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Gegenbauer Functions for Solving the Two
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Abstract
This work applies rational Gegenbauer functions and a collocation scheme

to solve the governing equation for two-dimensional fluid flow near a stagna-
tion point, known as Hiemenz flow. We utilize a truncated series expansion
of rational Gegenbauer functions on the semi-infinite interval and Gegen-
bauer–Gauss points to reduce the problem to a set of nonlinear algebraic
equations. Newton’s iteration technique is employed to solve these algebraic
equations. The scheme is straightforward to implement, and our new re-
sults are compared with established numerical results, demonstrating the
method’s effectiveness and accuracy.
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1. Introduction
Hiemenz flow refers to a specific type of steady, two-dimensional flow of a viscous
incompressible fluid over a flat plate. This phenomenon is characterized by the
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development of a boundary layer along the plate due to fluid viscosity. The flow is
named Hiemenz in honor of the German physicist Hermann Hiemenz who studied
this phenomenon [1]. This flow has gained significant research interest due to its
industrial and technological applications, including cooling electronic components,
gas turbine blades, drying papers and films, tempering glass and metal during
processing, and surface painting.

Similar to other flows and equations discussed in [2–7], Hiemenz stagnation
point flows are governed by non-linear high-order equations. Finding numerical so-
lutions is crucial since analytical solutions are often not explicitly obtainable. The
governing equations are derived from the Navier-Stokes equations under specific
assumptions [8], focusing on steady two-dimensional flow with an incompressible
fluid and no pressure gradient in the flow direction. The governing Navier-Stokes
equations simplify to

∂u

∂x
+
∂v

∂y
= 0, (1)

(continuity equation) and
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(momentum equation), where u is the velocity in the x-direction, v is the velocity
in the y-direction, and p, ρ, ν are the fluid pressure, density and kinematic viscosity
respectively. The boundary conditions are
1. At the plate (y = 0): u = 0 (constant velocity of the plate), v = 0,
2. Far from the plate (y →∞): u = ax,
where a being a constant. By introducing similarity transformations in the form

u = axf ′(ξ), v = −
√
aνf(ξ), ξ =

√
a

ν
y,

the momentum equation (2) reduced to a nonlinear ordinary differential equation
as the following [9]:

d3f

dξ3
+ f

d2f

dξ2
− (

df

dξ
)2 + 1 = 0, (3)

with transformed boundary conditions

f(0) = 0, f ′(0) = 0, lim
ξ→+∞

f ′(ξ) = 1. (4)

In Hiemenz flow, shear stress τ is caused by fluid viscosity and is defined as
the force acting parallel to the surface per unit area. In this context, it can be
expressed as follows:

τ = µ
∂u

∂y
|y=0, (5)
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where µ is the dynamic viscosity of the fluid and ∂u
∂y is the velocity gradient per-

pendicular to the flow direction. By placing similarity transformations in Equation
(2), we have:

τ = µa

√
a

ν
xf ′′(0).

Therefore, f ′′(0) corresponds to surface shear stress and due to its relationship
with physical values, we calculate f ′′(0) in the results.
Howarth in [10] gave the numerical solution of axisymmetric stagnation point flow
in three-dimensional with the finite difference method. Also, Gorla in [11] analyzed
the dynamic properties of unstable fluid from an axisymmetric stagnation flow in
a circular cylinder that created a harmonic motion during its flight. Recently, the
authors in [12] solved the two-dimensional flow of fluid near a stagnation point by
using radial basis functions (RBF). To solve this flow, Golbabai and Samadpour
[9] used the rational Chebyshev collocation (RCC) method.

The primary aim of this work is to enhance and develop the rational Gegen-
bauer functions for the numerical solution of Heimenz flow, providing improved
solutions compared to existing methods, which is a new and innovative work. The
rational Gegenbauer approximation is flexible and efficiently approximates a wide
range of functions, offering fast convergence for specific problems. This approxima-
tion increases the stability of calculations, especially for ill-conditioned problems.
The orthogonality property of rational Gogenbauer functions is used to simplify
calculations and expansions, while the compatibility property of these functions
makes it adjust for boundary conditions with special domains. The features make
it useful in various applications including numerical analysis and solving differen-
tial equations.

