-generated group then
either G ∼= A5 or 1

l + 1
m + 1

n < 1. Thus, for our purpose of establishing the nX-
complementary generations of G = G2(3), the only cases we need to consider are
when 1

l + 1
m + 1

n < 1.
The following proposition gives a criterion for a groupG to be nX-complementary

generated or not, where nX is a non-trivial class of G.

Proposition 1.2. A finite non-abelian group G is nX-complementary generated
if and only if for each conjugacy class pY of G, where p is prime, there exists a
conjugacy class tpY Z, depending on pY, such that G is (pY, nX, tpY Z)-generated.
Moreover, if G is a finite simple group then G is not 2X-complementary generated
for any conjugacy class of involutions.

Proof. See Lemma 2.3.8 of [22].
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The main result on the nX-complementary generation of the group G2(3) can
be summarized in Theorem 1.3. The proof will be established through a sequence
of propositions that will be proved in Section 3.

Theorem 1.3. The group G2(3) is nX-complementary generated if and only if
n ≥ 6 and nX /∈ {6A, 6B}.

2. Preliminaries
Let G be a finite group and C1, C2, . . . , Ck (not necessarily distinct) for k ≥ 3 be
conjugacy classes of G with g1, g2, . . . , gk being representatives for these classes,
respectively.

For a fixed representative gk ∈ Ck and for gi ∈ Ci, 1 ≤ i ≤ k − 1, denote by
∆G = ∆G(C1, C2, . . . , Ck) the number of distinct (k−1)-tuples (g1, g2, . . . , gk−1) ∈
C1 × C2 × . . . × Ck−1 such that g1g2 . . . gk−1 = gk. This number is known as the
class algebra constant or structure constant. With Irr(G) = {χ1, χ2, . . . , χr}, the
number ∆G is easily calculated from the character table of G using Equation (1),

∆G(C1, C2, . . . , Ck) =

k−1∏
i=1

|Ci|

|G|

r∑
i=1

χi(g1)χi(g2) . . . χi(gk−1)χi(gk)

(χi(1G))k−2
. (1)

Also, for a fixed gk ∈ Ck, we denote by ∆∗
G(C1, C2, . . . , Ck) the number of distinct

(k − 1)-tuples (g1, g2, . . . , gk−1) satisfying

g1g2 . . . gk−1 = gk and G = 〈g1, g2, . . . , gk−1〉 . (2)

Definition 2.1. If ∆∗
G(C1, C2, . . . , Ck) > 0 then the group G is said to be

(C1, C2, . . . , Ck)-generated.

Furthermore, if H is any subgroup of G containing the fixed element gk ∈ Ck,
we let ΣH(C1, C2, . . . , Ck) be the total number of distinct tuples (h1, h2, . . . , hk−1)
which are in C1 × C2 × . . .× Ck−1 such that

h1h2 . . . hk−1 = gk and 〈h1, h2, . . . , hk−1〉 ≤ H. (3)

The value of ΣH(C1, C2, . . . , Ck) can be obtained as a sum of the structure con-
stants ∆H(c1, c2, . . . , ck) ofH-conjugacy classes c1, c2, . . . , ck such that ci ⊆ H∩Ci.

Finally, for non-trivial conjugacy classes c1, c2, . . . , ck of a proper subgroup
H of G and a fixed gk ∈ ck, let Σ∗

H(c1, c2, . . . , ck) represents the number of tu-
ples (h1, h2, . . . , hk−1) ∈ c1 × c2 × . . . × ck−1 such that h1h2 . . . hk−1 = gk and
〈h1, h2, . . . , hk−1〉 = H.

When it is clear from the context which conjugacy classes of H are consid-
ered, we will use the notation Σ(H) and Σ∗(H) to denote ΣH(c1, c2, . . . , ck) and
Σ∗

H(c1, c2, . . . , ck), respectively.
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Theorem 2.2. Let G be a finite group and H be a subgroup of G containing a
fixed element g such that gcd(o(g), [NG(H):H]) = 1. Then the number h(g,H) of
conjugates of H containing g is χH(g), where χH(g) is the permutation character
of G with action on the conjugates of H. In particular,

h(g,H) =

m∑
i=1

|CG(g)|
|CNG(H)(xi)|

, (4)

where x1, x2, . . . , xm are representatives of the NG(H)-conjugacy classes fused to
the G-class of g.

Proof. See [5] and [23, Theorem 2.1].

The above number h(g,H) is useful in giving a lower bound for ∆∗
G(C1, C2, . . . ,

Ck), namely ∆∗
G(C1, C2, . . . , Ck) ≥ ΘG(C1, C2, . . . , Ck), where

ΘG(C1, C2, . . . , Ck) = ∆G(C1, C2, . . . , Ck)−
∑

h(gk, H)ΣH(C1, C2, . . . , Ck), (5)

such that gk is a representative of the class Ck and the sum is taken over all the
representatives H of G-conjugacy classes of maximal subgroups of G containing
elements of all the classes C1, C2, . . . , Ck.

The following lemma in many cases will be very useful in establishing non-
generation for finite groups.

Lemma 2.3 (e.g. see Lemma 2.7 of [17]). Let G be a finite centerless group. If
∆∗

G(C1, C2, . . . , Ck) < |CG(gk)| and gk ∈ Ck then ∆∗
G(C1, C2, . . . , Ck) = 0 and

therefore, G is not (C1, C2, . . . , Ck)-generated.

3. The results on the nX-complementary generations

of G2(3)

In this section we apply the results discussed in Section 2 to the Chevalley group
G2(3). We determine the non-trivial conjugacy classes nX such that G2(3) is nX-
complementary generated. The group G2(3) is a simple group of order 4245696 =
26×36×7×13. By the Atlas [10], the group G2(3) has Schur multiplier isomorphic
to Z3 and outer automorphism group that is isomorphic to Z2. Also, it has exactly
23 conjugacy classes of its elements and 10 conjugacy classes of its maximal sub-
groups. Representatives of these classes of maximal subgroups can be taken as in
Table 1.

Throughout the paper, the notation for the conjugacy classes of elements and
maximal subgroups of G2(3) will be as in the Atlas [10]. Using Equation (4)
we calculated the values of h(g,Mi), where g is a representative of a non-trivial
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Table 1: Maximal subgroups of G2(3).

Maximal Subgroup Order
U3(3) : 2 = M1 12096 = 26 × 33 × 7
U3(3) : 2 = M2 12096 = 26 × 33 × 7

(32 × 31+2) : 2S4 = M3 11664 = 24 × 36

(32 × 31+2) : 2S4 = M4 11664 = 24 × 36

L3(3) : 2 = M5 11232 = 25 × 33 × 13
L3(3) : 2 = M6 11232 = 25 × 33 × 13
L2(8) : 3 = M7 1512 = 23 × 33 × 7
23.L3(2) = M8 1344 = 26 × 3× 7
L2(13) = M9 1092 = 22 × 3× 7× 13

21+4 : 32 : 2 = M10 576 = 26 × 32

Table 2: The values h(g,Mi), 1 ≤ i ≤ 10 for non-identity classes and maximal
subgroups of G2(3).

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

2A 15 15 20 20 18 18 24 39 48 91
3A 27 0 13 40 0 54 0 0 0 81
3B 0 27 40 13 54 0 0 0 0 81
3C 0 0 13 13 0 0 27 0 0 0
3D 0 0 4 4 9 9 0 0 27 9
3E 9 9 4 4 0 0 18 27 0 9
4A 3 3 4 0 6 2 0 3 0 7
4B 3 3 0 4 2 6 0 3 0 7
6A 3 0 5 8 0 6 0 0 0 1
6B 0 3 8 5 6 0 0 0 0 1
6C 0 0 2 2 3 3 0 0 3 1
6D 3 3 2 2 0 0 6 3 0 1
7A 1 1 0 0 0 0 1 2 3 0
8A 1 1 2 0 2 0 0 1 0 1
8B 1 1 0 2 0 2 0 1 0 1
9A 0 0 1 1 0 0 3 0 0 0
9B 0 0 1 1 0 0 3 0 0 0
9C 0 0 1 1 0 0 3 0 0 0
12A 3 0 1 0 0 2 0 0 0 1
12B 0 3 0 1 2 0 0 0 0 1
13A 0 0 0 0 1 1 0 0 1 0
13B 0 0 0 0 1 1 0 0 1 0

conjugacy class of G, over all the maximal subgroupsMi of G. We list these values
in Table 2.
Remark 1. It has been mentioned in Proposition 1.2 that a finite simple group
G can not be 2X-complementary generated, for if it were then there exists a
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conjugacy class nZ of G such that G is a (2Y, 2X,nZ)-generated group. We
know that two involutions generate a dihedral group, which is not a simple group.
Therefore, if G is a simple group then it is not 2X-complementary generated for
any conjugacy class 2X of involutions of G. Hence, the investigation of the nX-
complementary generation in simple will be done when n ≥ 3.

Proposition 3.1. The group G2(3) is not 3X-complementary generated for X ∈
{A,B}.

Proof. For the case (2A, 3X, tZ), we need only check the conjugacy classes of
G2(3) with elements of orders greater than or equal to 7 because of the condition
1
l + 1

m + 1
n < 1. From Proposition 6 of [24], we know that G2(3) is not (2A, 3X, 7A)-

generated. Computations with GAP [25] yield ∆G2(3)(2A, 3X, tZ) = 0 for tZ ∈
{8Y, 9A, 9B, 9C, 12X}, where X,Y ∈ {A,B} and X 6= Y . We also find that
∆G2(3)(2A, 3X, 8Y ) = 4 < 8 = |CG(g)|, g ∈ 8Y and ∆G2(3)(2A, 3X, 12X) = 3 <
12 = |CG(g)|, g ∈ 12X, where X,Y ∈ {A,B} and X 6= Y . Using Lemma 2.3, we
see thatG2(3) is not (2A, 3X, tZ)-generated forX ∈ {A,B} and tZ ∈ {8A, 8B, 9A,
9B, 9C, 12A, 12B}. Finally, that G2(3) is not (2A, 3X, 13Y )-generated follows
from Proposition 7 of [24]. Therefore, G2(3) is not (2A, 3X, tZ)-generated for ev-
ery conjugacy class tZ of G2(3) and hence, it is not 3X-complementary generated
for X ∈ {A,B}.

Proposition 3.2. The group G2(3) is not 3C-complementary generated.

Proof. Even though, by Proposition 7 of [24], the group G2(3) is (2A, 3C, 13Y )-
generated we will prove that it is not (3A, 3C, tZ)-generated for all conjugacy
classes tZ of G2(3). Firstly, we note that for this case the condition 1

l + 1
m +

1
n < 1 is satisfied when t ≥ 4. Hence, G2(3) is not (3A, 3C, tZ)-generated
for classes tZ ∈ {2A, 3A, 3B, 3C, 3D, 3E}. Now, computations with GAP yield
∆G2(3)(3A, 3C, tZ) = 0 for tZ ∈ {4X, 6X, 6D, 7A, 8X, 9A, 12B}, where X ∈
{A,B}. We also find that

∆G2(3)(3A, 3C, 6C) = 6 < 18 = |CG2(3)(g)|, g ∈ 6C,

∆G2(3)(3A, 3C, 9X) = 3 < 27 = |CG2(3)(g)|, g ∈ 9X,X ∈ {B,C},
∆G2(3)(3A, 3C, 12A) = 4 < 12 = |CG2(3)(g)|, g ∈ 12A.

It follows by Lemma 2.3 that G2(3) is neither (3A, 3C, 6C)-, (3A, 3C, 9X)-, nor
(3A, 3C, 12A)-generated for X ∈ {B,C}. By Proposition 15 of [24], we have that
G2(3) is not (3A, 3C, 13X)-generated for X ∈ {A,B}. We can see that G2(3) is
not (3A, 3C, tZ)-generated for all conjugacy classes tZ of G2(3). Thus, G2(3) is
not 3C-complementary generated.

Proposition 3.3. The group G2(3) is not 3D-complementary generated.