Guo [13, 14] introduced the Gegenbauer approximation to transform the main
problem in an unlimited domain to a problem in a limited domain with the help
of a mapping, and then used Gegenbauer polynomials to get the numerical so-
lution of the problem. The plan of this scheme involves reducing the problem
to a set of algebraic equations with the expansion of f(ξ) in parts of rational
Gegenbauer functions with unknown coefficients. Rational Gegenbauer functions
are considered a complete spectral basis for semi-infinite intervals [15–18]. The
authors of [19] applied the collocation method based on these functions to solve
the laminar boundary layer equation. Additionally, Parand et al. [20] applied
rational Gegenbauer functions with the Quasi-linearization method for boundary
layer flow involving Powell–Eyring non-Newtonian fluid.

The remainder of this article is structured as follows: Section 2 details the
implementation of rational Gegenbauer functions. In Section 3, we use these func-
tions and the collocation scheme to solve our studied model. Also, in this section,
the convergence rate of the approximation of rational Gegenbauer functions is
given. Results and discussions of the proposed scheme are shown in Section 4.
Finally, Section 5 is dedicated to a conclusion.
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2. Rational Gegenbauer interpolation

In this section, we will begin by defining the Gegenbauer polynomials of degree m
as follows:

Gαm(ξ) =

[m2 ]∑
i=0

(−1)i
Γ(ξ + α− i)

i!(m− 2i)!Γ(α)
(2ξ)m−2i, α > −1

2
.

Here, m = 0, 1, 2, . . . and Γ denotes the Gamma function. These polynomials are
orthogonal over the interval [−1.1] with the weight function w(ξ) = (1 − ξ2)−

1
2 .

For Gegenbauer polynomials, α can vary in the interval (− 1
2 ,+∞); specifically, it

corresponds to the Chebyshev polynomials of the first kind α = 0, the second kind
of Chebyshev polynomials α = 1, and Legendre polynomials α = 0.5. Now, we
define rational Gegenbauer functions RGαm(ξ), for scaling/stretching factor L > 0,
by [13]:

RGαm(ξ) = Gαm

(
ξ − L
ξ + L

)
, m = 0, 1, 2, . . . , (6)

where Gαm(ξ) is a Gegenbauer polynomial of degree m and order α. The transfor-
mation ξ−L

ξ+L in (6) is selected which the interval [−1, 1] is converted to J = [0,∞).
The optimal value of the Boyd offering for the map parameter L can be seen in
[21, 22].
The rational Gegenbauer function RGαm(ξ) is an eigenfunction for the following
Sturm-Liouville problem:

(ξ+L)

√
ξ

L

d

dξ
[(ξ+L)

√
ξ
d

dξ
RGαm(ξ)]+α

(
ξ2 − L2

L

)
d

dξ
RGαm(ξ)+m(m+2α)RGαm(ξ) = 0.

Additionally, these functions can be defined using the following recurrence relation:

RGα0 (ξ) = 1, RGα1 (ξ) = 2α
ξ − L
ξ + L

,

RGαm+1(ξ) =
1

m+ 1

[
2

(
ξ − L
ξ + L

)
(m+ α)RGαm(ξ)− (m+ 2α− 1)RGαm−1(ξ)

]
, m > 1.