Proof. We achieve the result by showing that G2(3) is not (3A, 3D, tZ)-generated
for all conjugacy classes tZ of G2(3). Just as in the proof of the preceding proposi-
tion we note that the condition 1

l + 1
m + 1

n < 1 is satisfied when t ≥ 4. Hence, G2(3)
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is not (3A, 3D, tZ)-generated for classes tZ ∈ {2A, 3A, 3B, 3C, 3D, 3E}. Now,
computations with GAP give ∆G2(3)(3A, 3D, tZ) = 0 for tZ ∈ {4A, 6B, 6C, 7A, 8A, 12A}.
Further computations show that

∆G2(3)(3A, 3D, 4B) = 32 < 96 = |CG2(3)(g)|, g ∈ 4B,

∆G2(3)(3A, 3D, 6A) = 24 < 72 = |CG2(3)(g)|, g ∈ 6A,

∆G2(3)(3A, 3D, 6D) = 3 < 18 = |CG2(3)(g)|, g ∈ 6D,

∆G2(3)(3A, 3D, 9X) = 3 < 27 = |CG2(3)(g)|, g ∈ 9X,X ∈ {A,B,C},
∆G2(3)(3A, 3D, 12B) = 2 < 12 = |CG2(3)(g)|, g ∈ 12B.

By applying Lemma 2.3, non-generation of the group G2(3) by (3A, 3D, tZ), where
tZ ∈ {4B, 6A, 6D, 9A, 9B, 9C, 12B}, is obtained.

For (3A, 3D, 8B), we find that only the maximal subgroups M4,M6 and M10

have conjugacy classes of elements of orders 3, 3 and 8 that fuse into classes 3A,
3D and 8B, respectively. We have Σ(M4) = 0 = Σ(M10) and Σ(M6) = 8 =
Σ∗(M61), where M61 (isomorphic to PSL(3, 3)) is the only maximal subgroup
of M6 with a contribution. Using Equation (4), we found that the number of
conjugate subgroups ofM61 inM6 that contain a fixed element z ∈ 8B is 1. Thus,
Σ∗(M6) = Σ(M6) − 1 · Σ∗(M61) = 8 − 8 = 0. Non-generation follows from the
computations

∆∗
G2(3)

(3A, 3D, 8B) = ∆G2(3)(3A, 3D, 8B)− 2 · Σ∗(M6)− 1 · Σ∗(M61)

= 8− 2(0)− 8 = 0.

Lastly, for (3A, 3D, 13X) where X ∈ {A,B}, we have non-generation by Proposi-
tion 15 of [24].

Proposition 3.4. The group G2(3) is not 3E-complementary generated.

Proof. We show that G2(3) is not (3A, 3E, tZ)-generated for all conjugacy classes
tZ of G2(3). Again, applying the condition 1

l + 1
m + 1

n < 1 shows that t must be
greater than or equals to 4. Hence, G2(3) is not (3A, 3E, tZ)-generated for classes
tZ ∈ {2A, 3A, 3B, 3C, 3D, 3E}. Now, computations with GAP give ∆G2(3)(3A, 3E, tZ) =
0 for tZ ∈ {4A, 4B, 6A, 6B, 8B, 13A, 13B}. Further computations show that

∆G2(3)(3A, 3E, 6C) = 3 < 18 = |CG(g)|, g ∈ 6C,

∆G2(3)(3A, 3E, 6D) = 6 < 18 = |CG(g)|, g ∈ 6D,

∆G2(3)(3A, 3E, 9X) = 3 < 27 = |CG(g)|, g ∈ 9X,X ∈ {A,B,C},
∆G2(3)(3A, 3E, 12B) = 6 < 12 = |CG(g)|, g ∈ 12B.

Application of Lemma 2.3 reveals that G2(3) is not generated by the triples
(3A, 3E, tZ), where tZ ∈ {6C, 6D, 9A, 9B, 9C, 12B}.

By Proposition 11 of [24] the triple (3A, 3E, 7A) does not generate G2(3).



450 A. B. M. Basheer et al. /nX-complementary generations of the...

For (3A, 3E, 8A), we have only the maximal subgroups M1,M3 and M10 with
conjugacy classes of elements of orders 3, 3 and 8 that fuse into classes 3A, 3E
and 8A, respectively. Computations give ∆G2(3)(3A, 3E, 8A) = 8, Σ(M3) = 0 =
Σ(M10) and Σ(M1) = 8 = Σ∗(M11), where M11 (isomorphic to PSU(3, 3)) is
the only maximal subgroup of M1 which makes a contribution. Thus, Σ∗(M1) =
Σ(M1)− 1 · Σ∗(M11) = 8− 8 = 0. Therefore,

∆∗
G2(3)

(3A, 3E, 8A) = ∆G2(3)(3A, 3E, 8A)− 1 · Σ∗(M1)− 1 · Σ∗(M11)

= 8− 1(0)− 8 = 0,

showing that G2(3) is not (3A, 3E, 8A)-generated.
For the last case (3A, 3E, 12A) we still have only the maximal subgroups

M1,M3 and M10 with conjugacy classes of elements of orders 3, 3 and 12 that
fuse into classes 3A, 3E and 12A, respectively. We get Σ(M3) = 0 = Σ(M10) and
Σ(M1) = 12 = Σ∗(M11), where M11 is the only maximal subgroup of M1 which
makes a contribution. Thus, Σ∗(M1) = Σ(M1) − 1 · Σ∗(M11) = 12 − 12 = 0.
Non-generation follows from the computation

∆∗
G2(3)

(3A, 3E, 12A) = ∆G2(3)(3A, 3E, 12A)− 3 · Σ∗(M1)− 1 · Σ∗(M11)

= 12− 3(0)− 12 = 0.

Therefore, G2(3) is not (3A, 3E, tZ)-generated for every conjugacy class tZ of
G2(3) and hence, it is not 3E-complementary generated.

Proposition 3.5. The group G2(3) is not 4X-complementary generated for X ∈
{A,B}.

Proof. Direct computations with GAP yield ∆G2(3)(3X, 4Y, tZ) = 0 for all tZ ∈
{3Y, 3C, 3E, 6Y, 6C, 12A, 12B}, where X,Y ∈ {A,B} with X 6= Y , from which we
deduce non-generation. The condition 1

l + 1
m + 1

n < 1 implies non-generation of
G2(3) by (3X, 4Y, 2A). Furthermore,

∆G2(3)(3X, 4Y, 3X) = 243 < 5832 = |CG(g)|, g ∈ 3X,

∆G2(3)(3X, 4Y, 3D) = 54 < 162 = |CG(g)|, g ∈ 3D,

∆G2(3)(3X, 4Y, 4X) = 24 < 96 = |CG(g)|, g ∈ 4X,

∆G2(3)(3X, 4Y, 4Y ) = 32 < 96 = |CG(g)|, g ∈ 4Y,

∆G2(3)(3X, 4Y, 6X) = 27 < 72 = |CG(g)|, g ∈ 6X,

∆G2(3)(3X, 4Y, 8X) = 2 < 8 = |CG(g)|, g ∈ 8X,

∆G2(3)(3X, 4Y, 9Z) = 9 < 27 = |CG(g)|, g ∈ {9A, 9B, 9C},

for all X,Y ∈ {A,B} and X 6= Y . It follows from Lemma 2.3 that G2(3) is
not generated by (3X, 4Y, tZ) for tZ ∈ {3X, 3D, 4X, 4Y, 6X, 8X, 9A, 9B, 9C} with
X,Y ∈ {A,B} and X 6= Y .
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We now consider the case (3X, 4Y, 6D) for X,Y ∈ {A,B} and X 6= Y . Let

(i, j) =

{
(4, 1), if X = A,
(3, 2), if X = B.

We have ∆G2(3)(3X, 4Y, 6D) = 18 and Σ(Mi) = 18 = Σ(Mi1) = 18, where Mi1

is isomorphic to the group ((32 × ((32:3)):Q8)):3 for i = 3, 4. Maximal subgroups
Mj and M10 make no contribution since Σ(Mj) = 0 = Σ(M10). Thus, Σ∗(Mi) =
Σ(Mi)− 1 · Σ(Mi1) = 18− 18 = 0 and so,

∆∗
G2(3)

(3X, 4Y, 6D) = ∆G2(3)(3X, 4Y, 6D)− 2 · Σ(Mi)− 1 · Σ∗(Mi1)

= 18− 2(0)− 18 = 0,

showing non-generation for X,Y ∈ {A,B} and X 6= Y .
For the case (3X, 4Y, 7A), we have ∆G2(3)(3X, 4Y, 7A) = 7 for X,Y ∈ {A,B}

and X 6= Y . Further, Σ∗(Mi) = Σ(Mi) = 7 with i = 1 when X = A and i = 2
when X = B. Now,

∆∗
G2(3)

(3X, 4Y, 7A) = ∆G2(3)(3X, 4Y, 7A)− 1 · Σ(Mi) = 7− 7 = 0,

and non-generation by the triple (3X, 4Y, 7A) follows, where X ∈ {A,B} and
X 6= Y .

Now, we deal with the case (3X, 4Y, 8Y ), where X,Y ∈ {A,B} and X 6= Y .
Let

(i, j) =

{
(5, 1) or (5, 4), if X = A,
(6, 2) or (6, 3), if X = B.

We find that ∆G2(3)(3X, 4Y, 8Y ) = 8, Σ(Mi) = Σ∗(Mi1) = 8 and Σ(Mj) = 0 =
Σ(M10). Now, Σ∗(Mi) = Σ(Mi)− 1 · Σ(Mi) = 8− 8 = 0. The non-generation by
(3X, 4Y, 8Y ) follows since

∆∗
G2(3)

(3X, 4Y, 8Y ) = ∆G2(3)(3X, 4Y, 8Y )− 2 · Σ(Mi)− 1 · Σ∗(Mi1)

= 8− 2(0)− 8 = 0,

for X,Y ∈ {A,B} with X 6= Y .
Finally, we consider the cases (3X, 4Y, 13Z) for X,Y, Z ∈ {A,B} and X 6= Y.

We deal with the case (3B, 4A, 13Z), Z ∈ {A,B}. Only M5 and its maximal
subgroup M51 contribute to ∆G2(3)(3B, 4A, 13Z). We have Σ(M51) = 13 which
implies that Σ∗(M51) = 13. Thus, Σ∗(M5) = Σ(M5) − 1 · Σ∗(M51) = 13 − 13. It
follows that

∆∗
G2(3)

(3B, 4A, 13Z) = ∆G2(3)(3B, 4A, 13Z)− 1 · Σ∗(M5)− 1 · Σ∗(M51)

= 13− 0− 13 = 0,

for Z ∈ {A,B} showing non-generation. Similarly, with M5 and M51 replaced
by M6 and M61 respectively, we obtain ∆∗

G2(3)
(3A, 4B, 13Z) = 0 for Z ∈ {A,B}.
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We deduce that G2(3) is not (3X, 4Y, 13Z)-generated for X,Y, Z ∈ {A,B} and
X 6= Y. Therefore, that G2(3) is not 4Y -complementary generated follows as a
consequence of non-generation of G2(3) by (3X, 4Y, tZ) for X,Y ∈ {A,B}, X 6= Y
and all classes tZ of G2(3).

Proposition 3.6. The group G2(3) is not 6X-complementary generated for X ∈
{A,B}.

Proof. For X ∈ {A,B}, the triple (3X, 6X, 2A) does not generate G since it does
not satisfy the condition 1

l + 1
m + 1

n < 1. Direct computations with GAP give
∆G2(3)(3X, 6X, tZ) = 0 for tZ ∈ {3Y, 3C, 3E, 4Y, 6C, 12X}, where X,Y ∈ {A,B}
and X 6= Y . We also have

∆G2(3)(3X, 6X, 3X) = 243 < 5832 = |CG(g)|, g ∈ 3X,

∆G2(3)(3X, 6X, 3D) = 54 < 162 = |CG(g)|, g ∈ 3D,

∆G2(3)(3X, 6X, 4X) = 36 < 96 = |CG(g)|, g ∈ 4X,

∆G2(3)(3X, 6X, 6Y ) = 24 < 72 = |CG(g)|, g ∈ 6Y,

∆G2(3)(3X, 6X, 6X) = 41 < 72 = |CG(g)|, g ∈ 6X,

∆G2(3)(3X, 6X, 6D) = 6 < 18 = |CG(g)|, g ∈ 6D,

∆G2(3)(3X, 6X, 9Z) = 9 < 27 = |CG(g)|, g ∈ 9Z, whereZ ∈ {A,B,C},

for all X,Y ∈ {A,B} and X 6= Y . Using Lemma 2.3, we conclude that G is
not (3X, 6X, tZ)-generated for tZ ∈ {3X, 3D, 4X, 6Y, 6X, 6D, 9A, 9B, 9C} for all
X,Y ∈ {A,B} and X 6= Y .