Now, let us define

L2
ω(J) = {f : J → R such that f is measurable function and ||f ||ω <∞},

for the weight function ωα(ξ) = 2L
(ξ+L)2 [1 − ( ξ−Lξ+L )]α−

1
2 which is an integrable,

non-negative, real-valued function on J and

||f ||ω =

(∫ ∞
0

|f(ξ)|2ωα(ξ)dξ

) 1
2

,
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is the norm determined by the scalar product

< f(ξ), h(ξ) >ω=

∫ ∞
0

f(ξ)h(ξ)ωα(ξ)dξ. (7)

Therefore, {RGαm(ξ)}m≥0 expresses one set that is orthogonal under Equation (7),

< RGαm(ξ), RGαn(ξ) >ω=
π21−2αΓ(n+ 2α)

n!(n+ α)(Γ(α))2
δmn,

where δmn is the Kronecker delta function. The current system is completed in
L2
ω(J). Therefore, for each function f ∈ L2

ω(J), we have the following series
expansion:

f(ξ) =

+∞∑
j=0

ajRG
α
j (ξ),

with

aj =
< f(ξ), RGαj (ξ) >ω

||RGαj (ξ)||2ω
.

3. Solving the stagnation point flow

Let RGα
M = span{RGα0 , RG

α
1 , ..., RG

α
M} for any positive integer M . Generally,

the L2
ω(J)- orthogonal projection IM : L2

ω(J)→ RGα
M for each f ∈ L2

ω(J) would
be defined as below:

< IMf − f,RGαi >ω= 0, ∀ RGαi ∈ RGα
M .

Equivalently,

IMf(ξ) =

M∑
j=0

ajRG
α
j (ξ). (8)

In this paper, we choose L ' 4

√
M
2 according to Weideman’s theory [23]. Note

that form the definitions of RGαj (ξ) and IMf(ξ), we have d
dξRG

α
j (∞) = 0, j =

0, 1, ...,M and IMf
′(∞) = 0. To validate the boundary condition (4), a simple

part is added to Equation (4) so that we get the following form:

IMf(ξ) = ξ +

M∑
j=0

ajRG
α
j (ξ), (9)

where IMf ′(∞) = 1. It can be seen that the boundary condition f ′(∞) = 1 is
completely satisfied. Now, to solve problem (3)-(4), we first set to (9), IM (f)
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approximately from f and find the unknown coefficients aj , j = 0, 1, ...,M . The
residual function of (3) is as follows:

ResM (ξ) =
d3IMf

dξ3
+ IMf

d2IMf

dξ2
−
(
dIMf

dξ

)2

+ 1.

So from the collocation method, we have

ResM (ξ)|ξ=ξi = 0, i = 1, ...,M − 1, (10)

IMf(0) = 0, IMf
′(0) = 0, (11)

where ξi, (i = 1, 2, ...,M − 1) are the rational Gegenbauer-Gauss points. It is
interesting to note that, ξi’s are zeros of the polynomial RGαM+1(ξ) + RGαM (ξ).
Equations (10) and (11) creates M + 1 nonlinear algebraic equations which can be
used to obtain the numerical approximation solutions via Newton’s method.

3.1 Convergence and error estimations
According to [24], in order to estimate ||f(ξ)−IMf(ξ)||2ω, we use Equation (8) and
write the error as:

||eM ||2ω = ||f(ξ)− IMf(ξ)||2ω = ||
+∞∑
j=M

ajRG
α
j (ξ)||2ω

=

+∞∑
m=M

+∞∑
n=M

aman < RGαm(ξ), RGαn(ξ) >ω

=

+∞∑
m=M

+∞∑
n=M

aman
π21−2αΓ(n+ 2α)

n!(n+ α)(Γ(α))2
δmn

=

+∞∑
m=M

π21−2αΓ(m+ 2α)a2m
m!(m+ α)(Γ(α))2

=

+∞∑
m=M

π21−2αΓ(m+ 2α)

m!(m+ α)(Γ(α))2
(
m!(m+ α)(Γ(α))2

π21−2αΓ(m+ 2α)
)2 < f(ξ), RGαm(ξ) >2

ω

=

+∞∑
m=M

m!(m+ α)(Γ(α))2

π21−2αΓ(m+ 2α)
< f(ξ), RGαm(ξ) >2

ω .