Computations with GAP give ∆G2(3)(3A, 6A, 7A) = 7,Σ(M1) = 7 = Σ∗(M11),
where M11 is the maximal subgroup of M1 making a contribution. Thus, non-
generation by the triple (3A, 6A, 7A) follows from the computations Σ∗(M1) =
Σ(M1)− 1 · Σ∗(M11) = 7− 7 = 0 and consequently,

∆∗
G2(3)

(3A, 6A, 7A) = ∆G2(3)(3A, 6A, 7A)− 1 · Σ∗(M1)− 1 · Σ∗(M11)

= 7− 0− 7 = 0.

Similarly, replacing M1 and M11 by M2 and M21 respectively, we get that, G2(3)
is not (3B, 6B, 7A)-generated.

For the triple (3X, 6X, 8X), X ∈ {A,B}, the involved subgroups of G2(3) in
the computations of ∆∗

G2(3)
(3X, 6X, 8X) will be M1, M3, M11, M12, M15 and

M10 if X = A and M2, M4, M21, M22, M25 and M10 if X = B. We have
∆G2(3)(3X, 6X, 8X) = 8, Σ(Mi) = 8 = Σ(Mi1) and Σ(Mj) = Σ(M10) = Σ(Mi2) =
Σ(Mi5) = 0, for i ∈ {1, 2} and j ∈ {3, 4}. It follows that Σ∗(Mi) = Σ(Mi) − 1 ·
Σ∗(Mi1) = 8− 8 = 0, for i ∈ {1, 2}. Therefore,

∆∗
G2(3)

(3X, 6X, 8X) = ∆G2(3)(3X, 6X, 8X)− 1 · Σ∗(M1)− 1 · Σ∗(M11)

= 8− 0− 8 = 0.
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Thus, the group G2(3) is not (3X, 6X, 8X)-generated for X ∈ {A,B}.
Now, we consider the case (3X, 6X, 8Y ). For X,Y ∈ {A,B} and X 6= Y ,

there are 16 pairs (x, y) ∈ (3X, 6X) such that xy = z, where z ∈ 8Y is a fixed
element (i.e., ∆G2(3)(3X, 6X, 8Y ) = 16). Now, these 16 pairs generate groups that
are all isomorphic to the group (32:Q8):S3, which has order 432. Hence, none of
these 16 pairs generate G2(3). Therefore, G2(3) is not (3X, 6X, 8Y )-generated for
X,Y ∈ {A,B} and X 6= Y .

With ∆G2(3)(3A, 6A, 12B) = 12 and contributions by the involved subgroups as
Σ(M4) = 12 = Σ(M41) and Σ(M10) = Σ(M42) = Σ(M44) = 0, non-generation by
the triple (3A, 6A, 12B) follows from Σ∗(M4) = Σ(M4)−1 ·Σ∗(M41) = 12−12 = 0
and

∆∗
G2(3)

(3A, 6A, 12B) = ∆G2(3)(3A, 6A, 12B)− 1 · Σ∗(M4)− 1 · Σ∗(M41)

= 12− 0− 12 = 0.

In the above, if we replace M4 and M41 by M3 and M31, respectively then non-
generation of G2(3) by (3B, 6B, 12A) follows in a very similar way to that of
(3A, 6A, 12B).

Finally, for the triple (3X, 6X, 13Y ), where X,Y ∈ {A,B}, we have the struc-
ture constant ∆G2(3)(3X, 6X, 13Y ) = 13. The involved subgroups in the com-
putations of ∆∗

G2(3)
(3X, 6X, 13Y ) are M6 and M61 if X = A and M5 and M51

if X = B. We have Σ(Mi) = 13 = Σ∗(Mi1) for i ∈ {5, 6}. Thus Σ∗(Mi) =
Σ(Mi)− 1 · Σ∗(Mi1) = 13− 13 = 0 for i ∈ {5, 6}. It follows that

∆∗
G2(3)

(3X, 6X, 13Y ) = ∆G2(3)(3X, 6X, 13Y )− 1 · Σ∗(Mi)− 1 · Σ∗(Mi1)

= 13− 0− 13 = 0,

for i ∈ {5, 6}, showing the non-generation ofG2(3) by (3X, 6X, 13Y ), whereX,Y ∈
{A,B}.

Now, since our group G2(3) is not (3X, 6X, tZ)-generated for all the conjugacy
classes tZ of G, we deduce that G is not 6X-complementary generated for X ∈
{A,B}.

For the remaining classes nX ∈ {6C, 6D, 7A, 8A, 8B, 9A, 9B, 9C, 12A, 12B, 13A,
13B} we show that G2(3) is nX-complementary generated.

Proposition 3.7. The group G2(3) is 6C-complementary generated.

Proof. Here, we show that G2(3) is (pY, 6C, 7A)-generated for all conjugacy classes
pY of G2(3), where p is a prime number that divides |G2(3)|. From Table 2, we can
see that the only maximal subgroup of G2(3) that contains elements from 6C and
7A together isM9 and the corresponding value of h is 3. For the case (2A, 6C, 7A),
we have ∆G2(3)(2A, 6C, 7A) = 336 and Σ∗(M9) = Σ(M9) = 14. Therefore,

∆∗
G2(3)

(2A, 6C, 7A) = ∆G2(3)(2A, 6C, 7A)− 3 · Σ∗(M9)

= 336− 3(14) = 294,
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showing that G2(3) is (2A, 6C, 7A)-generated. For the case (3D, 6C, 7A), we have
∆G2(3)(3D, 6C, 7A) = 1344 and Σ∗(M9) = Σ(M9) = 28. Therefore,

∆∗
G2(3)

(3D, 6C, 7A) = ∆G2(3)(3D, 6C, 7A)− 3 · Σ∗(M9)

= 1344− 3(28) = 1260,

and thus G2(3) is (3D, 6C, 7A)-generated. For the case (7A, 6C, 7A), we have
∆G2(3)(7A, 6C, 7A) = 34776 and Σ∗(M9) = Σ(M9) = 28+28+28 = 84. Therefore,

∆∗
G2(3)

(7A, 6C, 7A) = ∆G2(3)(7A, 6C, 7A)− 3 · Σ∗(M9)

= 34776− 3(84) = 34524,

showing that G2(3) is (7A, 6C, 7A)-generated. Lastly, with X ∈ {A,B}, we find
that G2(3) is (13X, 6C, 7A)-generated since

∆∗
G2(3)

(13X, 6C, 7A) = ∆G2(3)(13X, 6C, 7A)− 3 · Σ∗(M9)

= 18144− 3(14) = 18102.

For the remaining cases 3A, 3B, 3C and 3E, we note lack of the required fusion
hence generation arise because

∆∗
G2(3)

(3X, 6C, 7A) = ∆G2(3)(3X, 6C, 7A) = 28, for X ∈ {A,B},
∆∗

G2(3)
(3C, 6C, 7A) = ∆G2(3)(3C, 6C, 7A) = 280, and

∆∗
G2(3)

(3E, 6C, 7A) = ∆G2(3)(3E, 6C, 7A) = 1596.

Since G2(3) is (pY, 6C, 7A)-generated for all the conjugacy classes pY of G2(3)
(p is a prime), it follows by Proposition 1.2 that G2(3) is 6C-complementary
generated.

Proposition 3.8. The group G2(3) is 6D-complementary generated.

Proof. We show that G2(3) is (pY, 6D, 13X)-generated for all conjugacy classes pY
of elements of prime order p, where X ∈ {A,B}. From GAP, we get the structure
constants in Table 3. Now, from Table 3, we see that ∆G2(3)(pY, 6D, 13X) > 0

Table 3: The structure constants ∆G2(3)(pY, 6D, 13X).

pY 2A 3A 3B 3C 3D 3E 7A 13A 13B

∆G2(3)(pY, 6D, 13X) 312 52 52 208 1716 1248 33696 19656 19656

for all pY . From Table 2, we can see that no maximal subgroup of G contains
elements from 6D and 13X together for X ∈ {A,B}. Therefore, maximal sub-
groups of G2(3) make no contribution in the calculations of ∆∗

G2(3)
(pY, 6D, 13X).

Hence, ∆∗
G2(3)

(pY, 6D, 13X) = ∆G2(3)(pY, 6D, 13X) > 0. Therefore, G2(3) is
(pY, 6D, 13X)-generated for all the conjugacy classes pY , where p is a prime. It
follows by Proposition 1.2 that G2(3) is 6D-complementary generated.
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Proposition 3.9. The group G2(3) is 7A-complementary generated.

Proof. By Propositions 8, 19 and 22 of [24], the triple (pY, 7A, 7A) generates the
group G2(3) for all pY ∈ {2A, 3A, 3B, 3C, 3D, 3E, 7A}. Also, by Proposition 24
of [24], G2(3) is (7A, 13X, 13Y )-generated for X,Y ∈ {A,B}. Now, if G2(3) is
(7A, 13X, 13Y )-generated then it is also (13X, 7A, tZ)-generated for some class
tZ of G2(3). It follows that G2(3) is a (pY, 7A, tZ)-generated group for all the
conjugacy classes pY containing elements of prime orders. Hence, G2(3) is 7A-
complementary generated.

Proposition 3.10. The group G2(3) is 8X-complementary generated for X ∈
{A,B}.

Proof. We show that G2(3) is (pY, 8X, 13A)- and (pY, 8X, 7A)-generated for pY in
the sets {2A, 3A, 3B, 3C, 3E, 7A} and {3D, 13A, 13B}, respectively. From Table 2,
we see that M5 (respectively, M6) is the only maximal subgroup of G2(3) with
classes of elements of orders 2, 3, 8 and 13 that fuse into classes 2A, 3B, 8A
(respectively, 8B) and 13A of G2(3). Let i = 5 when X = A and i = 6 when
X = B. Now, for the case (2A, 8X, 13A), we find ∆G2(3)(2A, 8X, 13A) = 910,
Σ(Mi) = 26 + 52 = 78 and Σ(Mi1) = 13 + 13 = 26. Thus, Σ∗(Mi) = Σ(Mi)− 1 ·
Σ∗(Mi1) = 78− 26 = 52. Therefore,

∆∗
G2(3)

(2A, 8X, 13A) = ∆G2(3)(2A, 8X, 13A)− 1 · Σ∗(Mi)− 1 · Σ∗(Mi1)

= 910− 52− 26 = 832,

showing generation of G2(3) by the triple (2A, 8X, 13A) for X ∈ {A,B}.
Again, we let i = 5 when X = A, i = 6 when X = B and consider the case

(3Y, 8X, 13A), Y ∈ {A,B} and Y 6= X. We have ∆G2(3)(3Y, 8X, 13A) = 91,
Σ(Mi) = 26 and Σ(Mi1) = 13 + 13 = 26. So, Σ∗(Mi) = Σ(Mi) − 1 · Σ∗(Mi1) =
26− 26 = 0. Therefore,

∆∗
G2(3)

(3Y, 8X, 13A) = ∆G2(3)(3Y, 8X, 13A)− 1 · Σ∗(Mi)− 1 · Σ∗(Mi1)

= 91− 26 = 65,

also showing generation of G2(3) by the triple (3Y, 8X, 13A) for Y,X ∈ {A,B}
with Y 6= X.

For all the remaining cases, we note that no maximal subgroup make a contribu-
tion in the calculations of ∆∗

G2(3)
(pY, 8X, 13A), where pY ∈ {3A, 3B, 3C, 3E, 7A}.

So, ∆∗
G2(3)

(pY, 8X, 13A) = ∆G2(3)(pY, 8X, 13A). Similarly, ∆∗
G2(3)

(pY, 8X, 7A) =
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∆G2(3)(pY, 8X, 7A) for pY ∈ {3D, 13A, 13B}. From GAP, we find that

∆∗
G2(3)

(3X, 8X, 13A) = ∆G2(3)(3X, 8X, 13A) = 91,

∆∗
G2(3)

(3C, 8X, 13A) = ∆G2(3)(3C, 8X, 13A) = 728,

∆∗
G2(3)

(3E, 8X, 13A) = ∆G2(3)(3E, 8X, 13A) = 3276,

∆∗
G2(3)

(7A, 8X, 13A) = ∆G2(3)(7A, 8X, 13A) = 75712,

∆∗
G2(3)

(3D, 8X, 7A) = ∆G2(3)(3D, 8X, 7A) = 3276,

∆G2(3)(13A, 8X, 7A) = ∆G2(3)(13A, 8X, 7A) = 40768,

∆G2(3)(13B, 8X, 7A) = ∆G2(3)(13B, 8X, 7A) = 40768,

where X ∈ {A,B}. Generation by all these triples follows since ∆∗(G2(3)) > 0.
Consequently, G2(3) is 8X-complementary generated for X ∈ {A,B}.