The last relation obtained is shown that the convergence rate is included function
f(ξ). Also, the following theorem presents an upper bound for the error, as detailed
in [24].

Theorem 3.1. For any η = ξ−L
ξ+L , F (η) = f(Φ(η)) on [−1, 1] andMi = max |F (i)(η)|,

we have:

||eM ||2ω ≤
+∞∑
m=M

π 21−2m−2αΓ(m+ 2α)M2
m

(m+ α)Γ2(m+ α) Γ(m+ 1)
.
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Table 1: Comparison of ||Res||2 in implementing the rational Gegenbauer method
for Hiemenz flow with different α.

α M = 10 M = 20 M = 30 M = 40

−0.48 2.62418E − 04 7.40814E − 06 6.47648E − 09 3.80778E − 12

−0.01 2.65025E − 04 2.54409E − 05 3.79708E − 08 3.35746E − 11

0.5 6.63230E − 04 7.86611E − 05 2.05367E − 07 2.74548E − 10

1 3.75565E − 03 7.35231E − 07 1.52807E − 07 7.62892E − 12

1.5 5.03195E − 03 4.07776E − 04 2.98237E − 06 8.25476E − 09

2 1.05290E − 02 7.38051E − 04 8.76501E − 06 3.38341E − 08

2.5 1.92001E − 02 1.19115E − 03 2.23594E − 05 1.18322E − 07

3 3.15689E − 02 1.78592E − 03 5.05122E − 05 3.60312E − 07

4. Results and discussion
This section is devoted to the presentation of some numerical solutions obtained by
applying the rational Gegenbauer functions method. We use α = −0.48,−0.01, 0.5,
1, 1.5, 2, 2.5 and 3 which leads to f ′′(0) = 1.2325876568. To make a comparison in
Table 1, we use the measure ||Res||2 with form:

||Res||2 =

∫ ∞
0

Res2M (ξ)dξ,

and it can be seen that increasing in number of Gauss points causes the convergence
of this method. Considering this table, by increasing the amount of M in the
proposed method, the amount of error is significantly reduced. To select the
appropriate value from Table 1, the values are ||Res||2 with M = 40 for different
amounts of α in Figure 1. This graph shows the limits that we can be used to
obtain executable results. We have the lowest error rate at α = −0.48 in this
figure and therefore we prefer the value α = −0.48 for the stagnation point flow.
In Table 2 and Figure 2, the coefficients ai and the logarithmic figure of the
absolute coefficients |ai| of the approximate solution to the problem is shown by
the Gegenbauer functions by selecting M = 40 and α = −0.48. The stability
and convergence of the rational Gegenbauer collocation method are shown by this
graph and table. In addition, we calculate the convergence exponential index
called r, which is used in Figure 3 with

r = lim
j→∞

log | log(|aj |)|
log(j)

.

Figure 3 shows that it is approximately r < 1 and corresponds to Boyd [22], so we
infer the subgeometric convergence of the spectral approximation (9).

Approximate solutions of f(ξ) are displayed in Table 3 with the proposed
method for M = 40 and the resulting solutions, has been compared with solutions
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Figure 1: Graph for ||Res||2 of presented scheme with M = 40 and different
numbers of α.

Figure 2: Logarithmic figure for absolute coefficients |ai| when α = −0.48 and
M = 40 for the rational Gegenbauer functions.
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Table 2: Approximations of coefficients ai of the present method for M = 40.