Proposition 3.11. The group G2(3) is 9X-complementary generated for X ∈
{A,B,C}.

Proof. Let T := {2A, 3A, 3B, 3C, 3D, 3E, 7A, 13A, 13B}. We show that G2(3) is
(pY, 9X, 13Z)-generated for all pY ∈ T , whereX ∈ {A,B,C} and Z ∈ {A,B}. Di-
rect computations with GAP yield the structure constants in Table 4. Now, from

Table 4: The structure constants ∆G2(3)(pY, 9X, 13Z).

pY 2A 3A 3B 3C 3D 3E 7A 13A 13B

∆G2(3)(pY, 9A, 13Z) 195 52 52 91 1131 897 21762 14040 14391
∆G2(3)(pY, 9B, 13Z) 312 13 13 286 897 1014 22815 11232 10881
∆G2(3)(pY, 9C, 13Z) 312 13 13 286 897 1014 22815 11232 10881

Table 4, we see that ∆∗
G2(3)

(pY, 9X, 13Z) > 0 for all pY , where X ∈ {A,B,C} and
Z ∈ {A,B}. From Table 2, we can see that no maximal subgroup of G contains
elements of orders 9 and 13 at the same time. Thus, maximal subgroups of G2(3)
do not make any contribution in the calculations of ∆∗

G2(3)
(pY, 9X, 13Z). Thus,

∆∗
G2(3)

(pY, 9X, 13Z) = ∆G2(3)(pY, 9A, 13Z) > 0. Therefore, G2(3) is (pY, 9X, 13Z)-
generated for all the conjugacy classes pY containing elements of prime orders. It
follows that G2(3) is 9X-complementary generated for X ∈ {A,B,C}.

Proposition 3.12. The group G2(3) is 12X-complementary generated for X ∈
{A,B}.

Proof. We show that G2(3) is (pY, 12X, 13A)- and (pY, 12X, 7A)-generated for
pY in the sets {2A, 3A, 3B, 3C, 3E, 7A} and {3D, 13A, 13B}, respectively. From
Table 2, we see that M5 (respectively, M6) is the only maximal subgroup of G2(3)
with classes of elements of orders 2, 3, 12 and 13 that fuse into classes 2A, 3B,
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12A (respectively, 12B) and 13A of G2(3). Let i = 5 when X = B and i = 6 when
X = A. Now, for the case (2A, 12X, 13A), we find ∆G2(3)(2A, 12X, 13A) = 702 for
X ∈ {A,B} and Σ(Mi) = 39 + 39 = 78. No subgroup of Mi makes a contribution
hence Σ∗(Mi) = Σ(Mi) = 78. Thus,

∆∗
G2(3)

(2A, 12X, 13A) = ∆G2(3)(2A, 12X, 13A)− 1 · Σ∗(Mi)

= 702− 78 = 624,

showing generation of G2(3) by the triple (2A, 12X, 13A) for X ∈ {A,B}.
Again we let i = 5 when X = B, i = 6 when X = A and consider the

case (3X, 12X, 13A), X ∈ {A,B}. We have ∆G2(3)(3X, 12X, 13A) = 39, and
Σ∗(Mi) = Σ(Mi) = 0. Therefore,

∆∗
G2(3)

(3X, 12X, 13A) = ∆G2(3)(3X, 12X, 13A)− 1 · Σ∗(Mi)

= 39− 0 = 39,

also showing generation of G2(3) by the triple (3X, 12X, 13A) for X ∈ {A,B}.
For all the remaining cases, namely (pY, 12X, 13A) and (pY, 12X, 7A) for pY

in the sets {3C, 3E, 7A} and {3D, 13A, 13B}, respectively, we note that no maxi-
mal subgroup make a contribution in the calculations of ∆∗

G2(3)
(pY, 12X, 13A) or

∆∗
G2(3)

(pY, 12X, 7A) for pY in the sets {3C, 3E, 7A} and {3D, 13A, 13B}. There-
fore, ∆∗

G2(3)
(pY, 12X, 13A) = ∆G2(3)(pY, 12X, 13A) and ∆∗

G2(3)
(pY, 12X, 7A) =

∆G2(3)(pY, 12X, 7A). The computations reveal that

∆∗
G2(3)

(3Y, 12X, 13A) = ∆G2(3)(3Y, 12X, 13A) = 39,

∆∗
G2(3)

(3C, 12X, 13A) = ∆G2(3)(3C, 12X, 13A) = 624,

∆∗
G2(3)

(3E, 12X, 13A) = ∆G2(3)(3E, 12X, 13A) = 2340,

∆∗
G2(3)

(7A, 12X, 13A) = ∆G2(3)(7A, 12X, 13A) = 50544,

∆∗
G2(3)

(3D, 12X, 7A) = ∆G2(3)(3D, 12X, 7A) = 2268,

∆G2(3)(13A, 12X, 7A) = ∆G2(3)(13A, 12X, 7A) = 27216,

∆G2(3)(13B, 12X, 7A) = ∆G2(3)(13B, 12X, 7A) = 27216,

where X,Y ∈ {A,B} and X 6= Y . The desired result follows since ∆∗(G2()3) > 0.
Consequently G2(3) is 12X-complementary generated for X ∈ {A,B}.

Proposition 3.13. The group G2(3) is 13X-complementary generated for X ∈
{A,B}.

Proof. By Propositions 10, 21, 24 and 25 of [24], the group G2(3) is (pY, 13X, 13Z)-
generated for pY ∈ {2A, 3A, 3B, 3C, 3D, 3E, 7A, 13X} and X,Z ∈ {A,B}. It
follows that G2(3) is a (pY, 13X, tZ)-generated group for all the conjugacy classes
pY containing elements of prime order p. Hence, G2(3) is 13X-complementary
generated for X ∈ {A,B}.
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We conclude this paper by mentioning that collecting the results in Remark 1 and
Proposition 3.1 to 3.13 show that the Chevalley group G2(3) is nX-complementary
generated if and only if n ≥ 6 and nX /∈ {6A, 6B}, proving Theorem 1.3.

Conflicts of Interest. The authors declare that they have no conflicts of interest
regarding the publication of this article.

Acknowledgments. The authors are grateful to the referees for their valuable
corrections, comments and suggestions, which improved the paper. The first au-
thor would like to thank the National Research Foundation (NRF) of South Africa
and the University of Limpopo. The second and third authors would like to thank
the University of Limpopo. The last author would like to thank the North-West
University.

References
[1] J. L. Brenner, R. M. Guralnick and J. Wiegold, Two generator groups III,

Contemp. Math. 33 (1984) 82− 89.

[2] A. R. Ashrafi, (p, q, r)-generations and nX-complementary generations of the
thompson group Th, SUT J. Math. 39 (2003) 41 − 54, https://doi.org/
10.55937/sut/1059541213.

[3] M. R. Darafsheh, A. R. Ashrafi and G. A. Moghani, nX-complementary gen-
erations of the sporadic group Co1, Acta Math. Vietnam 29 (2004) 57− 75.

[4] S. Ganief and J. Moori, 2-generations of the fourth Janko group J4, J. Algebra
212 (1999) 305− 322.

[5] S. Ganief and J. Moori, 2-generations of the smallest Fischer group Fi22,
Nova J. Math. Game Theory Algebra 6 (1997) 127− 145.

[6] S. Ganief and J. Moori, Generating pairs for the Conway groups Co2 and
Co3, J. Group Theory 1 (1998) 237− 256.

[7] S. Ganief and J. Moori, (p, q, r)-generations and nX-complementary genera-
tions of the sporadic groups HS and McL, J. Algebra 188 (1997) 531− 546.

[8] J. Moori, (p, q, r)-generations for the Janko groups J1 and J2, Nova J. Algebra
and Geometry, 2 (1993), 277− 285.

[9] J. Moori, (2, 3, p)-generations for the Fischer group F22, Commun. Algebra.
22 (1994) 4597− 4610, https://doi.org/10.1080/00927879408825089.

[10] R. Wilson, J. Conway and S. Norton, Atlas of Finite Groups, Clarendon Press,
Oxford, 1985.



Mathematics Interdisciplinary Research 9 (4) (2024) 443− 460 459

[11] M. A. Al-Kadhi and F. Ali, (2, 3, t)-generations for the Conway group Co3,
Int. J. Algebra 4 (2010) 1341− 1353.

[12] A. B. M. Basheer and T. T. Seretlo, The (p, q, r)-generations of
the alternating group A10, Quaest. Math. 43 (2020) 395 − 408,
https://doi.org/10.2989/16073606.2019.1575925.

[13] A. B. M. Basheer and T. T. Seretlo, On two generation methods for the
simple linear group PSL(3, 5), Khayyam J. Math. 5 (2019) 125 − 139,
https://doi.org/10.22034/KJM.2019.81226.

[14] A. B. M. Basheer and J. Moori, A survey on some methods
of generating finite simple groups, London Math. Soc. Lecture Note
Ser. Cambridge University Press, Cambridge, 455 (2019) 106 − 118,
https://doi.org/10.1017/9781108692397.005.

[15] A. B. M. Basheer and T. T. Seretlo, (p,q,r)-generations of the Mathieu group
M22, Southeast Asian Bull. Math. 45 (2021) 11− 28.

[16] A. B. M. Basheer, The ranks of the classes of A10, Bull. Iranian Math. Soc.
43 (2017) 2125− 2135.

[17] A. B. M. Basheer and J. Moori, On the ranks of finite simple groups, Khayyam
J. Math. 2 (2016) 18− 24, https://doi.org/10.22034/KJM.2016.15511.

[18] A. B. M. Basheer, M. J. Motalane and T. T. Seretlo, The (p, q, r)-generations
of the alternating group A11, Khayyam J. Math. 7 (2021) 165− 186.

[19] A. B. M. Basheer, M. J. Motalane and T. T. Seretlo, The (p, q, r)-generations
of the Mathieu group M23, Italian J. Pur and Applied Math., to appear.

[20] A. B. M. Basheer, M. J. Motalane and T. T. Seretlo, The (p, q, r)-
generations of the sympletic group Sp(6, 2), Alg. Struc. Appl. 8 (2021) 31−49,
https://doi.org/ 10.22034/AS.2021.1975.

[21] M. D. E. Conder, Some results on quotients of triangle groups, Bull. Austral.
Math. Soc. 30 (1984) 73− 90, https://doi.org/10.1017/S0004972700001738.

[22] S. Ganief, 2-Generations of the Sporadic Simple Groups, PhD Thesis, Univer-
sity of Natal, South Africa, 1997.

[23] S. Ganief and J. Moori, (p, q, r)-generations of the smallest Conway group
Co3, J. Algebra 188 (1997) 516−530, https://doi.org/10.1006/jabr.1996.6828.

[24] A. B. M Basheer et al, The (p, q, r)-generations of the Chevalley group G2(3),
submitted, 2024.

[25] The GAP Group, GAP – Groups, Algorithms, and Programming, Version
4.10.2; 2019, (http://www.gap-system.org).



460 A. B. M. Basheer et al. /nX-complementary generations of the...

Ayoub B. M. Basheer
School of Mathematical and Computer Sciences,
University of Limpopo (Turfloop),
P. Bag X1106, Sovenga 0727, South Africa
e-mail: ayoubbasheer@gmail.com

Malebogo J. Motalane
School of Mathematical and Computer Sciences,
University of Limpopo (Turfloop),
P. Bag X1106, Sovenga 0727, South Africa
e-mail: john.motalane@ul.ac.za

Mahlare G. Sehoana
School of Mathematical and Computer Sciences,
University of Limpopo (Turfloop),
P. Bag X1106, Sovenga 0727, South Africa
e-mail: mahlare.sehoana@ul.ac.za

Thekiso T. Seretlo
School of Mathematical and Statistical Sciences,
PAA Focus Area,
North-West University (Mahikeng),
P. Bag X2046, Mmabatho 2790, South Africa
e-mail: thekiso.seretlo@nwu.ac.za