i ai i ai i ai

0 −3.35471E − 01 11 9.64783E − 03 22 1.13788E − 04 33 2.83090E − 05

1 3.35583E − 01 12 1.15197E − 03 23 1.30442E − 04 34 2.13539E − 05

2 −6.14051E − 01 13 −3.61675E − 03 24 1.97526E − 04 35 1.47523E − 05

3 3.09584E − 01 14 −8.05463E − 04 25 1.95448E − 04 36 8.43683E − 06

4 8.48399E − 02 15 1.77945E − 03 26 1.42810E − 04 37 3.72643E − 06

5 −1.44513E − 01 16 1.12206E − 03 27 1.02288E − 04 38 1.18421E − 06

6 9.29174E − 05 17 −1.78145E − 04 28 9.11053E − 05 39 2.40745E − 07

7 5.59343E − 02 18 −2.39270E − 04 29 8.76080E − 05 40 2.35017E − 08

8 −3.40220E − 03 19 3.14593E − 04 30 7.46637E − 05

9 −2.21294E − 02 20 4.96876E − 04 31 5.51198E − 05

10 8.39598E − 04 21 2.86826E − 04 32 3.85812E − 05

of Howarth [10], Abbasbandy [12], Golbabai [9] and the Runge-Kutta method of
four order. Also, in this table, in the last column, the following rational Chebyshev-
Gauss-Radau collocation points expressed in [9],

τi = L
1 + xi
1− xi

, xi = −cos
(

2iπ

2M + 1

)
, i = 0, 1, ...,M,

combined with the rational Gegenbauer method (RGM2) is used which is similar
to the results obtained with the results obtained with Gauss-Gegenbauer colloca-
tion points in the rational Gegenbauer method stated in this article (RGM1). In
addition, the graphs f(ξ), f ′(ξ) and f ′′(ξ) are shown in Figure 4 for M = 40 and
it can be seen that the graphs of this figure are in good agreement with results of
[9, 10, 12].

f ′′(ξ) at the zero point is very important for the stagnation point flow. Compar-
ing f ′′(0) obtained by the present scheme with the results calculated in [9, 10, 12]
and Runge-Kutta scheme of fourth order in Table 3, we find that the proposed
method is very accurate.

5. Conclusion
In this study, we used the rational Gegenbauer method to approximate the so-
lution of the third-order nonlinear differential equation related to the stagnation
point flow. This approach allowed us to transform the flow equation into a set of
algebraic equations. The numerical solution obtained using the rational Gegen-
bauer scheme was consistent with the approximations presented in [9, 10, 12] and
showed the convergence and strong effectiveness of the method. In the context
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Figure 3: Graph of convergence index r for different numbers of i.

Figure 4: Approximations f(ξ), f ′(ξ) and f ′′(ξ) for the Hiemenz flow for M = 40.
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Table 3: Comparing the results of f(ξ) and f ′′(0) from the present scheme using
rational Gauss-Gegenbauer collocation points (RGM1) and rational Chebyshev-
Gauss-Radau collocation points (RGM2) with methods from [9, 10, 12] and the
Runge-Kutta method.

ξ Method of [10] Method of [12] Method of [9] Runge-Kutta RGM1 RGM2
0.0 0 0 0 0 0 0

0.2 0.0232 0.233355 0.0233222570 0.0233222492 0.0233222570 0.0233222570

0.6 0.1867 0.186715 0.1867009935 0.1867009886 0.1867009935 0.1867009935

1.0 0.4592 0.459236 0.4592270171 0.4592270144 0.4592270170 0.4592270170

1.4 0.7966 0.796657 0.7966517836 0.7966517822 0.7966517835 0.7966517835

1.8 1.1688 1.168855 1.1688554755 1.1688554750 1.1688554755 1.1688554755

2.0 1.3619 1.361968 1.3619741619 1.3619741617 1.3619741619 1.3619741618

2.4 1.7552 1.755238 1.7552538766 1.7552538771 1.7552538764 1.7552538766

2.8 2.1529 2.152965 2.1529965067 2.1529965081 2.1529965069 2.1529965067

3 2.3525 2.352516 2.3525566747 2.3525566765 2.3525566747 2.3525566746

f ′′(0) 1.2326 1.229742 1.2325876434 1.2325876312 1.2325876568 1.2325876568

of Hiemenz flow, we specifically calculated f ′′(0) which is very important for the
analysis and compared the results with existing calculations. This highlighted the
reliability of rational Gegenbauer method for dealing with such problems.
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